Orchid Research Newsletter No. 29
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leaf Micromorphology of Some Habenaria Willd
J. Orchid Soc. India, 32: 103-112, 2018 ISSN 0971-5371 LEAF MICROMORPHOLOGY OF SOME HABENARIA WILLD. SENSU LATO (ORCHIDACEAE) SPECIES FROM WESTERN HIMALAYA Jagdeep Verma, Kranti Thakur1, Kusum2, Jaspreet K Sembi3, and Promila Pathak3 Department of Botany, Government College, Rajgarh- 173 101, Himachal Pradesh, India 1Department of Botany, Shoolini Institute of Life Sciences and Business Management, Solan- 173 212, Himachal Pradesh, India 2Department of Botany, St. Bede’s College, Navbahar, Shimla- 171 002, Himachal Pradesh, India 3Department of Botany, Panjab University, Chandigarh- 160 014, Chandigarh, U.T., India Abstract Leaf epidermal characteristics were investigated in twelve Western Himalayan species of Habenaria Willd. sensu lato with a view to assess their taxonomic and ecological importance. The leaves in all species investigated were soft, shiny and devoid of trichomes. The epidermal cells were polygonal in shape but quadrilateral on adaxial surface of H. edgeworthii J. D. Hook. Cell walls were straight except on abaxial epidermis of H. commelinifolia (Roxb.) Wall. ex Lindl. and H. ensifolia Lindl., where they were slightly undulated. The leaves were invariably hypostomatic and possessed anomocytic type of stomata. Additional presence of diacytic (H. plantaginea Lindl.) and twin (H. marginata Coleb.) stomata was of taxonomic implication. Stomatal frequency (per mm2) was lowest (16.01±1.09) in H. edgeworthii and highest (56.84±3.50) in H. marginata, and stomatal index (%) ranged between 11.93±1.14 (H. stenopetala Lindl.) and 27.24±1.26 (H. aitchisonii Reichb. f.). Leaf epidermal features reflected no apparent relationship with species habitat. There were significant differences observed in many epidermal characteristics, which can ably supplement the data available on gross morphology to help in delimiting different Habenaria species. -
Leonardo Ramos Seixas Guimarães Flora Da Serra Do Cipó
LEONARDO RAMOS SEIXAS GUIMARÃES FLORA DA SERRA DO CIPÓ (MINAS GERAIS, BRASIL): ORCHIDACEAE – SUBFAMÍLIA VANILLOIDEAE E SUBTRIBOS DENDROBIINAE, ONCIDIINAE, MAXILLARIINAE (SUBFAMÍLIA EPIDENDROIDEAE), GOODYERINAE, SPIRANTHINAE E CRANICHIDINAE (SUBFAMÍLIA ORCHIDOIDEAE) Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para obtenção do título de MESTRE em Biodiversidade Vegetal e Meio Ambiente, na área de concentração de Plantas Vasculares. SÃO PAULO 2010 LEONARDO RAMOS SEIXAS GUIMARÃES FLORA DA SERRA DO CIPÓ (MINAS GERAIS, BRASIL): ORCHIDACEAE – SUBFAMÍLIA VANILLOIDEAE E SUBTRIBOS DENDROBIINAE, ONCIDIINAE, MAXILLARIINAE (SUBFAMÍLIA EPIDENDROIDEAE), GOODYERINAE, SPIRANTHINAE E CRANICHIDINAE (SUBFAMÍLIA ORCHIDOIDEAE) Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para obtenção do título de MESTRE em Biodiversidade Vegetal e Meio Ambiente, na área de concentração de Plantas Vasculares. Orientador: Dr. Fábio de Barros Ficha Catalográfica elaborada pelo Núcleo de Biblioteca e Memória do Instituto de Botânica Guimarães, Leonardo Ramos Seixas G963f Flora da Serra do Cipó (Minas Gerais, Brasil): Orchidaceae – subfamília Vanilloideae e subtribos Dendrobiinae, Oncidiinae, Maxillariinae (subfamília Epidendroideae), Goodyerinae, Spiranthinae e Cranichidinae (subfamília Orchidoideae) / Leonardo Ramos Seixas Guimarães -- São Paulo, 2010. 150 p. il. Dissertação (Mestrado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2010 Bibliografia. 1. Orchidaceae. 2. Campo rupestre. 3. Serra do Cipó. I. Título CDU: 582.594.2 Alegres campos, verdes arvoredos, claras e frescas águas de cristal, que em vós os debuxais ao natural, discorrendo da altura dos rochedos; silvestres montes, ásperos penedos, compostos de concerto desigual, sabei que, sem licença de meu mal, já não podeis fazer meus olhos ledos. E, pois me já não vedes como vistes, não me alegrem verduras deleitosas, nem águas que correndo alegres vêm. -
Checklist of the Orchids of the Crimea (Orchidaceae)
