The Effects of Thermodynamic Parameterizations, Ice Shelf

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Thermodynamic Parameterizations, Ice Shelf AN ABSTRACT OF THE DISSERTATION OF Rachael D. Mueller for the degree of Doctor of Philosophy in Oceanography presented on May 16, 2014. Title: The Effects of Thermodynamic Parameterizations, Ice Shelf Geometry, and Tides on Modeled Basal Melting of Weddell Sea Ice Shelves. Abstract approved: Eric D. Skyllingstad Laurence Padman Antarctic Ice Sheet mass balance and, hence, sea level change is affected by the floating extensions of outlet glaciers and ice streams that take up about 44% of the coastline (Drewry et al., 1982) and are referred to as \ice shelves". Ice sheet mass loss accelerates when these ice shelves lose mass through basal melting at the ice-ocean interface or calving along the ice shelf front. The focus of this dissertation is to explore the uncertainties in basal melt predictions, as affected by ocean temperatures, ocean currents, and model geometries. Uncertainties in tidal currents and the corresponding affect on sub ice shelf basal melt was explored using the Regional Ocean Modeling System (ROMS 3.2), adapted to represent the thermodynamics of ice shelf basal melt at the ice/ocean interface. Plausi- ble representations of present and future sub ice shelf topographies were used to explore potential errors in tidal forcing and ocean circulation beneath the Larsen-C and Filchner- Ronne ice shelves of the Weddell Sea, Antarctica. The influence of thermal forcing and thermodynamic parameterizations was also explored. The results presented here demonstrate that two plausible Larsen-C Ice Shelf (LCIS) topographies could yield shelf-averaged basal melt rates that differ by nearly a factor of two. The difference in these two cases is due to regional variations in tidal cur- rents. The standard grid topography, based on realistic modern bathymetry and ice draft, supported topographic vorticity waves at diurnal frequencies in the northeast LCIS while an alternate model geometry did not. As such, these two grid topographies not only affected the shelf-averaged value of basal melting but also the regional variation in basal melting. Regional variation is important because it determines whether basal melting will have a greater impact on the rate at which ice moves off-shore, as in grounding line melt, or the rate of calving, as in melting along the ice shelf front. Out of all parameterizations, ground- ing line melt is shown to be largest in a commonly used parameterization that applies a uniform \friction velocity" to estimate basal melting. These model results confirm that both topographic errors and choice of thermodynamic parameterization have a significant influence on the spatial characteristic of basal melt. In a separate study of basal melting of the much larger Filchner-Ronne Ice Shelf (FRIS), simulations shows that a future scenario of warmer ocean conditions may lead to a change in the FRIS cavity shape that strongly affects the map of tidal currents and, hence, regional characteristics of basal melting. In general, the change in FRIS cavity shape due to a warming ocean introduces a negative feedback where increased melting reduces the overall magnitude of tidal currents (by increasing the thickness of the water column) which then results in less basal melting; however, there are large regional variations in these results. In one region, south of Henry Ice Rise, the change in cavity shape reduces basal melting from 5 m a−1 to 1:5 m a−1 due to the corresponding change in tidal forcing. In contrast, basal melting increases from 1 m a−1 to 1:5 m a−1 in the nearby region of the Institute Ice Stream outlet owing to a reduction in the upstream basal melting and, hence, cooling of inflowing water. In summary, uncertainties in cavity geometry have a large impact on the regional characteristics of tidal current predictions and, hence, ice shelf basal melting. These uncer- tainties introduce significant, regional errors to ice shelf mass balance. Critical processes that influence the evolution of the Antarctic Ice Sheet cannot be accurately represented without the inclusion of small grid spacing (∼ 1 km), accurate topography, and tidal forc- ing in the predictions of ice shelf basal melt. c Copyright by Rachael D. Mueller May 16, 2014 All Rights Reserved The Effects of Thermodynamic Parameterizations, Ice Shelf Geometry, and Tides on Modeled Basal Melting of Weddell Sea Ice Shelves. by Rachael D. Mueller A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented May 16, 2014 Commencement June 2014 Doctor of Philosophy dissertation of Rachael D. Mueller presented on May 16, 2014. APPROVED: