Effects of Road and Transmission Line Rights-Of-Way on Botanical

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Road and Transmission Line Rights-Of-Way on Botanical Effects of Road and Transmission-Line Rights-of-Way on Botanical Resources Brett C. Dumas Landscape Ecologist Gary L. Holmstead Plant Ecologist Marie J. J. Kerr Botanical Technician Leslie B. Carpenter Wildlife Technician Technical Report Appendix E.3.3-4 September 2002 Revised July 2003 Hells Canyon Complex FERC No. 1971 Copyright © 2003 by Idaho Power Company Idaho Power Company Effects of Road and Transmission Line TABLE OF CONTENTS Table of Contents ............................................................................................................................. i List of Tables.................................................................................................................................. iv List of Figures ................................................................................................................................ix List of Appendices ........................................................................................................................ xv Executive Summary ........................................................................................................................ 1 1. Introduction ................................................................................................................................ 6 1.1. State of Knowledge ........................................................................................................... 6 1.1.1. Existing Vegetation Data ......................................................................................... 6 1.1.2. Operation and Maintenance Procedures................................................................... 7 1.1.3. Effects of Transmission Lines and Service Roads on Vegetation ........................... 8 1.1.4. Landscapes and Landscape Processes...................................................................... 9 1.2. Objectives........................................................................................................................ 10 2. Study Area................................................................................................................................ 11 2.1. Location........................................................................................................................... 11 2.2. Climate ............................................................................................................................ 11 2.3. Geology ........................................................................................................................... 12 2.4. Vegetation ....................................................................................................................... 13 2.5. Jurisdiction ...................................................................................................................... 13 3. Methods.................................................................................................................................... 13 3.1. Cover Type Mapping ...................................................................................................... 13 3.1.1. Rights-of-Way........................................................................................................ 14 3.1.2. Corridor .................................................................................................................. 15 3.1.3. Landscape Regions................................................................................................. 15 Hells Canyon Complex Page i Effects of Road and Transmission Line Idaho Power Company 3.2. Surveys along Rights-of-Way and Service Roads .......................................................... 16 3.2.1. Rare Plants.............................................................................................................. 17 3.2.2. Noxious Weeds ...................................................................................................... 18 3.2.3. Disturbance Activities............................................................................................ 19 3.3. Operation and Maintenance Activities............................................................................ 19 3.4. Analysis of Transmission Line Effects on Vegetation.................................................... 20 3.4.1. Rights-of-Way Effects on Landscape Level Vegetation Patterns.......................... 20 3.4.2. Operation and Maintenance Effects on Vegetation................................................ 21 3.4.3. Rights-of-Way Clearance Studies .......................................................................... 22 4. Results / Discussion ................................................................................................................. 25 4.1. Cover Type Mapping ...................................................................................................... 25 4.1.1. Rights-of-Way........................................................................................................ 25 4.1.2. Corridor .................................................................................................................. 27 4.1.3. Landscape Regions................................................................................................. 28 4.2. Surveys along Right-of-Way and Service Roads............................................................ 34 4.2.1. Rare Plants.............................................................................................................. 34 4.2.2. Noxious Weeds ...................................................................................................... 42 4.2.3. Disturbances........................................................................................................... 49 4.3. Operation and Maintenance Activities............................................................................ 66 4.4. Transmission Line Effects on Vegetation ....................................................................... 72 4.4.1. Rights-of-Way Effects on Landscape Level Vegetation Patterns.......................... 72 4.4.2. Operation and Maintenance Effects on Vegetation................................................ 77 4.4.3. Rights-of-Way Clearance Studies .......................................................................... 80 5. Conclusions / Management Implications ................................................................................. 83 5.1. Impacts on General Vegetation....................................................................................... 