J. Eur. Orch. 46 (2): 407 - 436. 2014. Alexander V. Fateryga and Karel C.A.J. Kreutz Checklist of the orchids of the Crimea (Orchidaceae) Keywords Orchidaceae, checklist of species, new nomenclature combinations, hybrids, flora of the Crimea. Summary Fateryga, A.V. & C.A.J. Kreutz (2014): Checklist of the orchids of the Crimea (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. A new nomenclature checklist of the Crimean orchids with 49 taxa and 16 hybrids is proposed. Six new taxa are added and ten taxa are excluded from the latest checklist of the Crimean vascular flora published by YENA (2012). In addition, five nomenclature changes are proposed: Epipactis persica (Soó) Nannf. subsp. taurica (Fateryga & Kreutz) Fateryga & Kreutz comb. et stat. nov., Orchis mascula (L.) L. var. wanjkovii (E. Wulff) Fateryga & Kreutz stat. nov., Anacamptis ×simorrensis (E.G. Camus) H. Kretzschmar, Eccarius & H. Dietr. nothosubsp. ticinensis (Gsell) Fateryga & Kreutz stat. nov., ×Dactylocamptis uechtritziana (Hausskn.) B. Bock ex M. Peregrym & Kuzemko nothosubsp. magyarii (Soó) Fateryga & Kreutz comb. et stat. nov., and Orchis ×beyrichii Kern. nothosubsp. mackaensis (Kreutz) Fateryga & Kreutz comb. et stat. nov. Moreover, a new variety, Limodorum abortivum (L.) Sw. var. viridis Fateryga & Kreutz var. nov. is described. Zusammenfassung Fateryga, A.V. & C.A.J. Kreutz (2014): Eine Übersicht der Orchideen der Krim (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. Eine neue nomenklatorische Liste der Orchideen der Krim mit 49 Taxa und 16 Hybriden wird vorgestellt. Sechs Arten sind neu für die Krim. Zehn Taxa, die noch bei YENA (2012) in seiner Checklist aufgelistet wurden, kommen auf der Krim nicht vor und wurden gestrichen. -
Minireview Article the Current Research Status of Endangered
Minireview Article The Current Research Status of Endangered Rhynchostylis retusa (L.) Blume: A Review ABSTRACT Orchids bear the crown of highly evolved ornamental floral specialization in the plant kingdom, but have poor medicinal background. Further, Rhynchostylis retusa (L.) Blume is much less studied plant species among Orchidaceae due to its overexploitation in the wild. This epiphytic herb belongs to the tropical areas and kept under endangered category by CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) that points out its abated natural population. In this sense, the aim is to document the past and present researches upon R. retusa highlighting the traditional and remedial uses, and to ignite the conservation awareness among the people. Keywords: Conservation, medicines, mythology, patents, taxonomy, tissue culture. 1. INTRODUCTION Orchidaceae (monocotyledons) are one of the largest families of the plant world extending from tropics to alpines along with a boon of astonishing beauty in their flowers [1]. Orchids are the richest among angiosperms with diverse species number (approximately >25,000) having epiphytes (more abundant, 73 %), lithophytes and ground plants [2,3]. Fossil records of orchids date back to 100 million years ago [4]. Actually the term ‘orchid’ coming from ‘orchis’ (Greek word) meaning testicle was given by Theophrastus (372-286 B.C.), who reported the use of orchid roots as aphrodiasic. Despite of huge family size, orchids are largely exploited and traded for their ornamental flower diversity but less attention is paid towards their remedial properties. According to Reinikka, the first evidence of the use of orchids as medicines comes from Shênnung’s Materia Medica in 28th century B.C. -
Guia De Plantas – Flores No Campo Rupestre, Traz Algumas Espécies Dessa Rica Flora Encontrada Nas Reservas Particulares Do Patrimônio Natural (RPPN´S) Da Vale
GUIA DE PLANTAS FLORES NO CAMPO RUPESTRE GUIA DE PLANTAS FLORES NO CAMPO RUPESTRE COORDENAÇÃO Lídia Maria dos Santos ORGANIZAÇÃO Ana Cristina Silva Amoroso Anastacio Morena Tomich Santos LEVANTAMENTOS DE DADOS E ELABORAÇÃO DE TEXTOS Sérgio Antônio Tomich Santos Coord. de Campo Marco Otávio Dias Pivari Taxonomia Júlia Andrada Bióloga COLABORAÇÃO Sara da Costa Dias Sérgio José Leite Dias PROJETO GRÁFICO E DIAGRAMAÇÃO Morena Tomich Santos ILUSTRAÇÕES Maria Clara Göbbel TRATAMENTO DE IMAGENS Pedro André Tomich Mitre Ficha catalográfica elaborada pela Bibliotecária Priscila O. da Mata CRB/6-2706 Bioma Meio Ambiente. Consultoria Ambiental. Guia de plantas: flores no campo rupestre / Bioma Meio Ambiente, Vale S.A.; [Coordenação: B615g Lídia Maria dos Santos; Organização: Ana Cristina Silva Amoroso Anastacio, Morena Tomich Santos ; Ilustrações: Maria Clara Göbbel]. – Nova Lima (MG) : CVRD, 2018. 