Slope Fields Review: THINGS YOU NEED to KNOW!!! Basics

Total Page:16

File Type:pdf, Size:1020Kb

Slope Fields Review: THINGS YOU NEED to KNOW!!! Basics Slope Fields Review: THINGS YOU NEED TO KNOW!!! Basics: Slope Fields are a graphical representation of the derivative of a relation (not necessarily a function. dy You generate a slope field by plugging in x and y to the formula and generating dx slopes for those individual points, then plotting them on the graph. o Positive slopes go up from left to right, negative ones go down o Larger numbers have steeper slopes o Zero slope is a horizontal segment o A non-existent slope value is not graphed. Slope fields generally show what the antiderivative of the formula looks like, because the tangent lines trace out the shape of the y curve. Example: dy o xy dx y dy 1 1 0 dx 1,1 x dy 3 2 1 dx 3, 2 Sketching Solution Curves: The solution curve matches the slope where they tell you to begin. It then conforms roughly to the slopes – they “guide” where the curve goes. NEVER go outside the boundary of the field, put arrows at the end, or stop short of the edge of the field. The AP always counts these mistakes as the whole sketch being wrong. o Example: Sketch a solution curve to through the point (–2, 0). The sketch is above (the heavy blue line on the slope field). Separation of Variables: This is basically an integration process to solve a differential equation (an equation dy solved for . dx Step one: algebraically separate variables (including the dy and the dx) so that all of the x’s are on one side, and all the y’s are on the other. o Note: the dy and the dx can never, ever be in the denominator. Integrate both sides of the equation. o Do not forget the “+ C” after integrating. If you do you will lose half the points for the problem on the AP test. If you are given an initial value, plug in x and y to solve for C. Finally, solve for y. Note: Remember how to integrate negative exponents, as well as positives. This distinction comes up frequently. o Integrating a function to the negative one power gives you a natural log o Integrating any other negative power, just use the anti-Power Rule. EXAMPLE: dy x Sketch the slope field for dx y Sketch the solution curve through (0, –2) Solve for y for the solution curve through (0, –2) Solution: y ydy xdx ydy xdx yx22 x C1 22 22 y x C2 2 y x C2 , since y = –2, the solution curve is negative y x2 C , plug in (0, –2) 2 yx 2 4 Note that this was fairly easy integration – it generally will not be too difficult an integration problem, but be prepared for negative exponents and/or natural logs to result. .
Recommended publications
  • Antiderivatives and the Area Problem
    Chapter 7 antiderivatives and the area problem Let me begin by defining the terms in the title: 1. an antiderivative of f is another function F such that F 0 = f. 2. the area problem is: ”find the area of a shape in the plane" This chapter is concerned with understanding the area problem and then solving it through the fundamental theorem of calculus(FTC). We begin by discussing antiderivatives. At first glance it is not at all obvious this has to do with the area problem. However, antiderivatives do solve a number of interesting physical problems so we ought to consider them if only for that reason. The beginning of the chapter is devoted to understanding the type of question which an antiderivative solves as well as how to perform a number of basic indefinite integrals. Once all of this is accomplished we then turn to the area problem. To understand the area problem carefully we'll need to think some about the concepts of finite sums, se- quences and limits of sequences. These concepts are quite natural and we will see that the theory for these is easily transferred from some of our earlier work. Once the limit of a sequence and a number of its basic prop- erties are established we then define area and the definite integral. Finally, the remainder of the chapter is devoted to understanding the fundamental theorem of calculus and how it is applied to solve definite integrals. I have attempted to be rigorous in this chapter, however, you should understand that there are superior treatments of integration(Riemann-Stieltjes, Lesbeque etc..) which cover a greater variety of functions in a more logically complete fashion.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Notes Chapter 4(Integration) Definition of an Antiderivative
    1 Notes Chapter 4(Integration) Definition of an Antiderivative: A function F is an antiderivative of f on an interval I if for all x in I. Representation of Antiderivatives: If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form G(x) = F(x) + C, for all x in I where C is a constant. Sigma Notation: The sum of n terms a1,a2,a3,…,an is written as where I is the index of summation, ai is the ith term of the sum, and the upper and lower bounds of summation are n and 1. Summation Formulas: 1. 2. 3. 4. Limits of the Lower and Upper Sums: Let f be continuous and nonnegative on the interval [a,b]. The limits as n of both the lower and upper sums exist and are equal to each other. That is, where are the minimum and maximum values of f on the subinterval. Definition of the Area of a Region in the Plane: Let f be continuous and nonnegative on the interval [a,b]. The area if a region bounded by the graph of f, the x-axis and the vertical lines x=a and x=b is Area = where . Definition of a Riemann Sum: Let f be defined on the closed interval [a,b], and let be a partition of [a,b] given by a =x0<x1<x2<…<xn-1<xn=b where xi is the width of the ith subinterval.
