Antiderivatives and the Area Problem

Total Page:16

File Type:pdf, Size:1020Kb

Antiderivatives and the Area Problem Chapter 7 antiderivatives and the area problem Let me begin by defining the terms in the title: 1. an antiderivative of f is another function F such that F 0 = f. 2. the area problem is: ”find the area of a shape in the plane" This chapter is concerned with understanding the area problem and then solving it through the fundamental theorem of calculus(FTC). We begin by discussing antiderivatives. At first glance it is not at all obvious this has to do with the area problem. However, antiderivatives do solve a number of interesting physical problems so we ought to consider them if only for that reason. The beginning of the chapter is devoted to understanding the type of question which an antiderivative solves as well as how to perform a number of basic indefinite integrals. Once all of this is accomplished we then turn to the area problem. To understand the area problem carefully we'll need to think some about the concepts of finite sums, se- quences and limits of sequences. These concepts are quite natural and we will see that the theory for these is easily transferred from some of our earlier work. Once the limit of a sequence and a number of its basic prop- erties are established we then define area and the definite integral. Finally, the remainder of the chapter is devoted to understanding the fundamental theorem of calculus and how it is applied to solve definite integrals. I have attempted to be rigorous in this chapter, however, you should understand that there are superior treatments of integration(Riemann-Stieltjes, Lesbeque etc..) which cover a greater variety of functions in a more logically complete fashion. The treatment here is more or less typical of elementary calculus texts. 245 246 CHAPTER 7. ANTIDERIVATIVES AND THE AREA PROBLEM 7.1 indefinite integration Don't worry, the title of this section will make sense later. 7.1.1 why antidifferentiate? The antiderivative is the opposite of the derivative in the following sense: Definition 7.1.1. antiderivative. If f and F are functions such that F 0 = f then we say that F is an antiderivative of f. dF Example 7.1.2. Suppose f(x) = x then an antiderivative of f is a function F such that dx = x. We could 2 d 2 try x but then dx (x ) = 2x has an unwanted factor of 2. What to do? Just adjust our guess a little: try 1 2 d 1 2 1 d 2 1 F (x) = 2 x . Note that dx ( 2 x ) = 2 dx (x ) = 2 (2x) = x: kt 1 kt Example 7.1.3. Let k be a constant. Suppose g(t) = e then we guess G(t) = k e and note it works; d 1 kt kt kt 1 kt dt ( k e ) = e therefore g(t) = e has antiderivative G(t) = k e . d Example 7.1.4. Suppose h(θ) = cos(θ). Guess H(θ) = sin(θ) and note it works; dθ (sin(θ)) = cos(θ). Obviously these guesses are not random. In fact, these are educated guesses. We simply have to think about how we differentiated before and just try to think backwards. Simple enough for now. However, we 1 2 should stop to notice that the antiderivative is far from unique. You can easily check that F (x) = 2 x + c1, 1 kt G(t) = k e + c2 and H(θ) = sin(θ) + c3 are also antiderivatives for any constants c1; c2; c3 2 R. Proposition 7.1.5. antiderivatives differ by at most a constant. If f has antiderivatives F1 and F2 then there exists c 2 R such that F1(x) = F2(x) + c. dF1 dF2 dF1 dF2 Proof: We are given that dx = f(x) and dx = f(x) therefore dx = dx . Hence, by Proposition 6.1.10 we find F1(x) = F2(x) + c. To understand the significance of this constant we should consider a physical question. Example 7.1.6. Suppose that the velocity of a particle at position x is measured to be constant. In particular, dx dx suppose that v(t) = dt and v(t) = 1. The condition v(t) = dt means that x should be an antiderivative of v. For v(t) = 1 the form of all antiderivatives is easy enough to guess: x(t) = t + c. The value for c cannot be determined unless we are given additional information about this particle. For example, if we also knew that at time zero the particle was at x = 3 then we could fit this initial data to pick a value for c: x(0) = 0 + c = 3 ) c = 3 ) x(t) = t + 3 : For a given velocity function each antiderivative gives a possible position function. To determine the precise position function we need to know both the velocity and some initial position. Often we are presented with a problem for which we do not know the initial condition so we'd like to have a mathematical device to leave open all possible initial conditions. 