Arctic Tundra Factsheet (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Tundra Factsheet (PDF) Introduction • The word “tundra” comes from a word used by the Sami people of northwestern Russia that means “barren land” or “treeless land.” • The tundra is the world’s youngest biome, having formed about 10,000 years ago at the end of the last ice age. • Humans have been living in Canada’s tundra for the past 5,000 years. • The Arctic tundra contains the largest amount of fresh water available for biodiversity than any other biome. • There are three types of tundra worldwide—the Arctic tundra, the 1 Tundra, Baffin Island, in Nunavut Antarctic tundra and the Alpine tundra—which share similar conditions. Description The Arctic tundra is the biome that lies between the edge of the taiga (or boreal forest), or tree line, and the permanent ice caps closer to the North Pole or the Arctic Ocean. It is composed of a variety of landscapes, from sweeping lowlands to towering mountains. Often thought of as a barren and somewhat rocky biome, the tundra surrounds the pole and is the dominant biome in the Arctic and Subarctic regions. In Canada, the Arctic tundra can be found in Yukon, the Northwest Territories, Nunavut, northeastern Manitoba, northern Ontario, northern Quebec and northern Labrador. Worldwide, it is found in 2 Tundra on Bylot Island, Nunavut Alaska, Greenland, Russia, Iceland and parts of Scandinavia. Physical characteristics of the tundra are low temperatures (the winter average temperature is -34°C, the summer average is between 3°C and 12°C), low precipitation levels (between 15 to 25 centimetres including melting snow, which is drier than most deserts), high winds and no sunlight for as many as 163 days per year in its northern areas. These conditions create a harsh climate. The growing season is short, with only 50 to 60 days per year when temperatures are high enough for plants to grow. Biodiversity is also low, compared to most other biomes, as not many species are able to adapt to survive in the tundra. Since the temperatures are so low, soil is very slow to form. There is a thin, 25 to 100 centimetre melt layer in summer, called the active Canada’s Arctic Tundra layer, which is soil that goes through a freeze-and-thaw cycle annually. Below this layer is the permafrost, which stays permanently frozen. 3 Map of biomes of the world with Arctic, Antarctic and Alpine tundra in purple. The Arctic tundra is at the northern extremity of North America, Europe and Asia. Winters on the tundra are long, dark and cold. Snowfall is low and most of the ground becomes covered with packed, dense and hard snow. In some areas, high winds can cause thick snowdrifts that become hard packed. During the summer, the snow and the soil layers above the permafrost (the active layer) melt. This creates and feeds a vast network of lakes, streams, rivers and wetlands. The waterlogged soil and 24-hour sunshine boost rapid plant growth, and in lower latitudes of tundra even lush, densely packed plant mats can grow. This forms a beautiful landscape and provides food for wildlife that either lives in the Arctic year around or migrates there to take advantage of the rich burst of food that is suddenly available in summer. 2 Canada’s Arctic Tundra 4 Aerial view of the tundra in the summer 5 Aurora borealis are common in the Arctic tundra at nighttime Plants and Fungi Nearly 2,000 species of plants, mainly mosses, sedges, grasses and flowering plants, form the vegetation of the tundra. The diversity of species decreases gradually from the tree line to the permanent ice caps farther north. Because of the climate, permafrost and short summers, tree species such as birch and willow are ground cover—they grow horizontally, not upwards, in this biome. This also helps plants benefit from the insulating snow cover during the winter. Tundra plants need to grow fast during the limited amount of time that temperatures and sunlight permit. This makes the short-lived summer months very colourful; many stunning flowering plants, like the Dwarf Fireweed and Mountain Avens, are in bloom at this time. As the sun shines 24 hours per 6 Dwarf Fireweed day during the summer above the Arctic Circle, some Arctic plants can grow and develop very quickly, compared with their southern counterparts, in this indirect light. Plants living on the tundra have adapted to the short growing season, high winds, low temperatures, lack of humidity and low nutrient levels in the thin acidic soil. They have shallow root systems that can only grow in the active layer of soil, or the soil that is not frozen during the summer. Growing close to the ground to take shelter from the strong winds and take advantage of pockets of dark soil and rocks that absorb heat, tundra plants tend to stay short and grow flat on the soil, as is the case for the purple saxifrage, the Net-veined Willow and the other tundra shrubs. 