83 Page ii Hells Canyon Complex Idaho Power Company Effects of Road and Transmission Line 5.1.1. Rights-of-Way Effects on Landscape-Level Vegetation Patterns.......................... 83 5.1.2. Operation and Maintenance Effects on Vegetation................................................ 84 5.2. Impacts on Rare Plants.................................................................................................... 86 5.2.1. Rare Plant Species.................................................................................................. 86 5.2.2. Management Implications for Rare Plants............................................................. 90 5.3. Noxious Weeds ............................................................................................................... 91 5.3.1. Noxious Weed Species........................................................................................... 92 5.3.2. Distribution of Major Noxious Weed Occurrences ............................................. 100 5.3.3. Major Disturbance Types Associated With Noxious Weed Occurrences............ 101 5.3.4. Management Implications for Noxious Weeds.................................................... 101 6. Acknowledgments.................................................................................................................. 103 7. Literature Cited ...................................................................................................................... 103 Hells Canyon Complex Page iii Effects of Road and Transmission Line Idaho Power Company LIST OF TABLES Table 1. Transmission lines to be relicensed with the Hells Canyon Complex. ............... 115 Table 2. Linear length (Kilometers) of land ownership in Hells Canyon Complex transmission-line rights-of-way........................................................................... 116 Table 3. Kilometers of Hells Canyon Complex transmission-line service roads on public land and portions that were surveyed and those that were not surveyed (subsampled or missed). ...................................................................... 117 Table 4. Linear length (Kilometers) of cover types on public and IPC lands in the Hells Canyon Complex transmission-line rights-of-way.................................... 118 Table 5. Proportion (%) of cover types on public and IPC lands traversed by the Hells Canyon Complex transmission lines. ........................................................ 119 Table 6. Proportion (%) of grouped Idaho GAP cover types in the Hells Canyon Complex 10-km wide transmission lines corridor and associated landscape regions. ................................................................................................................ 120 Table 7. Frequency of rare plant occurrences within the road, within the 50-m buffer zone and beyond the buffer zone of Hells Canyon Complex transmission-line service roads. .........................................................................
Recommended publications
  • September 22, 2014 Delinda Robinson Monterey County Resource Management Agency Planning Department 168 W. Alisal Street, 2Nd
    September 22, 2014 Delinda Robinson Monterey County Resource Management Agency Planning Department 168 W. Alisal Street, 2nd Floor Salinas, CA 93901 [email protected] Re: California Flats Solar Project – PLN120294; SCH#2013041031 Draft Environmental Impact Report Dear Ms. Robinson: California Flats Solar, LLC (Applicant), a wholly owned subsidiary of First Solar, Inc., hereby provides to the County of Monterey (County) its written comments on the Draft Environmental Impact Report (EIR) for the California Flats Solar Project (Project), issued by the County on August 6, 2014. Our written comments consist of both this letter and the documents contained in the attachments, each of which is incorporated herein by reference. At the outset, we thank County staff and the County’s consultant, Rincon Consultants, Inc. (Rincon), for their hard work in compiling and preparing this Draft EIR in support of the Project. We also appreciate the significant public outreach efforts and agency consultation that has been conducted for the Draft EIR by the County under the California Environmental Quality Act (CEQA). We have provided our comments in the two attached tables, which are organized by chapter and section in the Draft EIR. The first table, “Table 1 – Comments,” contains substantive comments on specific issues in the Draft EIR for the County’s consideration. Please note that we have included three (3) figures as part of our comments that relate to certain comments in Table 1. The second table, “Table 2 – Errata,” contains factual and typographical revisions that should be incorporated in the Final EIR. We have also attached two golden eagle survey reports for 2014 which provide nest surveys and on- going survey data for golden eagle within a ten mile radius of the Project site, and a 2013 scent dog survey report assessing the presence of San Joaquin kit fox on the Project site.
    [Show full text]
  • Conservation Easement Management Plan
    Conservation Easement Management Plan Prepared by: Hidden Springs Town Association Boise, ID January 2015 1 TABLE OF CONTENTS Contents TABLE OF CONTENTS.............................................................................................................................. 2 CONSERVATION EASEMENT MANAGEMENT PLAN HIDDEN SPRINGS, IDAHO .... 3 1.0 INTRODUCTION ....................................................................................................... 3 2.0 PURPOSE AND IMPLEMENTATION ........................................................................ 9 3.0 ENVIRONMENTAL SETTINGS ................................................................................. 9 3.1 GEOLOGY AND SOILS ......................................................................................................................... 9 3.2 HYDROLOGY....................................................................................................................................... 10 3.3 CLIMATE ............................................................................................................................................. 11 3.4 FLORA ................................................................................................................................................. 12 3.5 FAUNA ................................................................................................................................................. 18 3.6 WILDLAND-URBAN INTERFACE ........................................................................................