    [Show full text]
  • Calculus Formulas and Theorems
    Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
    [Show full text]
  • 4.1 AP Calc Antiderivatives and Indefinite Integration.Notebook November 28, 2016
    4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 4.1 Antiderivatives and Indefinite Integration Learning Targets 1. Write the general solution of a differential equation 2. Use indefinite integral notation for antiderivatives 3. Use basic integration rules to find antiderivatives 4. Find a particular solution of a differential equation 5. Plot a slope field 6. Working backwards in physics Intro/Warm­up 1 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Note: I am changing up the procedure of the class! When you walk in the class, you will put a tally mark on those problems that you would like me to go over, and you will turn in your homework with your name, the section and the page of the assignment. Order of the day 2 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Vocabulary First, find a function F whose derivative is . because any other function F work? So represents the family of all antiderivatives of . The constant C is called the constant of integration. The family of functions represented by F is the general antiderivative of f, and is the general solution to the differential equation The operation of finding all solutions to the differential equation is called antidifferentiation (or indefinite integration) and is denoted by an integral sign: is read as the antiderivative of f with respect to x. Vocabulary 3 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Nov 28­9:38 AM 4 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 ∫ Use basic integration rules to find antiderivatives The Power Rule: where 1.
    [Show full text]
  • 12.4 Calculus Review
    Appendix 445 12.4 Calculus review This section is a very brief summary of Calculus skills required for reading this book. 12.4.1 Inverse function Function g is the inverse function of function f if g(f(x)) = x and f(g(y)) = y for all x and y where f(x) and g(y) exist. 1 Notation Inverse function g = f − 1 (Don’t confuse the inverse f − (x) with 1/f(x). These are different functions!) To find the inverse function, solve the equation f(x) = y. The solution g(y) is the inverse of f. For example, to find the inverse of f(x)=3+1/x, we solve the equation 1 3 + 1/x = y 1/x = y 3 x = . ⇒ − ⇒ y 3 − The inverse function of f is g(y) = 1/(y 3). − 12.4.2 Limits and continuity A function f(x) has a limit L at a point x0 if f(x) approaches L when x approaches x0. To say it more rigorously, for any ε there exists such δ that f(x) is ε-close to L when x is δ-close to x0. That is, if x x < δ then f(x) L < ε. | − 0| | − | A function f(x) has a limit L at + if f(x) approaches L when x goes to + . Rigorously, for any ε there exists such N that f∞(x) is ε-close to L when x gets beyond N∞, i.e., if x > N then f(x) L < ε. | − | Similarly, f(x) has a limit L at if for any ε there exists such N that f(x) is ε-close to L when x gets below ( N), i.e.,−∞ − if x < N then f(x) L < ε.