7 The Net-veined Willow, a dwarf Arctic willow Another way for plants to stay warm is for different species to grow huddled together or for one individual species to grow in a specific pattern, such as a rosette or in thick mats, like the Moss Campion and Three Toothed Saxifrage. This traps warmer air between individual plants and helps growth. 3 Canada’s Arctic Tundra The shape of the flowers, leaves and stems can also be adapted for life in the Arctic. Some tundra plants, like the Mountain Cranberry, have desert plant–like adaptations, such as wooly hairs, thick leaves and a thick, waxy skin to prevent water loss from the leaves due to the drying winds. To prevent them from drying out, several plants have no stems at all! Some flowering plants, like the Arctic Poppy, have big flowers that can orient themselves to face the sun at all times. Their colour and shape also helps heat absorption. Others, like the Bog Rosemary, have downward facing flowers that act like little greenhouses. Warmer flowers or transparent seed pods mean that the seeds contained in them will mature more quickly, which is vital in the brief Arctic summers. Leaf colour is also important, which is why some species, like the Arctic blueberry, turn red at the end of the summer. This enables the plant to absorb a broader spectrum of light. Other species have evergreen leaves that start photosynthesis as soon as the soil thaws. Some can even grow while still under the snow, using nutrients stored in their roots! As seed production demands energy from plants, and seed survival 8 Iceland Poppy is uncertain during the harsh winters, some species, like the Primrose, produce nutrient-storing tubers, buds or rhizomes that stay underground and are ready for growth in the spring. Other plants that produce seeds have structures to help their dispersal. For example, Cottongrass is a sedge with tufts that help the seeds get carried by wind but also act as insulation. Because wetlands and lakes appear all over the landscape in summer, many tundra plant species have adapted to growing in very moist areas or even in water. Some, like the carnivorous bladderworts, can be submerged in water or float on top of it. 9 The Cloudberry is one of the berry plants which These plants are not only a food source for waterfowl, fish and grows in the tundra invertebrates that inhabit these ecosystems, but they also provide shelter to some of these same species. Mosses are very common and diverse in the tundra. Some species can grow directly, in the form of a mat, on rocks or soil, being devoid of roots and stems. They play a great role in the tundra, since they actually insulate the permafrost! These primitive plants also do not reproduce by seeds but rather produce spores, which use water and wind as a means of dispersal. Thus, mosses need high moisture to both reproduce and grow (they absorb water directly through their small, delicate leaves), but in the dry Arctic, they survive through droughts by going into dormancy. Peat moss 10 Cottongrass is common throughout the tundra in bogs or other wetlands. Mosses come in a variety of colours, like orange-red moss. One of the tundra’s species at risk is Porsild’s Bryum, which is a type of moss. 4 Canada’s Arctic Tundra Hardy lichens play an important role as a food source for a variety of species, including barren-ground caribou, which eats mostly reindeer lichen, a group of lichen species, in the winter. Lichens are the result of a symbiotic relationship, similar to the one that forms corals. Fungi provide a structure and the absorption of minerals from the environment (the rock, soil or plant it grows on), while algae or bacteria can produce energy from light via photosynthesis to feed themselves and the fungi. The alga or bacterium lives embedded within the fungus, and this association of different species makes for a great variety of lichens of different colours and shapes. Lichens, like mosses, need moisture to grow and can go into dormancy if conditions are too dry. Their growth is very slow, but they can live for extended periods of time (as much as 4,000 to 5,000 years!) if left undisturbed. Lichens are very sensitive to air pollution, and scientists use them as a bioindicator of air quality. 11 Mosses and lichens alongside short tamaracks in the southern tundra 12 Lichens (in gray) on the tundra ground vegetation and fungi Wildlife The harsh climate and conditions in the tundra biome mean very few species are able to thrive there.