    [Show full text]
  • Wallowa County Community Sensitivity and Resilience
    Wallowa County Community Sensitivity and Resilience This section documents the community’s sensitivity factors, or those community assets and characteristics that may be impacted by natural hazards, (e.g., special populations, economic factors, and historic and cultural resources). It also identifies the community’s resilience factors, or the community’s ability to manage risk and adapt to hazard event impacts (e.g., governmental structure, agency missions and directives, and plans, policies, and programs). The information in this section represents a snapshot in time of the current sensitivity and resilience factors in the community when the plan was developed. The information documented below, along with the findings of the risk assessment, should be used as the local level rationale for the risk reduction actions identified in Section 4 – Mission, Goals, and Action Items. The identification of actions that reduce a community’s sensitivity and increase its resilience assist in reducing the community’s overall risk, or the area of overlap in Figure G.1 below. Figure G.1 Understanding Risk Source: Oregon Natural Hazards Workgroup, 2006. Deleted: _________ County Deleted: Month Year Deleted: 2 Northeast Oregon Natural Hazard Mitigation Plan Page G-1 Community Sensitivity Factors The following table documents the key community sensitivity factors in Wallowa County. Population • Wallowa County has negative population growth (-1.3% change from 2000-2005) and an increasing number of persons aged 65 and above. In 2005, 20% of the population was 65 years or older; in 2025, 25% of the population is expected to be 65 years or older. Elderly individuals require special consideration due to their sensitivities to heat and cold, their reliance upon transportation for medications, and their comparative difficulty in making home modifications that reduce risk to hazards.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • KALMIOPSIS Journal of the Native Plant Society of Oregon
    KALMIOPSIS Journal of the Native Plant Society of Oregon Kalmiopsis leachiana ISSN 1055-419X Volume 20, 2013 &ôùĄÿĂùñü KALMIOPSIS (irteen years, fourteen issues; that is the measure of how long Journal of the Native Plant Society of Oregon, ©2013 I’ve been editing Kalmiopsis. (is is longer than I’ve lived in any given house or worked for any employer. I attribute this longevity to the lack of deadlines and time clocks and the almost total freedom to create a journal that is a showcase for our state and society. (ose fourteen issues contained 60 articles, 50 book reviews, and 25 tributes to Fellows, for a total of 536 pages. I estimate about 350,000 words, an accumulation that records the stories of Oregon’s botanists, native )ora, and plant communities. No one knows how many hours, but who counts the hours for time spent doing what one enjoys? All in all, this editing gig has been quite an education for me. I can’t think of a more e*ective and enjoyable way to make new friends and learn about Oregon plants and related natural history than to edit the journal of the Native Plant Society of Oregon. Now it is time for me to move on, but +rst I o*er thanks to those before me who started the journal and those who worked with me: the FEJUPSJBMCPBSENFNCFST UIFBVUIPSTXIPTIBSFEUIFJSFYQFSUJTF UIFSFWJFXFST BOEUIF4UBUF#PBSETXIPTVQQPSUFENZXPSL* especially thank those who will follow me to keep this journal &ôùĄÿĂ$JOEZ3PDIÏ 1I% in print, to whom I also o*er my +les of pending manuscripts, UIFTFSWJDFTPGBOFYQFSJFODFEQBHFTFUUFS BSFMJBCMFQSJOUFSBOE &ôùĄÿĂùñü#ÿñĂô mailing service, and the opportunity of a lifetime: editing our +ne journal, Kalmiopsis.