7.1. INDEFINITE INTEGRATION 247 Definition 7.1.7. indefinite integral. If f has an antiderivative F then the indefinite integral of f is given by: Z 0 f(x)dx = fG(x) j G (x) = f(x)g = fF (x) + cjc 2 Rg: However, we will customarily drop the set-notation and simply write Z f(x)dx = F (x) + c where F 0(x) = f(x): The indefinite integral includes all possible antiderivatives for the given function. Technically the indefinite integral is not a function. Instead, it is a family of functions each of which is an antiderivative of f. Example 7.1.8. Consider the constant acceleration problem1; we are given that a = −g where g = 9:8m=s2 dv and a = dt . We can take the indefinite integral of the equation: dv Z = −g ) v(t) = −g dt = −gt + c : dt 1 dy Furthermore, if v = dt then dy Z 1 = −gt + c ) y(t) = −gt + c dt = − gt2 + c t + c : dt 1 1 2 1 2 Therefore, we find the velocity and position are given by formulas 1 v(t) = c − gt y(t) = c + c t − gt2: 1 2 1 2 If we know the initial velocity is vo and the initial position is yo then v(0) = vo = c1 − 0 ) v(t) = vo − gt 1 y(0) = y = c − 0 − 0 ) y(t) = y + v t − gt2 o 2 o o 2 These formulas were derived by Galileo without the benefit of calculus. Instead, he used experiment and a healthy skepticism of the philosophical nonsense of Aristotle. The ancient Greek's theory of motion said that if something was twice as heavy then it falls twice as fast. This is only true when the objects compared have air friction clouding the dynamics. The equations above say the objects' motion is independent of the mass. 1here F = ma is −mg = ma so a = −g but that's physics, I supply the equation of motion in calculus. You just have to do the math. 248 CHAPTER 7. ANTIDERIVATIVES AND THE AREA PROBLEM Remark 7.1.9. redundant comment (again). The indefinite integral is a family of antiderivatives: R f(x) = F (x) + c where F 0(x) = f(x). The following equation shows how indefinite integration is undone by differentiation: d Z f(x) dx = f(x) dx the function f is called the integrand and the variable of indefinite integration is x. Notice the constant is obliterated by the derivative in the equation above. Leibniz' notation intentionally makes you think of cancelling the dx's as if they were tiny quantities. Newton called them fluxions. In fact calculus was sometimes called the theory of fluxions in the early 19-th century. Newton had in mind that dx was the change in x over a tiny time, it was a fluctuation with respect to a time implicit. We no longer think of calculus in this way because there are easier ways to think about foundations of calculus. That said, it is still an intuitive notation and if you are careful not to overextend intuition df df du it is a powerful mnemonic. For example, the chain rule dx = du dx . Is the chain rule just from multiplying by one? No. But, it is a nice way to remember the rule. A differential equation is an equation which involves derivatives. We have solved a number of differential equations in this section via the process of indefinite integration. The example that follows doesn't quite fit the same pattern. However, I will again solve it by educated guessing2 . Example 7.1.10. A simple model of population growth is that the rate of population growth should be directly proportional to the size of the population P . This means there exists k 2 R such that dP = kP: dt Fortunately, we just did Example 7.1.3 where we observed that Z 1 ekt dt = ekt + c k 1 kt So we know that one solution is given by P (t) = k e . Change variables by substituting u = ln(P ) so du 1 dP dP du du du dt = P dt thus dt = P dt . Hence we can solve P dt = kP or dt = k instead. This we can antidifferentiate kt+c1 c1 kt to find u(t) = kt + c1. Thus, ln(P ) = kt + c1 hence P (t) = e = e e . If the initial population is given c1 kt to be Po then we find P (0) = Po = e thus P (t) = Poe : The same mathematics govern simple radioactive decay, continuously compounded interest, current or voltage in an LR or RC circuit and a host of other simplistic models in the natural sciences.
Recommended publications
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Notes Chapter 4(Integration) Definition of an Antiderivative
    1 Notes Chapter 4(Integration) Definition of an Antiderivative: A function F is an antiderivative of f on an interval I if for all x in I. Representation of Antiderivatives: If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form G(x) = F(x) + C, for all x in I where C is a constant. Sigma Notation: The sum of n terms a1,a2,a3,…,an is written as where I is the index of summation, ai is the ith term of the sum, and the upper and lower bounds of summation are n and 1. Summation Formulas: 1. 2. 3. 4. Limits of the Lower and Upper Sums: Let f be continuous and nonnegative on the interval [a,b]. The limits as n of both the lower and upper sums exist and are equal to each other. That is, where are the minimum and maximum values of f on the subinterval. Definition of the Area of a Region in the Plane: Let f be continuous and nonnegative on the interval [a,b]. The area if a region bounded by the graph of f, the x-axis and the vertical lines x=a and x=b is Area = where . Definition of a Riemann Sum: Let f be defined on the closed interval [a,b], and let be a partition of [a,b] given by a =x0<x1<x2<…<xn-1<xn=b where xi is the width of the ith subinterval.