Recommended publications
  • North America Other Continents
    Arctic Ocean Europe North Asia America Atlantic Ocean Pacific Ocean Africa Pacific Ocean South Indian America Ocean Oceania Southern Ocean Antarctica LAND & WATER • The surface of the Earth is covered by approximately 71% water and 29% land. • It contains 7 continents and 5 oceans. Land Water EARTH’S HEMISPHERES • The planet Earth can be divided into four different sections or hemispheres. The Equator is an imaginary horizontal line (latitude) that divides the earth into the Northern and Southern hemispheres, while the Prime Meridian is the imaginary vertical line (longitude) that divides the earth into the Eastern and Western hemispheres. • North America, Earth’s 3rd largest continent, includes 23 countries. It contains Bermuda, Canada, Mexico, the United States of America, all Caribbean and Central America countries, as well as Greenland, which is the world’s largest island. North West East LOCATION South • The continent of North America is located in both the Northern and Western hemispheres. It is surrounded by the Arctic Ocean in the north, by the Atlantic Ocean in the east, and by the Pacific Ocean in the west. • It measures 24,256,000 sq. km and takes up a little more than 16% of the land on Earth. North America 16% Other Continents 84% • North America has an approximate population of almost 529 million people, which is about 8% of the World’s total population. 92% 8% North America Other Continents • The Atlantic Ocean is the second largest of Earth’s Oceans. It covers about 15% of the Earth’s total surface area and approximately 21% of its water surface area.
    [Show full text]
  • Sudden Death of an Arctic Wolf Population in Greenland Ulf Marquard-Petersen1
    RESEARCH ARTICLE Sudden death of an Arctic wolf population in Greenland Ulf Marquard-Petersen1 1Greenland Wolf Research Program, Anchorage, AK, USA Abstract Keywords Canis lupus arctos; conservation; crash; This study reports the disappearance of a small Arctic wolf population in north-east disappearance; management; wolves Greenland founded in 1979 and provides the first long-term information on the wolf packs of this region. Data sources comprised specialized wolf surveys in two of Correspondence three distributional core areas during three summers, 2012–14, and incidental Ulf Marquard-Petersen, Greenland Wolf sightings of wolves by military ground patrols during winter and by others year- Research Program, 5836 E. 10th Circle, round. The resulting time series spans 40 years (1979–2018). After gradually Anchorage, AK 99504, USA. E-mail increasing for 14 years, the sighting rate peaked in 1996 and then declined to zero [email protected] after May 2002, suggesting that the population went extinct. The crash occurred Abbreviations despite year-round legal protection in a national park and resulted in a 51.2% SD: standard deviation reduction in the extent of the occupied wolf range in Greenland and a 41.8% reduction in Greenland’s wolf population size. It was outside the scope of this study to conduct a complete analysis of all potential factors in the disappearance. In north Greenland, a small population of up to 32 wolves during optimal years continues to exist, and dispersers reach north-east Greenland occasionally. A number of mea- sures are proposed that, if implemented by the Greenland Home Rule Government, would help secure the future of the few remaining wolves on the island.