    [Show full text]
  • The Legacy of Leonhard Euler: a Tricentennial Tribute (419 Pages)
    P698.TP.indd 1 9/8/09 5:23:37 PM This page intentionally left blank Lokenath Debnath The University of Texas-Pan American, USA Imperial College Press ICP P698.TP.indd 2 9/8/09 5:23:39 PM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. THE LEGACY OF LEONHARD EULER A Tricentennial Tribute Copyright © 2010 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-1-84816-525-0 ISBN-10 1-84816-525-0 Printed in Singapore. LaiFun - The Legacy of Leonhard.pmd 1 9/4/2009, 3:04 PM September 4, 2009 14:33 World Scientific Book - 9in x 6in LegacyLeonhard Leonhard Euler (1707–1783) ii September 4, 2009 14:33 World Scientific Book - 9in x 6in LegacyLeonhard To my wife Sadhana, grandson Kirin,and granddaughter Princess Maya, with love and affection.
    [Show full text]
  • Gottfried Wilhelm Leibnitz (Or Leibniz) Was Born at Leipzig on June 21 (O.S.), 1646, and Died in Hanover on November 14, 1716. H
    Gottfried Wilhelm Leibnitz (or Leibniz) was born at Leipzig on June 21 (O.S.), 1646, and died in Hanover on November 14, 1716. His father died before he was six, and the teaching at the school to which he was then sent was inefficient, but his industry triumphed over all difficulties; by the time he was twelve he had taught himself to read Latin easily, and had begun Greek; and before he was twenty he had mastered the ordinary text-books on mathematics, philosophy, theology and law. Refused the degree of doctor of laws at Leipzig by those who were jealous of his youth and learning, he moved to Nuremberg. An essay which there wrote on the study of law was dedicated to the Elector of Mainz, and led to his appointment by the elector on a commission for the revision of some statutes, from which he was subsequently promoted to the diplomatic service. In the latter capacity he supported (unsuccessfully) the claims of the German candidate for the crown of Poland. The violent seizure of various small places in Alsace in 1670 excited universal alarm in Germany as to the designs of Louis XIV.; and Leibnitz drew up a scheme by which it was proposed to offer German co-operation, if France liked to take Egypt, and use the possessions of that country as a basis for attack against Holland in Asia, provided France would agree to leave Germany undisturbed. This bears a curious resemblance to the similar plan by which Napoleon I. proposed to attack England. In 1672 Leibnitz went to Paris on the invitation of the French government to explain the details of the scheme, but nothing came of it.
    [Show full text]
  • 1. Antiderivatives for Exponential Functions Recall That for F(X) = Ec⋅X, F ′(X) = C ⋅ Ec⋅X (For Any Constant C)
    1. Antiderivatives for exponential functions Recall that for f(x) = ec⋅x, f ′(x) = c ⋅ ec⋅x (for any constant c). That is, ex is its own derivative. So it makes sense that it is its own antiderivative as well! Theorem 1.1 (Antiderivatives of exponential functions). Let f(x) = ec⋅x for some 1 constant c. Then F x ec⋅c D, for any constant D, is an antiderivative of ( ) = c + f(x). 1 c⋅x ′ 1 c⋅x c⋅x Proof. Consider F (x) = c e +D. Then by the chain rule, F (x) = c⋅ c e +0 = e . So F (x) is an antiderivative of f(x). Of course, the theorem does not work for c = 0, but then we would have that f(x) = e0 = 1, which is constant. By the power rule, an antiderivative would be F (x) = x + C for some constant C. 1 2. Antiderivative for f(x) = x We have the power rule for antiderivatives, but it does not work for f(x) = x−1. 1 However, we know that the derivative of ln(x) is x . So it makes sense that the 1 antiderivative of x should be ln(x). Unfortunately, it is not. But it is close. 1 1 Theorem 2.1 (Antiderivative of f(x) = x ). Let f(x) = x . Then the antiderivatives of f(x) are of the form F (x) = ln(SxS) + C. Proof. Notice that ln(x) for x > 0 F (x) = ln(SxS) = . ln(−x) for x < 0 ′ 1 For x > 0, we have [ln(x)] = x .