    [Show full text]
  • Wildflowers Near Boise Cascade (Wenas) Campground (In the Upper
    Wildflowers Near Boise Cascade (Wenas) Campground (in the upper Wenas Valley) Boise Cascade Lands Yakima County, WA from a trip held May 24, 2019 T16N R16E S3; T17N R16E S34, S35 Updated: December 13, 2019 Common Name Scientific Name Family Ferns and Horsetails ____ Fragile Fern Cystopteris fragilis Cystopteridaceae Monocots - Sedges, Rushes, Grasses & Herbaceous Wildflowers ____ Tapertip Onion Allium accuminatum Amaryllidaceae ____ Common Camas Camassia quamash (ssp. maxima ?) Asparagaceae ____ Douglas' Brodiaea Triteleia grandiflora v. grandiflora Asparagaceae ____ Elk Sedge Carex geyeri Cyperaceae ____ Grass Widows Olsynium douglasii v. douglasii Iridaceae ____ Sagebrush Mariposa Calochortus macrocarpus ssp. macrocarpus Liliaceae ____ Yellow Bells Fritillaria pudica Liliaceae ____ Panicled Deathcamas Toxicoscordion paniculatum Melanthiaceae ____ Meadow Deathcamas Toxicosordion venenosum Melanthiaceae ____ Common Western Needlegrass Achnatherum (occidentale ssp. pubescens ?) Poaceae ____ Field Meadow Foxtail Alopecurus pratensis Poaceae ____ Smooth Brome Bromus inermis Poaceae ____ Cheatgrass Bromus tectorum Poaceae ____ Onepike Oatgrass Danthonia unispicata Poaceae ____ Bottlebrush Squirreltail Elymus elymoides Poaceae ____ Bulbous Bluegrass Poa bulbosa Poaceae ____ Bluebunch Wheatgrass Pseudoroegenaria spicata v. spicata Poaceae Trees and Shrubs ____ Blue Elderberry Sambucus cerulea Adoxaceae ____ Stiff Sagebrush Artemisia rigida Asteraceae ____ Gray Rabbitbrush Ericameria nauseosa v. speciosa Asteraceae ____ Shining Oregon Grape Berberis aquifolium Berberidaceae ____ Mountain Alder Alnus incana ssp. tenuifolia Betulaceae ____ Common Snowberry Symphoricarpos albus v. laevigatus Caprifoliaceae ____ Kinnikinnik Arctostaphylos nevadensis ssp. nevadensis Ericaceae ____ Wax Currant Ribes cereum v. cereum Grossulariaceae ____ Fir Abies amabilis or A. grandis Pinaceae ____ Ponderosa Pine Pinus ponderosa v. ponderosa Pinaceae ____ Douglas Fir Pseudotsuga menziesii v. menziesii Pinaceae ____ Snowbrush Ceanothus velutinus v.
    [Show full text]
  • The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014
    The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014 In the pages that follow are treatments that have been revised since the publication of the Jepson eFlora, Revision 1 (July 2013). The information in these revisions is intended to supersede that in the second edition of The Jepson Manual (2012). The revised treatments, as well as errata and other small changes not noted here, are included in the Jepson eFlora (http://ucjeps.berkeley.edu/IJM.html). For a list of errata and small changes in treatments that are not included here, please see: http://ucjeps.berkeley.edu/JM12_errata.html Citation for the entire Jepson eFlora: Jepson Flora Project (eds.) [year] Jepson eFlora, http://ucjeps.berkeley.edu/IJM.html [accessed on month, day, year] Citation for an individual treatment in this supplement: [Author of taxon treatment] 2014. [Taxon name], Revision 2, in Jepson Flora Project (eds.) Jepson eFlora, [URL for treatment]. Accessed on [month, day, year]. Copyright © 2014 Regents of the University of California Supplement II, Page 1 Summary of changes made in Revision 2 of the Jepson eFlora, December 2014 PTERIDACEAE *Pteridaceae key to genera: All of the CA members of Cheilanthes transferred to Myriopteris *Cheilanthes: Cheilanthes clevelandii D. C. Eaton changed to Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, as native Cheilanthes cooperae D. C. Eaton changed to Myriopteris cooperae (D. C. Eaton) Grusz & Windham, as native Cheilanthes covillei Maxon changed to Myriopteris covillei (Maxon) Á. Löve & D. Löve, as native Cheilanthes feei T. Moore changed to Myriopteris gracilis Fée, as native Cheilanthes gracillima D.