    [Show full text]
  • REDEFINING EUROPE-AFRICA RELATIONS Contents
    The European Union’s relations with the African continent are facing distinct challenges, with the impact of the Covid-19 pandemic making it all the more evident that the prevail- ing asymmetry is no longer REDEFINING acceptable as we move into the future. EUROPE-AFRICA This analysis takes a closer RELATIONS look at economic relations between the European Union Robert Kappel and Africa, which for some time now have been on a January 2021 downward trajectory, and addresses the impact of the global pandemic at the same time. Additionally, the paper outlines the current political cooperation between the two continents and evaluates the EU’s recent strategy pro- posal. Lastly, the key aspects of more comprehensive stra- tegic cooperation between Europe and Africa are iden tified. REDEFINING EUROPE-AFRICA RELATIONS Contents Summary 2 1 EU-AFRICAN ECONOMIC RELATIONS 3 2 EFFECTS OF THE COVID-19 PANDEMIC ON AFRICAN ECONOMIES 14 3 COOPERATION WITH AFRICA: FROM LOMÉ TO A COMPREHENSIVE STRATEGY WITH AFRICA 18 4 FORGING A STRATEGIC PARTNERSHIP: RECOMMENDATIONS FOR ACTION 20 Résumé: Paving the Way for a New Africa-Europe Partnership 28 Literature 30 1 FRIEDRICH-EBERT-STIFTUNG – REDEFINING EUROPE-AFRICA RELATIONS Summary The European Union’s (EU) relations with the African conti- This paper begins by describing the EU’s current economic nent are facing a distinct set of challenges. Contrary to the relations with Africa (Chapter 1), which have been on a expectations of both African and European governments, downward trajectory for quite some time already. The ef- the pending negotiations between the partners are now fects of the Covid-19 pandemic are then outlined in Chap- being put to the test like never before.
    [Show full text]
  • One of Five West Coast, Low-Latitude Deserts of the World, the Namib Extends Along the Entire Namibian Coastline in an 80-120 Km Wide Belt
    N A M I B I A G 3 E 0 O 9 1 L - O Y G E I V C R A U S L NAMIB DESERT Source: Roadside Geology of Namibia One of five west coast, low-latitude deserts of the world, the Namib extends along the entire Namibian coastline in an 80-120 km wide belt. Its extreme aridity is the result of the cold, upwelling Benguela Current, which flows up the west coast of Africa as far as Angola, and because of its low temperatures induces very little evaporation and rainfall (<50 mm per year). It does, however, create an up to 50 km wide coastal fog belt providing sufficient moisture for the development of a specialist flora and fauna, many of which are endemic to the Namib. In addition, the lagoons at Walvis Bay and Sandwich Harbour are designated wetlands of international importance, because of their unique setting and rich birdlife, including flamingo, white pelican and Damara tern. Larger mammals like the famed desert elephant, black rhino, lion, cheetah and giraffe can be found along the northern rivers traversing the Skeleton Coast National Park. Geomorphologically, the Namib includes a variety of landscapes, including classic sand dunes, extensive gravel plains, locally with gypcrete and calcrete duricrusts, elongated salt pans, ephemeral watercourses forming linear oases, inselbergs and low mountain ranges. Along the coast, wind-swept sandy beaches alternate with rocky stretches, in places carved into striking rock formations (e.g. Bogenfels Arch). Designated a UNESCO World Heritage Site in 2013, the “Namib Sand Sea“ between Lüderitz and the Kuiseb River encompasses such well-known landmarks as Sossusvlei and Sandwich Harbour, while the fabled Skeleton Coast north of the Ugab River is notorious for its numerous ship wrecks.
    [Show full text]
  • Opening up Europe's Public Data
    The European Data Portal: Opening up Europe’s public data data.europa.eu/europeandataportal it available in the first place? What we do And in what domains, or A third of European across domains and across More and more volumes of countries are leading the countries? Also in what data are published every day, way with solid policies, language should the data be every hour, every minute, every licensing norms, good available? second. In every domain. portal traffic and many local Across every geography, small initiatives and events Value focuses on purpose, or big. The amount of data re-use and economic gains of across the world is increasing Open Data. Is there a societal exponentially. A substantial gain? Or perhaps a demo- amount of this data is cratic gain? How many new collected by governments. Public Sector Information jobs are created? What is the is information held by the critical mass? Value is there. The European Data Portal public sector. The EU Directive The question is how big? harvests the metadata on the re-use of Public (data about the data) of Sector Information provides Public Sector Information a common legal framework The Portal available on public data and for a European market for geospatial portals across government-held data. It is The first official version of European countries. Portals built around the key pillars of the European Data Portal is can be national, regional, the internal market: free flow available since February 2016. local or domain specific. of data, transparency and fair Within the Portal, sections are They cover the EU Member competition.