Co-Major Professor, representing Oceanography Co-Major Professor, representing Oceanography Dean of the College of Earth, Ocean, and Atmospheric Sciences Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Rachael D. Mueller, Author ACKNOWLEDGMENTS When I arrived at Oregon State University eleven years ago, I could not have fathomed the depth of experiences that lay ahead. I started graduate school thinking that I was on a path to get a Ph.D. in physical oceanography. I couldn't anticipate that I would arrive at the end of my degree with the understanding that an acronym is the least important contribution to my life that this degree will impart. Its important, to be sure, but what is of greater value to me is what I will carry forward in the indelible imprinting of other people's influence on my life. I had intended to offer my gratitude to these people in a simple paragraph or two in this section of my dissertation, but it didn't take long for me to realize that my gratitude can't be contained in a couple paragraphs; it needs a bit more space to breath. That is how fortunate I have been here. Some people may cross paths with a few others who forever change their perspective on the world in a meaningful and deeply appreciated way, but I have been fortunate enough over the past seven years of my Ph.D. to have had countless encounters with people who have helped me grow in unanticipated and deeply appreciated ways. This dissertation wouldn't exist without these influences, and this section of gratitude and reflections may be the most important section of my entire dissertation. The person whom I am most grateful to for their mentoring over these past seven years is Dr. Laurence Padman. Laurie, your support and generosity|both in funding and encouraging my Ph.D.|has been unparalleled. It is because of you that I found a way to pursue my passion in polar oceanography, was able to observe the oceans around Antarctica in a way that brought my Masters thesis to life and that inspired my interest in ocean/ice- shelf/atmosphere interactions (which I hope to carry forward), and was able to participate in workshops (WAIS, FRISP, and IGS) in which, for the first time, I finally felt a sense of belonging within a scientific community. You held out a hand, lifted me up, guided me through and offered incredible tolerance and patience as I fumbled through some aspects of development that were difficult for my own self to experience. I had no clue what I was doing when I wrote my first paper on Larsen-C basal melting, and there were times when I handed you righteously crap writing. Even so, you somehow found a will to see me through to the end and, in so doing, help me learn that...well...you were right about...oh so many things! I really admire your ability to advise so many aspects of a research problem and to bring to the table of advising a tremendous depth of knowledge that spans length scales, time scales, research methods, and both liquid and solid phases of water. I also admire your ability to remain engaged and committed through all circumstances, even the difficult ones. Thank you for not giving up on me all these many years. Your encouragement and respectful guidance will always be remembered and appreciated. Dr. Helen Amanda Fricker, I will always appreciate your \can-do" attitude that carried with it both enthusiasm and support for my research. I really respect your ability to lift people up and to offer a full range of guidance, from affirmative to challenging. You have been an incredible role model to me in the way you advocate for women and offer an example for how to sit at a table that is largely dominated by men. I appreciate you as a role model and a mentor, as well as for all the effort that you put in with Laurie to help me work through my growing pains as a scientist and scientific writer. I am also so grateful to you for the opportunities you have extended to me to share my work at AGU and to connect with others both in the field and beyond. Thank you for all the positive and constructive feedback that you have given to me so freely. I am also incredibly grateful to Drs. Eric Skyllingstad, Roger Samelson, and Peter Ruggiero. Thank you, Eric, for your willingness to assume the role of my major-professor in the eleventh hour and for helping me understand that I needed to let go of what I wanted to research (in the short term) in order to sustain my ability to move forward with my degree. I appreciate all your encouragement and support. I will remember you for always bringing to the table more ideas than I could assimilate and for your enthusiasm for me to branch out and explore other areas of possibility, both in research and computing.