    [Show full text]
  • 2021 Award Recipients
    2021 Charles Redd Center Award Recipients Notification and instruction emails will be sent out to all applicants with specifics Annaley Naegle Redd Assistantship Phil S. Allen, Plant and Wildlife Sciences, Brigham Young University, “Sub-alpine Wildflower Meadows as a Template for Water-Conserving Landscape Design” Richard A. Gill, Biology, Brigham Young University, “Biocrust Controls over Regional Carbon Cycling on the Colorado Plateau” Randy Larsen, Plant and Wildlife Sciences, Brigham Young University, “Mountain Lions (Puma concolor), Human Recreation, and the Wildland-Urban Interface: Improving Conservation of an Iconic Species Native to the West” Riley Nelson, Biology, Brigham Young University, “The Bee-Killers: Taxonomy and Phylogenetics of the Robber Fly Genus Proctacanthus (Insecta: Diptera: Asilidae) with Special Reference to Those of Western North America” Sam St. Clair, Plant and Wildlife Sciences, Brigham Young University, “Wildfire and Drought Impacts on Plant Invasions in the Western United States” Annaley Naegle Redd Student Award in Women’s History Amy Griffin, Interdisciplinary (Communications), Brigham Young University, “The Impact of Female Role Models in Television Media on the Perceived Electability of Women” Emily Larsen, History, University of Utah, “Artistic Frontiers: Women and the Making of the Utah Art Scene, 1880– 1950” Charles Redd Fellowship Award in Western American History David R M Beck, Native American Studies, University of Montana, “‘Bribed with Our Own Money,’ Federal Misuse of Tribal Funds in the Termination
    [Show full text]
  • Heaven in Hell's Canyon
    Northwest Explorer ONDAL ONDAL M M EN EN K K Left: Hiker at the boundary of Hell’s Canyon Wilderness. Right: Approaching Horse Heaven, elevation 8,100 feet on the Seven Devils Loop Trail in Hell’s Canyon Wilderness. June and July are good times to explore Washington’s southeast corner in the Wenaha-Tucannon area and in the nearby Hells Canyon area of Oregon and Idaho. Heaven in Hell’s Canyon Hiking two wilderness areas near Washington’s southeast corner By Ken Mondal finding places to backpack when the high jaw-dropping views. This hike can be country is snowed in. The Imnaha River done comfortably in 3-4 days. Seven Devils Loop in Hell’s is hikable virtually year round. An excellent description of hiking the Canyon is Heavenly On the Idaho side of the recreation Seven Devils Loop can be found in Hik- There is no question that the Grand area is a 215,000-acre wilderness area, ing Idaho by Maughan and Maughan, Canyon is one of the natural wonders which includes the Seven Devils Moun- published by Falcon. For the other hikes of the world. However, if one measures tains. The premier hike within this I would recommend Rich Landers’ 100 from the Snake River to the summit of wilderness is the Seven Devils Loop, a Hikes in the Inland Northwest. 9,393 foot He Devil Peak in the Seven rugged 29-mile round trip offering mag- Devils Mountains, this makes Hells nificent views into Hells Canyon many Choose Forgotten Wenaha- Canyon the deepest canyon in North thousands of feet below and equally Tucannon for Solitude America.
    [Show full text]
  • References and Appendices
    References Ainley, D.G., S.G. Allen, and L.B. Spear. 1995. Off- Arnold, R.A. 1983. Ecological studies on six endan- shore occurrence patterns of marbled murrelets gered butterflies (Lepidoptera: Lycaenidae): in central California. In: C.J. Ralph, G.L. Hunt island biogeography, patch dynamics, and the Jr., M.G. Raphael, and J.F. Piatt, technical edi- design of habitat preserves. University of Cali- tors. Ecology and Conservation of the Marbled fornia Publications in Entomology 99: 1–161. Murrelet. USDA Forest Service, General Techni- Atwood, J.L. 1993. California gnatcatchers and coastal cal Report PSW-152; 361–369. sage scrub: the biological basis for endangered Allen, C.R., R.S. Lutz, S. Demairais. 1995. Red im- species listing. In: J.E. Keeley, editor. Interface ported fire ant impacts on Northern Bobwhite between ecology and land development in Cali- populations. Ecological Applications 5: 632-638. fornia. Southern California Academy of Sciences, Allen, E.B., P.E. Padgett, A. Bytnerowicz, and R.A. Los Angeles; 149–169. Minnich. 1999. Nitrogen deposition effects on Atwood, J.L., P. Bloom, D. Murphy, R. Fisher, T. Scott, coastal sage vegetation of southern California. In T. Smith, R. Wills, P. Zedler. 1996. Principles of A. Bytnerowicz, M.J. Arbaugh, and S. Schilling, reserve design and species conservation for the tech. coords. Proceedings of the international sym- southern Orange County NCCP (Draft of Oc- posium on air pollution and climate change effects tober 21, 1996). Unpublished manuscript. on forest ecosystems, February 5–9, 1996, River- Austin, M. 1903. The Land of Little Rain. University side, CA.
