ee 2008 1

VGTU EF ESK [email protected] ee 2008 2

A traveling wave tube (TWT) is an electronic device used to produce high-power radio frequency signals.

The TWT was invented by Rudolf Kompfner in a British radar lab during World War II, and refined by Kompfner and John Pierce at . Both of them have written books on the device. In 1994, A.S. Gilmour wrote a modern TWT book which is widely used by U.S. TWT engineers today, and research publications about TWTs are frequently published by the IEEE.

TWTs are commonly used as amplifiers in satellite transponders.

http://en.wikipedia.org/wiki/Traveling_wave_tube

VGTU EF ESK [email protected] ee 2008 3

Haeff

Lindenblad

VGTU EF ESK [email protected] ee 2008 4

Kompfner

Pierce

http://scholar.lib.vt.edu/theses/available/etd-11242003-123529/unrestricted/Barts_etd_CH2.pdf

VGTU EF ESK [email protected] ee 2008 5

Rudolf Kompfner (1909 – 1977) was an Austrian-born engineer and , best known as the inventor of the traveling wave tube (TWT).

John Robinson Pierce (March 27, 1910 – April 2, 2002), was an American engineer and author. He worked extensively in the fields of radio communication, computer music, and science fiction.

VGTU EF ESK [email protected] ee 2008 6

John Robinson Pierce wrote on electronics and information theory, and developed jointly the concept of Pulse code modulation (PCM) with his Bell Labs colleagues Barney Oliver and . He supervised the Bell Labs team which invented the transistor, and at the request of one of them, Walter Brattain, coined the term transistor.

Pierce's early work at Bell Labs was on vacuum tubes of all sorts. During World War II he discovered the work of Rudolf Kompfner in a British radar lab, where he had invented the traveling-wave tube. Pierce worked out the math for this broadband amplifier device, and wrote a book about it, after hiring Kompfner for Bell Labs. He later recounted that " Rudy Kompfner invented the traveling-wave tube, but I discovered it .“ He did significant research into satellites, including an important leadership role (as vice President of Bell Laboratories for Research) in the development of the first commercial communications satellite, Telstar 1.

http://en.wikipedia.org/wiki/John_R._Pierce

VGTU EF ESK [email protected] ee 2008 7

BĖGANČIOSIOS BANGOS LEMPOS • Galingi plačiajuosčiai MB virpesių stiprintuvai • Stiprinimą lemia sklindančios lėtinimo sistema elektromagnetinės bangos ir elektronų pluošto sąveika

Turinys 1. Bėgančiosios bangos lempos sandara ir veiksena 2. Bėgančiosios bangos lempos teorija 2.1. Konvekcinės srovės kintamoji dedamoji 2.2. Elektrinio lauko išilginė dedamoji 2.3. Lempoje sklindančios bangos 2.4. Stiprinimo koeficientas 3. Bėgančiosios bangos lempų lėtinimo sistemos 4. Bėgančiosios bangos lempų savybės ir taikymas

VGTU EF ESK [email protected] ee 2008 8

Cutaway view of a TWT. (1) Electron gun; (2) RF input; (3) Magnets; (4) Attenuator; (5) Helix coil; (6) RF output; (7) Vacuum tube; (8) Collector.

VGTU EF ESK [email protected] ee 2008 9

http://cache.eb.com/eb/image?id=206

VGTU EF ESK [email protected] ee 2008 10

http://ite.gmu.edu/~omega/images/dtwt_1.jpg

VGTU EF ESK [email protected] ee 2008 11

Bėgančiosios bangos lempos sandara 1 2 3 4 u 5 u 6 u

vf

Ez uuu uu ucu uc u uuuu uu u u

VGTU EF ESK [email protected] ee 2008 12 Bėgančiosios bangos lempos teorija c u uu γ jωt−γ z γ = α + β E z = E zm

v = v + v ωt−γ z ρ = ρ + ρ ωt−γ z ωt−γ z m J = J + J uc uu uu uu uc uuuuuuu uc

VGTU EF ESK [email protected] ee 2008 13 Konvekcinės srovės kintamoji dedamoji

cu uuu u Ez

J ρv J = ρ v + v ρ

u(mv t = −E z ) u Ez u c

J u Ez ucu

I=fEz

VGTU EF ESK [email protected] ee 2008 14

c

v = v + v ω t−γ z ρ = ρ + ρ ω t−γ z J = J + J ωt−γ z

ωt−γ z γ = α + β E z = E z

ωt−γ z J = ρv J ≅ ρv + (ρ v + v ρ ) J = ρ v + v ρ

v v ∂v ∂v z v << v z t ≅ v m = −E z = + t t ∂t ∂ z t

v ∂v ∂v ωt−γ z ≅ + v = (ω − γv )v t ∂t ∂ z E ω t−γ z ω t−γ z v = − z m(ω − γv )v = −E z m ω −γv