    [Show full text]
  • 4.1 AP Calc Antiderivatives and Indefinite Integration.Notebook November 28, 2016
    4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 4.1 Antiderivatives and Indefinite Integration Learning Targets 1. Write the general solution of a differential equation 2. Use indefinite integral notation for antiderivatives 3. Use basic integration rules to find antiderivatives 4. Find a particular solution of a differential equation 5. Plot a slope field 6. Working backwards in physics Intro/Warm­up 1 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Note: I am changing up the procedure of the class! When you walk in the class, you will put a tally mark on those problems that you would like me to go over, and you will turn in your homework with your name, the section and the page of the assignment. Order of the day 2 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Vocabulary First, find a function F whose derivative is . because any other function F work? So represents the family of all antiderivatives of . The constant C is called the constant of integration. The family of functions represented by F is the general antiderivative of f, and is the general solution to the differential equation The operation of finding all solutions to the differential equation is called antidifferentiation (or indefinite integration) and is denoted by an integral sign: is read as the antiderivative of f with respect to x. Vocabulary 3 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Nov 28­9:38 AM 4 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 ∫ Use basic integration rules to find antiderivatives The Power Rule: where 1.
    [Show full text]
  • 12.4 Calculus Review
    Appendix 445 12.4 Calculus review This section is a very brief summary of Calculus skills required for reading this book. 12.4.1 Inverse function Function g is the inverse function of function f if g(f(x)) = x and f(g(y)) = y for all x and y where f(x) and g(y) exist. 1 Notation Inverse function g = f − 1 (Don’t confuse the inverse f − (x) with 1/f(x). These are different functions!) To find the inverse function, solve the equation f(x) = y. The solution g(y) is the inverse of f. For example, to find the inverse of f(x)=3+1/x, we solve the equation 1 3 + 1/x = y 1/x = y 3 x = . ⇒ − ⇒ y 3 − The inverse function of f is g(y) = 1/(y 3). − 12.4.2 Limits and continuity A function f(x) has a limit L at a point x0 if f(x) approaches L when x approaches x0. To say it more rigorously, for any ε there exists such δ that f(x) is ε-close to L when x is δ-close to x0. That is, if x x < δ then f(x) L < ε. | − 0| | − | A function f(x) has a limit L at + if f(x) approaches L when x goes to + . Rigorously, for any ε there exists such N that f∞(x) is ε-close to L when x gets beyond N∞, i.e., if x > N then f(x) L < ε. | − | Similarly, f(x) has a limit L at if for any ε there exists such N that f(x) is ε-close to L when x gets below ( N), i.e.,−∞ − if x < N then f(x) L < ε.
    [Show full text]
  • 1. Antiderivatives for Exponential Functions Recall That for F(X) = Ec⋅X, F ′(X) = C ⋅ Ec⋅X (For Any Constant C)
    1. Antiderivatives for exponential functions Recall that for f(x) = ec⋅x, f ′(x) = c ⋅ ec⋅x (for any constant c). That is, ex is its own derivative. So it makes sense that it is its own antiderivative as well! Theorem 1.1 (Antiderivatives of exponential functions). Let f(x) = ec⋅x for some 1 constant c. Then F x ec⋅c D, for any constant D, is an antiderivative of ( ) = c + f(x). 1 c⋅x ′ 1 c⋅x c⋅x Proof. Consider F (x) = c e +D. Then by the chain rule, F (x) = c⋅ c e +0 = e . So F (x) is an antiderivative of f(x). Of course, the theorem does not work for c = 0, but then we would have that f(x) = e0 = 1, which is constant. By the power rule, an antiderivative would be F (x) = x + C for some constant C. 1 2. Antiderivative for f(x) = x We have the power rule for antiderivatives, but it does not work for f(x) = x−1. 1 However, we know that the derivative of ln(x) is x . So it makes sense that the 1 antiderivative of x should be ln(x). Unfortunately, it is not. But it is close. 1 1 Theorem 2.1 (Antiderivative of f(x) = x ). Let f(x) = x . Then the antiderivatives of f(x) are of the form F (x) = ln(SxS) + C. Proof. Notice that ln(x) for x > 0 F (x) = ln(SxS) = . ln(−x) for x < 0 ′ 1 For x > 0, we have [ln(x)] = x .