    [Show full text]
  • 4 References
    4 References Agricultural Extension Office. 2000. Sedges. Available at: http://aquaplant.tamu.edu/Emergent%20Plants/Sedges/Sedges.htm Accessed April 2004 Allen, D.B., B.J. Flatter, J. Nelson and C. Medrow. 1998. Redband Trout Oncorhynchus mykiss gairdneri Population and Stream Habitat Surveys in Northern Owyhee County and the Owyhee River and Its Tributaries. 1997. Idaho BLM Technical Bulletin No. 98-14. American Fisheries Society, Idaho Chapter (AFS). 2000. Fishes of Idaho. Available at < http://www.fisheries.org/idaho/fishes_of_idaho.htm>. Accessed November 2003. American Ornithologists’ Union (AOU). 1957. Check-list of North American Birds. 5th edition. American Ornithological Union, Washington, DC. Anderson, A. E., and O. C. Wallmo. 1984. Odocoileus hemionus. Mammalian Species 219:1– 9. Anderson, J. L., K. Bacon, and K. Denny. 2002. Salmon River Habitat Enhancement. Annual Report 2001. Shoshone-Bannock Tribes, Fort Hall, ID. 14 pp. Anderson, M., P. Bourgeron, M. T. Bryer, R. Crawford, L. Engelking, D. Faber-Langendoen, M. Gallyoun, K. Goodin, D. H. Grossman, S. Landaal, K. Metzler, K. D. Patterson, M. Pyne, M. Reid, L. Sneddon, and A. S. Weakley. 1998. International Classification of Ecological Communities: Terrestrial Vegetation of the United States. Volume II. The National Vegetation Classification System: List of Types. The Nature Conservancy, Arlington, VA. Arno, S. F. 1979. Forest Regions of Montana. Research Paper INT-218. U.S. Department of Agriculture, U.S. Forest Service, Intermountain Forest and Range Experiment Station. Arno, S.F. 1980. Forest Fire History in the Northern Rockies. Journal of Forestry 78:460–464. Aubry, K. B., Koehler, G. M., and J. R. Squires.
    [Show full text]
  • How Many of Cassini Anagrams Should There Be? Molecular
    TAXON 59 (6) • December 2010: 1671–1689 Galbany-Casals & al. • Systematics and phylogeny of the Filago group How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago Mercè Galbany-Casals,1,3 Santiago Andrés-Sánchez,2,3 Núria Garcia-Jacas,1 Alfonso Susanna,1 Enrique Rico2 & M. Montserrat Martínez-Ortega2 1 Institut Botànic de Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain 2 Departamento de Botánica, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain 3 These authors contributed equally to this publication. Author for correspondence: Mercè Galbany-Casals, [email protected] Abstract The Filago group (Asteraceae, Gnaphalieae) comprises eleven genera, mainly distributed in Eurasia, northern Africa and northern America: Ancistrocarphus, Bombycilaena, Chamaepus, Cymbolaena, Evacidium, Evax, Filago, Logfia, Micropus, Psilocarphus and Stylocline. The main morphological character that defines the group is that the receptacular paleae subtend, and more or less enclose, the female florets. The aims of this work are, with the use of three chloroplast DNA regions (rpl32-trnL intergenic spacer, trnL intron, and trnL-trnF intergenic spacer) and two nuclear DNA regions (ITS, ETS), to test whether the Filago group is monophyletic; to place its members within Gnaphalieae using a broad sampling of the tribe; and to investigate in detail the phylogenetic relationships among the Old World members of the Filago group and provide some new insight into the generic circumscription and infrageneric classification based on natural entities. Our results do not show statistical support for a monophyletic Filago group.
    [Show full text]