Recommended publications
  • Dustin M. Schroeder
    Dustin M. Schroeder Assistant Professor of Geophysics Department of Geophysics, School of Earth, Energy, and Environmental Sciences 397 Panama Mall, Mitchell Building 361, Stanford University, Stanford, CA 94305 [email protected], 440.567.8343 EDUCATION 2014 Jackson School of Geosciences, University of Texas, Austin, TX Doctor of Philosophy (Ph.D.) in Geophysics 2007 Bucknell University, Lewisburg, PA Bachelor of Science in Electrical Engineering (B.S.E.E.), departmental honors, magna cum laude Bachelor of Arts (B.A.) in Physics, magna cum laude, minors in Mathematics and Philosophy PROFESSIONAL EXPERIENCE 2016 – present Assistant Professor of Geophysics, Stanford University 2017 – present Assistant Professor (by courtesy) of Electrical Engineering, Stanford University 2020 – present Center Fellow (by courtesy), Stanford Woods Institute for the Environment 2020 – present Faculty Affiliate, Stanford Institute for Human-Centered Artificial Intelligence 2021 – present Senior Member, Kavli Institute for Particle Astrophysics and Cosmology 2016 – 2020 Faculty Affiliate, Stanford Woods Institute for the Environment 2014 – 2016 Radar Systems Engineer, Jet Propulsion Laboratory, California Institute of Technology 2012 Graduate Researcher, Applied Physics Laboratory, Johns Hopkins University 2008 – 2014 Graduate Researcher, University of Texas Institute for Geophysics 2007 – 2008 Platform Hardware Engineer, Freescale Semiconductor SELECTED AWARDS 2021 Symposium Prize Paper Award, IEEE Geoscience and Remote Sensing Society 2020 Excellence in Teaching Award, Stanford School of Earth, Energy, and Environmental Sciences 2019 Senior Member, Institute of Electrical and Electronics Engineers 2018 CAREER Award, National Science Foundation 2018 LInC Fellow, Woods Institute, Stanford University 2016 Frederick E. Terman Fellow, Stanford University 2015 JPL Team Award, Europa Mission Instrument Proposal 2014 Best Graduate Student Paper, Jackson School of Geosciences 2014 National Science Olympiad Heart of Gold Award for Service to Science Education 2013 Best Ph.D.
    [Show full text]
  • Concentrations, Particle-Size Distributions, and Dry Deposition fluxes of Aerosol Trace Elements Over the Antarctic Peninsula in Austral Summer
    Atmos. Chem. Phys., 21, 2105–2124, 2021 https://doi.org/10.5194/acp-21-2105-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Concentrations, particle-size distributions, and dry deposition fluxes of aerosol trace elements over the Antarctic Peninsula in austral summer Songyun Fan1, Yuan Gao1, Robert M. Sherrell2, Shun Yu1, and Kaixuan Bu2 1Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA 2Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA Correspondence: Yuan Gao ([email protected]) Received: 1 July 2020 – Discussion started: 26 August 2020 Revised: 3 December 2020 – Accepted: 8 December 2020 – Published: 12 February 2021 Abstract. Size-segregated particulate air samples were col- sition processes may play a minor role in determining trace lected during the austral summer of 2016–2017 at Palmer element concentrations in surface seawater over the conti- Station on Anvers Island, western Antarctic Peninsula, to nental shelf of the western Antarctic Peninsula. characterize trace elements in aerosols. Trace elements in aerosol samples – including Al, P, Ca, Ti, V, Mn, Ni, Cu, Zn, Ce, and Pb – were determined by total digestion and a 1 Introduction sector field inductively coupled plasma mass spectrometer (SF-ICP-MS). The crustal enrichment factors (EFcrust) and Aerosols affect the climate through direct and indirect ra- k-means clustering results of particle-size distributions show diative forcing (Kaufman et al., 2002). The extent of such that these elements are derived primarily from three sources: forcing depends on both physical and chemical properties (1) regional crustal emissions, including possible resuspen- of aerosols, including particle size and chemical composi- sion of soils containing biogenic P, (2) long-range transport, tion (Pilinis et al., 1995).
    [Show full text]
  • Englacial Architecture and Age‐Depth Constraints Across 10.1029/2019GL086663 the West Antarctic Ice Sheet Key Points: David W
    RESEARCH LETTER Englacial Architecture and Age‐Depth Constraints Across 10.1029/2019GL086663 the West Antarctic Ice Sheet Key Points: David W. Ashmore1 , Robert G. Bingham2 , Neil Ross3 , Martin J. Siegert4 , • We measure and date individual 5 1 isochronal radar internal reflection Tom A. Jordan , and Douglas W. F. Mair horizons across the Weddell Sea 1 2 sector of the West Antarctic Ice School of Environmental Sciences, University of Liverpool, Liverpool, UK, School of GeoSciences, University of Sheet Edinburgh, Edinburgh, UK, 3School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, • – – Horizons dated to 1.9 3.2, 3.5 6.0, UK, 4Grantham Institute and Department of Earth Science and Engineering, Imperial College London, London, UK, and 4.6–8.1 ka are widespread and 5British Antarctic Survey, Cambridge, UK linked to previous radar surveys of the Ross and Amundsen Sea sectors • These form the basis for a wider database of ice sheet architecture for Abstract The englacial stratigraphic architecture of internal reflection horizons (IRHs) as imaged by validating and calibrating ice sheet ice‐penetrating radar (IPR) across ice sheets reflects the cumulative effects of surface mass balance, basal models of West Antarctica melt, and ice flow. IRHs, considered isochrones, have typically been traced in interior, slow‐flowing regions. Here, we identify three distinctive IRHs spanning the Institute and Möller catchments that cover 50% of Supporting Information: • Supporting Information S1 West Antarctica's Weddell Sea Sector and are characterized by a complex system of ice stream tributaries. We place age constraints on IRHs through their intersections with previous geophysical surveys tied to Byrd Ice Core and by age‐depth modeling.