128.: il., fots (color) Inclui bibliografia. ISBN: 978-85-85377-19-9 1. Bioma Meio Ambiente. Consultoria Ambiental. 2. Vale S.A.. 3. Reserva Particular do Patrimônio Natural – Quadrilátero Ferrífero (MG). 4. Áreas de conservação de recursos naturais – Quadrilátero Ferrífero (MG). 5. Biodiversidade – Conservação – Quadrilátero Ferrífero (MG). 6. Botânica – Quadrilátero Ferrífero (MG). I. Vale S. A.. II. Santos, Lídia Maria dos. III. Anastácio, Ana Cristina Amoroso. IV. Santos, Morena S. Tomich. V. Título. CDD : 581 Vale S.A. Diretoria de Planejamento e Desenvolvimento de Ferrosos e Carvão Mina de Águas Claras - Prédio 1 - 1º andar 34.000-000, Nova Lima, MG - Brasil BIOMA MEIO AMBIENTE LTDA Alameda do Ingá, 840/1001, Vale do Sereno 34.000-000, Nova Lima, MG - Brasil Copyright©2018 Organizadores As fotos e os textos deste livro podem ser reproduzidos desde que solicitada autorização aos autores/organizadores ou seu representante legal. -
Orchids: 2017 Global Ex Situ Collections Assessment
Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions. -
Confirmation of Hawkmoth Pollination in Habenaria Epipactidea: Leg Placement of Pollinaria and Crepuscular Scent Emission ⁎ C.I
Available online at www.sciencedirect.com South African Journal of Botany 75 (2009) 744–750 www.elsevier.com/locate/sajb Confirmation of hawkmoth pollination in Habenaria epipactidea: Leg placement of pollinaria and crepuscular scent emission ⁎ C.I. Peter a, , G. Coombs a, C.F. Huchzermeyer a, N. Venter a, A.C. Winkler a, D. Hutton a, L.A. Papier a, A.P. Dold a, S.D. Johnson b a Department of Botany, Rhodes University, PO Box 94, Grahamstown 6140, South Africa b School of Conservation and Biological Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa Received 5 June 2009; received in revised form 30 July 2009; accepted 17 August 2009 Abstract In his landmark work on the pollination biology of South African plants in 1954, Stefan Vogel described the deposition of Habenaria epipactidea (= H. polyphylla) pollinaria on the forelegs of the hawkmoth Hippotion celerio. The discovery of a large, well-pollinated population of H. epipactidea in the Eastern Cape allowed us to confirm the presence of this unusual pollen placement on a number of species of shorter- tongued hawkmoths. The long-tongued species Agrius convolvuli is likely to function as a nectar thief as the length of the tongue of this species relative to the nectar spur ensures that the forelegs are unlikely to come into contact with the viscidia. The legitimate hawkmoth pollinators removed a large proportion of pollinaria from the flowers and the majority of flowers had pollen deposited on their stigmas. Despite this, pollen transfer efficiency was relatively low at 8.4%. -
Outer Islands
Initial Environmental Examination Project Number. 49450-012 March 2019 Proposed Grant and Administration of Grants for Kingdom of Tonga: Tonga Renewable Energy Prepared by Tonga Power Limited and Ministry of Meteorology, Energy, Information, Disaster Management, Environment and Climate Change for the Ministry of Finance and National Planning and the Asian Development Bank The Initial Environmental Examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management or staff, and may be preliminary in nature. In preparing any country programme or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. TON: Tonga Renewable Energy Project Initial Environmental Examination – Outer Islands TABLE OF CONTENTS Page A. INTRODUCTION 1 B. ADMINISTRATIVE, POLICY AND LEGAL FRAMEWORK 4 1. Administrative Framework 4 2. Tongan Country Safeguards System 5 3. Environmental Assessment Process in Tonga 6 4. Tonga’s Energy Policy and Laws 7 5. ADB Environmental Safeguard Requirements 8 C. DESCRIPTION OF THE PROJECT 9 1. Project Rationale 9 2. Overview of Project Components in Outer Islands 10 3. Location of Components 11 4. Detail of Project Components 18 5. Project Construction, Operation and Decommissioning 19 D. DESCRIPTION OF EXISTING ENVIRONMENT (BASELINE CONDITIONS) 21 1. Physical Environment 21 2. Biological Environment 24 3. Socio-economic Environment 28 E. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 32 1. Design and Pre-construction Impacts 32 2. -