    [Show full text]
  • Response of CO2 Exchange in a Tussock Tundra Ecosystem to Permafrost Thaw and Thermokarst Development Jason Vogel,L Edward A
    Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development Jason Vogel,l Edward A. G. Schuur,2 Christian Trucco,2 and Hanna Lee2 [1] Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost thaw and thermokarst development. One site had extensive thermokarst features, and historic aerial photography indicated it was present at least 50 years prior to this study. A second site had a moderate number of thermokarst features that were known to have developed concurrently with permafrost warming that occurred 15 years prior to this study. A third site had a minimal amount of thermokarst development. The areal extent of thermokarst features reflected the seasonal thaw depth. The "extensive" site had the deepest seasonal thaw depth, and the "moderate" site had thaw depths slightly, but not significantly deeper than the site with "minimal" thermokarst development. Greater permafrost thaw corresponded to significantly greater gross primary productivity (GPP) at the moderate and extensive thaw sites as compared to the minimal thaw site. However, greater ecosystem respiration (Recc) during the spring, fall, and winter resulted in the extensive thaw site being a significant net source of CO2 to the atmosphere over 3 years, while the moderate thaw site was a CO2 sink. The minimal thaw site was near CO2 neutral and not significantly different from the extensive thaw site.
    [Show full text]
  • MILIEUX MÉSIQUES ET SECS DE L'île BYLOT, NUNAVUT (CANADA): CARACTÉRISATION ET UTILISATION PAR LA GRANDE OIE DES NEIGES - Juin 2002
    UNIVERSITÉ. DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES DÉPÔT FINAL COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN SCIENCES DE L'ENVIRONNEMENT PAR ISABELLE DUCLOS MILIEUX MÉSIQUES ET SECS DE L'ÎLE BYLOT, NUNAVUT (CANADA): CARACTÉRISATION ET UTILISATION PAR LA GRANDE OIE DES NEIGES - Juin 2002 © Isabelle Duclos 2002 Université du Québec à Trois-Rivières Service de la bibliothèque Avertissement L’auteur de ce mémoire ou de cette thèse a autorisé l’Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse. Cette diffusion n’entraîne pas une renonciation de la part de l’auteur à ses droits de propriété intellectuelle, incluant le droit d’auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d’une partie importante de ce mémoire ou de cette thèse requiert son autorisation. Il Résumé La densité de familles de la Grande Oie des neiges a augmenté récemment dans les milieux mésiques et secs de l'île Bylot, Nunavut (Canada). Ces milieux qui représentent environ 90% de la plaine sud de l'île sont aussi utilisés, parfois intensément, par les lemmings. Cette étude est la première à caractériser la végétation de ces milieux et à quantifier l'utilisation faite par ces principaux herbivores. L'utilisation et la sélection des habitats humides et mésiques par les familles d'oies ont également été étudiées via des décomptes d'oies. Dix communautés végétales ont été identifiées en 2000 et 2001. Leur couvert total de végétation était élevé (>95%), à l'exception de deux communautés végétales xériques.