    [Show full text]
  • Antiderivatives Math 121 Calculus II D Joyce, Spring 2013
    Antiderivatives Math 121 Calculus II D Joyce, Spring 2013 Antiderivatives and the constant of integration. We'll start out this semester talking about antiderivatives. If the derivative of a function F isf, that is, F 0 = f, then we say F is an antiderivative of f. Of course, antiderivatives are important in solving problems when you know a derivative but not the function, but we'll soon see that lots of questions involving areas, volumes, and other things also come down to finding antiderivatives. That connection we'll see soon when we study the Fundamental Theorem of Calculus (FTC). For now, we'll just stick to the basic concept of antiderivatives. We can find antiderivatives of polynomials pretty easily. Suppose that we want to find an antiderivative F (x) of the polynomial f(x) = 4x3 + 5x2 − 3x + 8: We can find one by finding an antiderivative of each term and adding the results together. Since the derivative of x4 is 4x3, therefore an antiderivative of 4x3 is x4. It's not much harder to find an antiderivative of 5x2. Since the derivative of x3 is 3x2, an antiderivative of 5x2 is 5 3 3 x . Continue on and soon you see that an antiderivative of f(x) is 4 5 3 3 2 F (x) = x + 3 x − 2 x + 8x: There are, however, other antiderivatives of f(x). Since the derivative of a constant is 0, 4 5 3 3 2 we can add any constant to F (x) to find another antiderivative. Thus, x + 3 x − 2 x +8x+7 4 5 3 3 2 is another antiderivative of f(x).
    [Show full text]
  • Derivatives and Antiderivatives
    Lesson R MA 16020 Nick Egbert Note. There should be no new information in this lesson. This is a brief review of things you should have learned in Calculus I, but certainly not exhaustive. Derivatives and antiderivatives There are several derivative anti derivative rules that you should have pretty well-memorized at this point: It is very important that you know these well to make the transition into this course go smoothly. Definition. Given a continuous function f(x), if F 0(x) = f(x); we say that F (x) is an antiderivative of f(x); and we write Z F (x) = f(x) dx: 1 Lesson R MA 16020 Nick Egbert Remark. If F (x) is an antiderivative of f(x) then the indefinite integral of f is given by Z f(x) dx = F (x) + C; where C is some constant. This means that any two functions which differ by only a constant will have the same antiderivative. Remark. We want to note a couple things about the notation R f(x)dx: 1. The process of computing R f(x)dx can be called antidifferentiation 5 integration 5 taking or evaluating the integral 2. f(5x) is called the integrand. 3. Writing the \dx" on the outside is essential. This tells us that we are integrating with respect to x. It will especially be important in MA 16020 when we start having integrals with more than one variable. Fundamental theorem of calculus Theorem. If f is a real-valued continuous function on the interval [a; b]; and F the antiderivative of f: Z x F (x) = f(t) dt; a Then F 0(x) = f(x) for all x in the interval (a; b): In particular, we have that Z b f(t) dt = F (b) − F (a): a This has an important geometric interpretation.
    [Show full text]
  • Multiple Integrals
    Chapter 11 Multiple Integrals 11.1 Double Riemann Sums and Double Integrals over Rectangles Motivating Questions In this section, we strive to understand the ideas generated by the following important questions: What is a double Riemann sum? • How is the double integral of a continuous function f = f(x; y) defined? • What are two things the double integral of a function can tell us? • Introduction In single-variable calculus, recall that we approximated the area under the graph of a positive function f on an interval [a; b] by adding areas of rectangles whose heights are determined by the curve. The general process involved subdividing the interval [a; b] into smaller subintervals, constructing rectangles on each of these smaller intervals to approximate the region under the curve on that subinterval, then summing the areas of these rectangles to approximate the area under the curve. We will extend this process in this section to its three-dimensional analogs, double Riemann sums and double integrals over rectangles. Preview Activity 11.1. In this activity we introduce the concept of a double Riemann sum. (a) Review the concept of the Riemann sum from single-variable calculus. Then, explain how R b we define the definite integral a f(x) dx of a continuous function of a single variable x on an interval [a; b]. Include a sketch of a continuous function on an interval [a; b] with appropriate labeling in order to illustrate your definition. (b) In our upcoming study of integral calculus for multivariable functions, we will first extend 181 182 11.1.