    [Show full text]
  • A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Ice Core Records As Sea Ice Proxies: an Evaluation from the Weddell Sea Region of Antarctica Nerilie J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, D15101, doi:10.1029/2006JD008139, 2007 Click Here for Full Article Ice core records as sea ice proxies: An evaluation from the Weddell Sea region of Antarctica Nerilie J. Abram,1 Robert Mulvaney,1 Eric W. Wolff,1 and Manfred Mudelsee2,3 Received 12 October 2006; revised 2 May 2007; accepted 5 June 2007; published 3 August 2007. [1] Ice core records of methanesulfonic acid (MSA) from three sites around the Weddell Sea are investigated for their potential as sea ice proxies. It is found that the amount of MSA reaching the ice core sites decreases following years of increased winter sea ice in the Weddell Sea; opposite to the expected relationship if MSA is to be used as a sea ice proxy. It is also shown that this negative MSA-sea ice relationship cannot be explained by the influence that the extensive summer ice pack in the Weddell Sea has on MSA production area and transport distance. A historical record of sea ice from the northern Weddell Sea shows that the negative relationship between MSA and winter sea ice exists over interannual (7-year period) and multidecadal (20-year period) timescales. National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data suggest that this negative relationship is most likely due to variations in the strength of cold offshore wind anomalies traveling across the Weddell Sea, which act to synergistically increase sea ice extent (SIE) while decreasing MSA delivery to the ice core sites. Hence our findings show that in some locations atmospheric transport strength, rather than sea ice conditions, is the dominant factor that determines the MSA signal preserved in near-coastal ice cores.
    [Show full text]
  • A Review of Ice-Sheet Dynamics in the Pine Island Glacier Basin, West Antarctica: Hypotheses of Instability Vs
    Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 A review of ice-sheet dynamics in the Pine Island Glacier basin, West Antarctica: hypotheses of instability vs. observations of change. David G. Vaughan, Hugh F. J. Corr, Andrew M. Smith, Adrian Jenkins British Antarctic Survey, Natural Environment Research Council Charles R. Bentley, Mark D. Stenoien University of Wisconsin Stanley S. Jacobs Lamont-Doherty Earth Observatory of Columbia University Thomas B. Kellogg University of Maine Eric Rignot Jet Propulsion Laboratories, National Aeronautical and Space Administration Baerbel K. Lucchitta U.S. Geological Survey 1 Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 Abstract The Pine Island Glacier ice-drainage basin has often been cited as the part of the West Antarctic ice sheet most prone to substantial retreat on human time-scales. Here we review the literature and present new analyses showing that this ice-drainage basin is glaciologically unusual, in particular; due to high precipitation rates near the coast Pine Island Glacier basin has the second highest balance flux of any extant ice stream or glacier; tributary ice streams flow at intermediate velocities through the interior of the basin and have no clear onset regions; the tributaries coalesce to form Pine Island Glacier which has characteristics of outlet glaciers (e.g. high driving stress) and of ice streams (e.g. shear margins bordering slow-moving ice); the glacier flows across a complex grounding zone into an ice shelf coming into contact with warm Circumpolar Deep Water which fuels the highest basal melt-rates yet measured beneath an ice shelf; the ice front position may have retreated within the past few millennia but during the last few decades it appears to have shifted around a mean position.