    [Show full text]
  • Reduced Net Methane Emissions Due to Microbial Methane Oxidation in a Warmer Arctic
    LETTERS https://doi.org/10.1038/s41558-020-0734-z Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic Youmi Oh 1, Qianlai Zhuang 1,2,3 ✉ , Licheng Liu1, Lisa R. Welp 1,2, Maggie C. Y. Lau4,9, Tullis C. Onstott4, David Medvigy 5, Lori Bruhwiler6, Edward J. Dlugokencky6, Gustaf Hugelius 7, Ludovica D’Imperio8 and Bo Elberling 8 Methane emissions from organic-rich soils in the Arctic have bacteria (methanotrophs) and the remainder is mostly emitted into been extensively studied due to their potential to increase the atmosphere (Fig. 1a). The methanotrophs in these wet organic the atmospheric methane burden as permafrost thaws1–3. soils may be low-affinity methanotrophs (LAMs) that require However, this methane source might have been overestimated >600 ppm of methane (by moles) for their growth and mainte- without considering high-affinity methanotrophs (HAMs; nance23. But in dry mineral soils, the dominant methanotrophs are methane-oxidizing bacteria) recently identified in Arctic min- high-affinity methanotrophs (HAMs), which can survive and grow 4–7 eral soils . Herein we find that integrating the dynamics of at a level of atmospheric methane abundance ([CH4]atm) of about HAMs and methanogens into a biogeochemistry model8–10 1.8 ppm (Fig. 1b)24. that includes permafrost soil organic carbon dynamics3 leads Quantification of the previously underestimated HAM-driven −1 to the upland methane sink doubling (~5.5 Tg CH4 yr ) north of methane sink is needed to improve our understanding of Arctic 50 °N in simulations from 2000–2016. The increase is equiva- methane budgets.
    [Show full text]
  • New Siberian Islands Archipelago)
    Detrital zircon ages and provenance of the Upper Paleozoic successions of Kotel’ny Island (New Siberian Islands archipelago) Victoria B. Ershova1,*, Andrei V. Prokopiev2, Andrei K. Khudoley1, Nikolay N. Sobolev3, and Eugeny O. Petrov3 1INSTITUTE OF EARTH SCIENCE, ST. PETERSBURG STATE UNIVERSITY, UNIVERSITETSKAYA NAB. 7/9, ST. PETERSBURG 199034, RUSSIA 2DIAMOND AND PRECIOUS METAL GEOLOGY INSTITUTE, SIBERIAN BRANCH, RUSSIAN ACADEMY OF SCIENCES, LENIN PROSPECT 39, YAKUTSK 677980, RUSSIA 3RUSSIAN GEOLOGICAL RESEARCH INSTITUTE (VSEGEI), SREDNIY PROSPECT 74, ST. PETERSBURG 199106, RUSSIA ABSTRACT Plate-tectonic models for the Paleozoic evolution of the Arctic are numerous and diverse. Our detrital zircon provenance study of Upper Paleozoic sandstones from Kotel’ny Island (New Siberian Island archipelago) provides new data on the provenance of clastic sediments and crustal affinity of the New Siberian Islands. Upper Devonian–Lower Carboniferous deposits yield detrital zircon populations that are consistent with the age of magmatic and metamorphic rocks within the Grenvillian-Sveconorwegian, Timanian, and Caledonian orogenic belts, but not with the Siberian craton. The Kolmogorov-Smirnov test reveals a strong similarity between detrital zircon populations within Devonian–Permian clastics of the New Siberian Islands, Wrangel Island (and possibly Chukotka), and the Severnaya Zemlya Archipelago. These results suggest that the New Siberian Islands, along with Wrangel Island and the Severnaya Zemlya Archipelago, were located along the northern margin of Laurentia-Baltica in the Late Devonian–Mississippian and possibly made up a single tectonic block. Detrital zircon populations from the Permian clastics record a dramatic shift to a Uralian provenance. The data and results presented here provide vital information to aid Paleozoic tectonic reconstructions of the Arctic region prior to opening of the Mesozoic oceanic basins.