    [Show full text]
  • Antiderivatives Math 121 Calculus II D Joyce, Spring 2013
    Antiderivatives Math 121 Calculus II D Joyce, Spring 2013 Antiderivatives and the constant of integration. We'll start out this semester talking about antiderivatives. If the derivative of a function F isf, that is, F 0 = f, then we say F is an antiderivative of f. Of course, antiderivatives are important in solving problems when you know a derivative but not the function, but we'll soon see that lots of questions involving areas, volumes, and other things also come down to finding antiderivatives. That connection we'll see soon when we study the Fundamental Theorem of Calculus (FTC). For now, we'll just stick to the basic concept of antiderivatives. We can find antiderivatives of polynomials pretty easily. Suppose that we want to find an antiderivative F (x) of the polynomial f(x) = 4x3 + 5x2 − 3x + 8: We can find one by finding an antiderivative of each term and adding the results together. Since the derivative of x4 is 4x3, therefore an antiderivative of 4x3 is x4. It's not much harder to find an antiderivative of 5x2. Since the derivative of x3 is 3x2, an antiderivative of 5x2 is 5 3 3 x . Continue on and soon you see that an antiderivative of f(x) is 4 5 3 3 2 F (x) = x + 3 x − 2 x + 8x: There are, however, other antiderivatives of f(x). Since the derivative of a constant is 0, 4 5 3 3 2 we can add any constant to F (x) to find another antiderivative. Thus, x + 3 x − 2 x +8x+7 4 5 3 3 2 is another antiderivative of f(x).
    [Show full text]
  • Derivatives and Antiderivatives
    Lesson R MA 16020 Nick Egbert Note. There should be no new information in this lesson. This is a brief review of things you should have learned in Calculus I, but certainly not exhaustive. Derivatives and antiderivatives There are several derivative anti derivative rules that you should have pretty well-memorized at this point: It is very important that you know these well to make the transition into this course go smoothly. Definition. Given a continuous function f(x), if F 0(x) = f(x); we say that F (x) is an antiderivative of f(x); and we write Z F (x) = f(x) dx: 1 Lesson R MA 16020 Nick Egbert Remark. If F (x) is an antiderivative of f(x) then the indefinite integral of f is given by Z f(x) dx = F (x) + C; where C is some constant. This means that any two functions which differ by only a constant will have the same antiderivative. Remark. We want to note a couple things about the notation R f(x)dx: 1. The process of computing R f(x)dx can be called antidifferentiation 5 integration 5 taking or evaluating the integral 2. f(5x) is called the integrand. 3. Writing the \dx" on the outside is essential. This tells us that we are integrating with respect to x. It will especially be important in MA 16020 when we start having integrals with more than one variable. Fundamental theorem of calculus Theorem. If f is a real-valued continuous function on the interval [a; b]; and F the antiderivative of f: Z x F (x) = f(t) dt; a Then F 0(x) = f(x) for all x in the interval (a; b): In particular, we have that Z b f(t) dt = F (b) − F (a): a This has an important geometric interpretation.
    [Show full text]
  • Multiple Integrals
    Chapter 11 Multiple Integrals 11.1 Double Riemann Sums and Double Integrals over Rectangles Motivating Questions In this section, we strive to understand the ideas generated by the following important questions: What is a double Riemann sum? • How is the double integral of a continuous function f = f(x; y) defined? • What are two things the double integral of a function can tell us? • Introduction In single-variable calculus, recall that we approximated the area under the graph of a positive function f on an interval [a; b] by adding areas of rectangles whose heights are determined by the curve. The general process involved subdividing the interval [a; b] into smaller subintervals, constructing rectangles on each of these smaller intervals to approximate the region under the curve on that subinterval, then summing the areas of these rectangles to approximate the area under the curve. We will extend this process in this section to its three-dimensional analogs, double Riemann sums and double integrals over rectangles. Preview Activity 11.1. In this activity we introduce the concept of a double Riemann sum. (a) Review the concept of the Riemann sum from single-variable calculus. Then, explain how R b we define the definite integral a f(x) dx of a continuous function of a single variable x on an interval [a; b]. Include a sketch of a continuous function on an interval [a; b] with appropriate labeling in order to illustrate your definition. (b) In our upcoming study of integral calculus for multivariable functions, we will first extend 181 182 11.1.
    [Show full text]