    [Show full text]
  • Observation of Ocean Tides Below the Filchner
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. C8, PAGES 19,615-19,630,AUGUST 15, 2000 Observation of ocean tides below the Filchher and Ronne Ice Shelves, Antarctica, using synthetic aperture radar interferometry' Comparison with tide model predictions E. Rignot,1 L. Padman,•' D. R. MacAyeal,3 and M. Schmeltz1 Abstract. Tides near and under floating glacial ice, such as ice shelvesand glacier termini in fjords, can influence heat transport into the subice cavity, mixing of the under-ice water column, and the calving and subsequentdrift of icebergs. Free- surface displacementpatterns associatedwith ocean variability below glacial ice can be observedby differencingtwo syntheticaperture radar (SAR) interferograms, each of which representsthe combination of the displacement patterns associated with the time-varying vertical motion and the time-independent lateral ice flow. We present the pattern of net free-surface displacement for the iceberg calving regions of the Ronne and Filchher Ice Shelves in the southern Weddell Sea. By comparing SAR-based displacementfields with ocean tidal models, the free-surface displacementvariability for these regions is found to be dominated by ocean tides. The inverse barometer effect, i.e., the ocean's isostatic responseto changing atmospheric pressure, also contributes to the observed vertical displacement. The principal value of using SAR interferometry in this manner lies in the very high lateral resolution(tens of meters) obtainedover the large regioncovered by each SAR image. Small features that are not well resolvedby the typical grid spacing of ocean tidal models may contribute to such processesas iceberg calving and cross-frontalventilation of the ocean cavity under the ice shelf.
    [Show full text]
  • Laurentide Ice Sheet Retreat Around 8000 Years Ago Occurred Over Western Quebec (700-900 Meters/Year)
    The retreat chronology of the Laurentide Ice Sheet during the last 10,000 years and implications for deglacial sea-level rise David Ullman University of Wisconsin-Madison, Department of Geoscience Author Profile Shortcut URL: https://serc.carleton.edu/59463 Location Continent: North America Country: Canada State/Province:Quebec, Labrador City/Town: UTM coordinates and datum: none Setting Climate Setting: Tectonic setting: Type: Chronology Show caption Show caption Show caption Description Much of the world's population is located along the coasts. In a world of changing climate, the rate of sea level rise will determine the ability of these communities to adapt to sea level rise. Perhaps the greatest uncertainty in sea level rise prediction has to do with amount of water melting off of Earth's major ice sheets. Recent decades have seen an accelerated loss of ice from Greenland and Antarctica. These bodies of ice may be prone to change more rapid than expected. Greenland and Antarctica contain enough frozen water, which, if melted could raise sea level by 70 m, but predictions on the rate at which this sea level rise could occur depend on scientists' understanding of the complex physics of ice flow (and on future climate scenarios). Paleoclimate researchers study past climates in hopes of developing a better understanding of our current and future climates. Similarly, understanding past ice sheets will aid in future prediction of ice sheet change. At the end of the Last Glacial Maximum, roughly 20,000 years ago, much of Earth in the northern hemisphere was covered in vast ice sheets.
    [Show full text]
  • Ice-Flow Structure and Ice Dynamic Changes in the Weddell Sea Sector
    Bingham RG, Rippin DM, Karlsson NB, Corr HFJ, Ferraccioli F, Jordan TA, Le Brocq AM, Rose KC, Ross N, Siegert MJ. Ice-flow structure and ice-dynamic changes in the Weddell Sea sector of West Antarctica from radar-imaged internal layering. Journal of Geophysical Research: Earth Surface 2015, 120(4), 655-670. Copyright: ©2015 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. DOI link to article: http://dx.doi.org/10.1002/2014JF003291 Date deposited: 04/06/2015 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk PUBLICATIONS Journal of Geophysical Research: Earth Surface RESEARCH ARTICLE Ice-flow structure and ice dynamic changes 10.1002/2014JF003291 in the Weddell Sea sector of West Antarctica Key Points: from radar-imaged internal layering • RES-sounded internal layers in Institute/Möller Ice Streams show Robert G. Bingham1, David M. Rippin2, Nanna B. Karlsson3, Hugh F. J. Corr4, Fausto Ferraccioli4, fl ow changes 4 5 6 7 8 • Ice-flow reconfiguration evinced in Tom A. Jordan , Anne M. Le Brocq , Kathryn C. Rose , Neil Ross , and Martin J. Siegert Bungenstock Ice Rise to higher 1 2 tributaries School of GeoSciences, University of Edinburgh, Edinburgh, UK, Environment Department, University of York, York, UK, • Holocene dynamic reconfiguration 3Centre for Ice and Climate, Niels Bohr Institute, University
    [Show full text]