∂J ∂ρ γ = − ρ = J ∂ z ∂t ω

VGTU EF ESK [email protected] ee 2008 15

c

E γ J = ρ v + v ρ v = − z ρ = J m ω − γv ω

ρ E γ ωρ E z J = − z J = − + v J m ω −γv ω m ω −γv

ρ v = J mv = U

β J J = − E z β = ω v U β − γ

I β I = − E z U β −γ

VGTU EF ESK [email protected] ee 2008 16

Elektrinio lauko išilginė dedamoji

uuc uuu c

uu Ez u ucu

uz c z uuu uu uuu u

Ez =fI

VGTU EF ESK [email protected] ee 2008 17 u

U = −X I z X = ω L B = ω C I = −BU z + I

U I I = −X I = −BU + z z z

I = I ωt −γ z γ I = U γU = X I X γ I = BU + γ I γ + BX U = γ X I

I = γ + BX U = γ = BX = ω L C U X ωL L = = = = Z I γ C ω LC

VGTU EF ESK [email protected] ee 2008 18 u

γ + BX U = γ X I γ = BX X = −γ Z

γ γ Z γ γ R U = I U = I γ − γ γ − γ

∂U U = U ωt −γ z E = − = γU E z = γU z ∂z

γ γ R E z = − I γ − γ

VGTU EF ESK [email protected] ee 2008 19

Bėgančiosios bangos lempoje sklindančios bangos

I β I = − E z U β −γ

γ γ R E z = − I γ − γ

I=fEz Ez =fI

γ γ γδ

VGTU EF ESK [email protected] ee 2008 20

γ γδ

R I γ = ω L C δ ≅ C β β = ω v C = U

   C  γ = γ + Cβ − +  = + β − Cβ = β +α      

 C  β = + β v < v α <  

α = − Cβ

C

VGTU EF ESK [email protected] ee 2008 21

Stiprinimo koeficientas

  E l = E  Cβ l  z z     E l    K = z =  Cβ l  = Cβ l    Ez    ω ω c β = β = = = k = v c v λ λ l K ≅ C = CN N = l λ λ K CN -

c

C=f R, I , U N=l / λ

VGTU EF ESK [email protected] ee 2008 23

uu cuu uucu u c u uz cuu

u N R uu c u u cu cu u uu

VGTU EF ESK [email protected] ee 2008 24

ucu K CN – –S uuu c cu

uu ∆Ff uc uuuc u η z z u

VGTU EF ESK [email protected] ee 2008 25

TWTs are mainly classified into two types, helix TWTs and coupled- cavity TWTs, according to the RF circuit structure. Helix TWTs are limited in peak RF power by the current handling (and therefore thickness) of the helix wire. As power level increases, the wire can overheat and cause the helix geometry to warp. Wire thickness can be increased to improve matters, but if the wire is too thick it becomes impossible to obtain the required helix pitch for proper operation. Typically helix TWTs achieve less than 2.5 kW output power. The coupled-cavity TWT overcomes this limit by replacing the helix with a series of coupled cavities arranged axially along the beam. Conceptually, this structure provides a helical waveguide and hence amplification can occur via velocity modulation. A coupled-cavity TWT can achieve 15 kW output power.

http://en.wikipedia.org/wiki/Traveling_wave_tube

VGTU EF ESK [email protected] ee 2008 26

VGTU EF ESK [email protected] ee 2008 27

u u u u

VGTU EF ESK [email protected] ee 2008 28

e eee

traveling wave tube amplifier. 21" long, 2" diameter. "N" connector in / out. • 6.3v heater, 152 amps • 1063v cathode, 47.2 ma • 41.2v grid, 5.2 ma • 34.7 dB noise figure • VSWR < 2:1 in / outputs • 1208 - 1450 MHz to 55 dB small signal gain Includes data sheets. New in box, Mil-Surplus.

VGTU EF ESK [email protected] ee 2008 29

e eee

traveling wave tube has WR-229 (5cm x 8cm outside) flanges. These are used, removed from equipment. Nomenclature not available. 17" long.

VGTU EF ESK [email protected] ee 2008 30

Packaged high-power, high-efficiency Ka-band TWT; L-3 Communications Electron Technologies, Inc., Model 999HA.

VGTU EF ESK [email protected] ee 2008 31

A new traveling-wave tube amplifier (TWTA) has been designed for EMC testing. Model 1000TP1G3 is a 1000/500-W pulse amplifier designed to simulate the effect of a car driving through a beam of radar.

www.ce-mag.com/archive/05/07/resources.html

VGTU EF ESK [email protected] ee 2008 32

…examples are military traveling wave tube TWT power supplies.

www.fivestarassoc.com/mil.html

VGTU EF ESK [email protected] ee 2008 33

cc

http://www.aerospace-technology.com/projects/contour/contour2.html

VGTU EF ESK [email protected] ee 2008 34

Bėgančiosios bangos lempos. Užduotys

U I

f z R Ω cu

VGTU EF ESK [email protected] ee 2008 34

7. Raskite penktojo laipsnio šaknies iš j reikšmes.

   +n⋅  =      +n  = e   ϕ ≅

VGTU EF ESK [email protected] ee 2008 34

8. Bėgančiosios bangos lempos U = 2 kV, I = 4 mA, f = 8 GHz,

R = 20 Ω. Raskime lėtinimo sistemos lėtinimo koeficientą. Koks turi būti lėtinimo sistemos ilgis, kad galios stiprinimas būtų 30 dB? k ≅ = U

R I C = = ≅ K CN - U

N = ≅

c λ − λ = λ = = ≅ ⋅ f k

l = Nλ = ≅

VGTU EF ESK [email protected]