Research Priorities and Future Directions in Conservation of Wild Orchids in Sri Lanka: a Review
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 34–45 https://dx.doi.org/10.24189/ncr.2020.029 RESEARCH PRIORITIES AND FUTURE DIRECTIONS IN CONSERVATION OF WILD ORCHIDS IN SRI LANKA: A REVIEW J. Dananjaya Kottawa-Arachchi1,*, R. Samantha Gunasekara2 1Tea Research Institute of Sri Lanka, Sri Lanka 2Lanka Nature Conservationists, Sri Lanka *e-mail: [email protected], [email protected] Received: 24.03.2020. Revised: 22.05.2020. Accepted: 29.05.2020. Together with Western Ghats, Sri Lanka is a biodiversity hotspot amongst the 35 regions known worldwide. Considering the Sri Lankan orchids, 70.6% of the orchid species, including 84% of the endemics, are categorised as threatened. The distribution of the family Orchidaceae is mostly correlated with the distribution pattern of the main bioclimatic zones which is governed by the amount and intensity of rainfall and altitude. Habitat deterioration and degradation, clearing of vegetation, intentional forest fires and spread of invasive alien species are significant threats to native species. Illegally collection and exporting of indigenous species has been another alarming issue in the past decades. Protection of native species, increased public awareness, enforcement of legislation and introduction of new propagation techniques would certainly bring a beneficial effect to the native orchid flora. Conduct awareness programs, strengthen existing laws, and reviewing the legal framework related to the native orchid flora could be vital for future conservation. Apart from the identification of new species and their distribution, future research on understanding soil chemical and physical parameters of terrestrial habitats, plant association of terrestrial orchids, phenology patterns and interactions of pollinators, associations with mycorrhiza, effect of invasive alien species and impact of climate change are highlighted. -
Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation. -
Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year. -
Diversity of Orchid Species of Odisha State, India. with Note on the Medicinal and Economic Uses
Diversity of orchid species of Odisha state, India. With note on the medicinal and economic uses Sanjeet Kumar1*, Sweta Mishra1 & Arun Kumar Mishra2 ________________________________ 1Biodiversity and Conservation Lab., Ambika Prasad Research Foundation, India 2Divisional Forest Office, Rairangpur, Odisha, India * author for correspondence: [email protected] ________________________________ Abstract The state of Odisha is home to a great floral and faunistic wealth with diverse landscapes. It enjoys almost all types of vegetations. Among its floral wealth, the diversity of orchids plays an important role. They are known for their beautiful flowers having ecological values. An extensive survey in the field done from 2009 to 2020 in different areas of the state, supported by information found in the literature and by the material kept in the collections of local herbariums, allows us to propose, in this article, a list of 160 species belonging to 50 different genera. Furthermore, endemism, conservation aspects, medicinal and economic values of some of them are discussed. Résumé L'État d'Odisha abrite une grande richesse florale et faunistique avec des paysages variés. Il bénéficie de presque tous les types de végétations. Parmi ses richesses florales, la diversité des orchidées joue un rôle important. Ces dernières sont connues pour leurs belles fleurs ayant une valeurs écologiques. Une étude approfondie réalisée sur le terrain de 2009 à 2020 Manuscrit reçu le 04/09/2020 Article mis en ligne le 21/02/2021 – pp. 1-26 dans différentes zones de l'état, appuyée par des informations trouvées dans la littérature et par le matériel conservé dans les collections d'herbiers locaux, nous permettent de proposer, dans cet article, une liste de 160 espèces appartenant à 50 genres distincts.