  • Reconnaissance of the Filchner Ice Shelf and Berkner Island, Weddell Sea, Antarctica
    Indian Expedition to Weddell Sea Antarctica, Scientific Report, 1995 Department of Ocean Development, Technical Publication No. 7, pp.1-14 Reconnaissance of the Filchner Ice Shelf and Berkner Island, Weddell Sea, Antarctica V.K. RAINA, S.MUKERJI, A.S. GILL AND F. DOTIWALA* Geological Survey of India; Oil & Natural Gas Commission Introduction Antarctic continent is surrounded, all around by a permanent ice shelf, at places almost 100 km wide. Besides this circum-continental shelf, there also exist three major ice shelves, Fig.1. The area along south Weddell Sea reconnoitred by the Expedition. 2 V.K. Rainaetal. namely: Ross ice shelf; Amery ice shelf and the Filchner-Ronne ice shelf, which cover the embayments (inlets) within the physiographic domain of this continent. The Filchner and Ronne ice shelves exist along the southern and the south-western limits of the Weddell Sea within the longitudes 34° W and 63° W and latitudes 78° S to 82° S and cover an area of about 5,00,000 km including some large ice rises. This shelf, as the name suggests, comprises the Filchner shelf, in the east, and larger of the two, Ronne shelf in the west, separated, along the northern extremity i.e. north of 81° S latitude, by the largest ice rise in Antarctica - the Berkner island. Southward, the two shelves merge into one. Filchner Shelf is named after Wilhelm Filchner, the Leader of the German Expedition that landed and established a field station on it, for the first time, way back in 1912. This shelf differs from the circum-continental shelf in being more rugged, crevassed and rumpled with large escarpments, and is primarily the extension of the Polar ice.
    [Show full text]
  • A NTARCTIC Southpole-Sium
    N ORWAY A N D THE A N TARCTIC SouthPole-sium v.3 Oslo, Norway • 12-14 May 2017 Compiled and produced by Robert B. Stephenson. E & TP-32 2 Norway and the Antarctic 3 This edition of 100 copies was issued by The Erebus & Terror Press, Jaffrey, New Hampshire, for those attending the SouthPole-sium v.3 Oslo, Norway 12-14 May 2017. Printed at Savron Graphics Jaffrey, New Hampshire May 2017 ❦ 4 Norway and the Antarctic A Timeline to 2006 • Late 18th Vessels from several nations explore around the unknown century continent in the south, and seal hunting began on the islands around the Antarctic. • 1820 Probably the first sighting of land in Antarctica. The British Williams exploration party led by Captain William Smith discovered the northwest coast of the Antarctic Peninsula. The Russian Vostok and Mirnyy expedition led by Thaddeus Thadevich Bellingshausen sighted parts of the continental coast (Dronning Maud Land) without recognizing what they had seen. They discovered Peter I Island in January of 1821. • 1841 James Clark Ross sailed with the Erebus and the Terror through the ice in the Ross Sea, and mapped 900 kilometres of the coast. He discovered Ross Island and Mount Erebus. • 1892-93 Financed by Chr. Christensen from Sandefjord, C. A. Larsen sailed the Jason in search of new whaling grounds. The first fossils in Antarctica were discovered on Seymour Island, and the eastern part of the Antarctic Peninsula was explored to 68° 10’ S. Large stocks of whale were reported in the Antarctic and near South Georgia, and this discovery paved the way for the large-scale whaling industry and activity in the south.
    [Show full text]
  • Subglacial Lake Ellsworth CEE V2.Indd
    Proposed Exploration of Subglacial Lake Ellsworth Antarctica Draft Comprehensive Environmental Evaluation February 2011 1 The cover art was created by first, second, and third grade students at The Village School, a Montessori school located in Waldwick, New Jersey. Art instructor, Bob Fontaine asked his students to create an interpretation of the work being done on The Lake Ellsworth Project and to create over 200 of their own imaginary microbes. This art project was part of The Village School’s art curriculum that links art with ongoing cultural work. 2 Contents Non Technical Summary .................................................4 Personnel ............................................................................................ 26 Chapter 1: Introduction ...................................................6 Power generation and fuel calculations ....................................... 27 Chapter 2: Description of proposed activity..................7 Vehicles ................................................................................................ 28 Background and justification ..............................................................7 Water and waste ...............................................................................28 The site ...................................................................................................8 Communications ............................................................................... 28 Chapter 3: Baseline conditions of Lake Ellsworth .........9 Transport of equipment
    [Show full text]