    [Show full text]
  • Surficial Geology Investigations in Wellesley Basin and Nisling Range, Southwest Yukon J.D
    Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon J.D. Bond, P.S. Lipovsky and P. von Gaza Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon Jeffrey D. Bond1 and Panya S. Lipovsky2 Yukon Geological Survey Peter von Gaza3 Geomatics Yukon Bond, J.D., Lipovsky, P.S. and von Gaza, P., 2008. Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 125-138. ABSTRACT Results of surficial geology investigations in Wellesley basin and the Nisling Range can be summarized into four main highlights, which have implications for exploration, development and infrastructure in the region: 1) in contrast to previous glacial-limit mapping for the St. Elias Mountains lobe, no evidence for the late Pliocene/early Pleistocene pre-Reid glacial limits was found in the study area; 2) placer potential was identified along the Reid glacial limit where a significant drainage diversion occurred for Grayling Creek; 3) widespread permafrost was encountered in the study area including near-continuous veneers of sheet-wash; and 4) a monitoring program was initiated at a recently active landslide which has potential to develop into a catastrophic failure that could damage the White River bridge on the Alaska Highway. RÉSUMÉ Les résultats d’études géologiques des formations superficielles dans le bassin de Wellesley et la chaîne Nisling peuvent être résumés en quatre principaux faits saillants qui ont des répercussions pour l’exploration, la mise en valeur et l’infrastructure de la région.
    [Show full text]
  • Geography Notes.Pdf
    THE GLOBE What is a globe? a small model of the Earth Parts of a globe: equator - the line on the globe halfway between the North Pole and the South Pole poles - the northern-most and southern-most points on the Earth 1. North Pole 2. South Pole hemispheres - half of the earth, divided by the equator (North & South) and the prime meridian (East and West) 1. Northern Hemisphere 2. Southern Hemisphere 3. Eastern Hemisphere 4. Western Hemisphere continents - the largest land areas on Earth 1. North America 2. South America 3. Europe 4. Asia 5. Africa 6. Australia 7. Antarctica oceans - the largest water areas on Earth 1. Atlantic Ocean 2. Pacific Ocean 3. Indian Ocean 4. Arctic Ocean 5. Antarctic Ocean WORLD MAP ** NOTE: Our textbooks call the “Southern Ocean” the “Antarctic Ocean” ** North America The three major countries of North America are: 1. Canada 2. United States 3. Mexico Where Do We Live? We live in the Western & Northern Hemispheres. We live on the continent of North America. The other 2 large countries on this continent are Canada and Mexico. The name of our country is the United States. There are 50 states in it, but when it first became a country, there were only 13 states. The name of our state is New York. Its capital city is Albany. GEOGRAPHY STUDY GUIDE You will need to know: VOCABULARY: equator globe hemisphere continent ocean compass WORLD MAP - be able to label 7 continents and 5 oceans 3 Large Countries of North America 1. United States 2. Canada 3.
    [Show full text]
  • Genetics of Northern Wolf Populations
    GENETICS OF NORTHERN WOLF POPULATIONS 1L. E. Carmichael 1Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9 2007 Final Wildlife Report, No. 21 Carmichael, L. E. 2007. Genetics of Northern wolf populations. Government of Nunavut, Department of Environment, Final Wildlife Report: 21, Iqaluit, 45 pp. Final Report GENETICS OF NORTHERN WOLF POPULATIONS Prepared by: L. E. Carmichael, PhD Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 P: (780) 492-8368 F: (780) 492-9234 Email: [email protected] Submitted February 2007 to: Mathieu Dumond, Kitikmeot Wildlife Biologist Department of Environment Nunavut Wildlife Management Division Government of Nunavut Kugluktuk NU AND Department of Environment and Natural Resources Wildlife Division Government of the Northwest Territories Yellowknife NT EXECUTIVE SUMMARY ________________________________________ 4 INTRODUCTION________________________________________________ 6 Origins of Arctic Canids ______________________________________________________________________6 The Grey Wolf ______________________________________________________________________________6 Recent History and Current Status of Grey Wolves ________________________________________________7 Project Objectives____________________________________________________________________________8 METHODS _____________________________________________________ 8 Sample Collection ____________________________________________________________________________8 Laboratory Methods and Dataset Validation______________________________________________________9
    [Show full text]