    [Show full text]
  • Appendix: TABLE of INTEGRALS
    -~.I--­ Appendix: TABLE OF INTEGRALS 148. In the following table, the constant of integration, C, is omitted but should be added to the result of every integration. The letter x represents any variable; u represents any function of x; the remaining letters represent arbitrary constants, unless otherwise indicated; all angles are in radians. Unless otherwise mentioned, loge u = log u. Expressions Containing ax + b 1. I(ax+ b)ndx= 1 (ax+ b)n+l, n=l=-1. a(n + 1) dx 1 2. = -loge<ax + b). Iax+ b a 3 I dx =_ 1 • (ax+b)2 a(ax+b)· 4 I dx =_ 1 • (ax + b)3 2a(ax + b)2· 5. Ix(ax + b)n dx = 1 (ax + b)n+2 a2 (n + 2) b ---,,---(ax + b)n+l n =1= -1, -2. a2 (n + 1) , xdx x b 6. = - - -2 log(ax + b). I ax+ b a a 7 I xdx = b 1 I ( b) • (ax + b)2 a2(ax + b) + -;}i og ax + . 369 370 • Appendix: Table of Integrals 8 I xdx = b _ 1 • (ax + b)3 2a2(ax + b)2 a2(ax + b) . 1 (ax+ b)n+3 (ax+ b)n+2 9. x2(ax + b)n dx = - - 2b--'------'-- I a2 n + 3 n + 2 2 b (ax + b) n+ 1 ) + , ni=-I,-2,-3. n+l 2 10. I x dx = ~ (.!..(ax + b)2 - 2b(ax + b) + b2 10g(ax + b)). ax+ b a 2 2 2 11. I x dx 2 =~(ax+ b) - 2blog(ax+ b) _ b ). (ax + b) a ax + b 2 2 12 I x dx = _1(10 (ax + b) + 2b _ b ) • (ax + b) 3 a3 g ax + b 2(ax + b) 2 .
    [Show full text]
  • Antiderivatives Basic Integration Formulas Structural Type Formulas
    Antiderivatives Definition 1 (Antiderivative). If F 0(x) = f(x) we call F an antideriv- ative of f. Definition 2 (Indefinite Integral). If F is an antiderivative of f, then R f(x) dx = F (x) + c is called the (general) Indefinite Integral of f, where c is an arbitrary constant. The indefinite integral of a function represents every possible antideriv- ative, since it has been shown that if two functions have the same de- rivative on an interval then they differ by a constant on that interval. Terminology: When we write R f(x) dx, f(x) is referred to as the in- tegrand. Basic Integration Formulas As with differentiation, there are two types of formulas, formulas for the integrals of specific functions and structural type formulas. Each formula for the derivative of a specific function corresponds to a formula for the derivative of an elementary function. The following table lists integration formulas side by side with the corresponding differentiation formulas. Z xn+1 d xn dx = if n 6= −1 (xn) = nxn−1 n + 1 dx Z d sin x dx = − cos x + c (cos x) = − sin x dx Z d cos x dx = sin x + c (sin x) = cos x dx Z d sec2 x dx = tan x + c (tan x) = sec2 x dx Z d ex dx = ex + c (ex) = ex dx Z 1 d 1 dx = ln x + c (ln x) = x dx x Z d k dx = kx + c (kx) = k dx Structural Type Formulas We may integrate term-by-term: R kf(x) dx = k R f(x) dx 1 2 R f(x) ± g(x) dx = R f(x) dx ± R g(x) dx In plain language, the integral of a constant times a function equals the constant times the derivative of the function and the derivative of a sum or difference is equal to the sum or difference of the derivatives.
    [Show full text]
  • Lecture 15 Multiple Integration
    Lecture 15 Multiple Integration (Relevant section from Stewart, Section 15.1) We now turn to the integration of scalar-valued functions f : Rn R, i.e., f(x ,x , , c ), over → 1 2 · · · n regions in Rn. The need to perform such integrations is common in Physics. For example, we may wish to find: 1. The total charge Q in a region R R3 that is enclosed by a closed surface S, e.g., a spherical ⊂ surface of radius R centered at a point p R3, ∈ 2. The probability of finding an electron in the 1s state of a hydrogen atom within the distance α/a from the nucleus, where α 0 and a is the so-called Bohr radius. 0 ≥ 0 In all cases, the idea of integrating scalar-valued functions of several variables is a natural generalization of the integration of real-valued functions of a single variable, i.e., f : R R over the real line R. → We simply have to keep in mind the “Spirit of Calculus,” where we subdivide the region of interest and perform a summation over the subregions. Double Integrals (Integration in R2) (Relevant sections from Stewart, Section 15.1-2) We begin with the integration of functions of two variables, f(x,y), over regions in the plane R2. Suppose that a function f : R R2 is defined → over a region R R2. ⊂ Example: f(x,y) is the (2D or “areal”) density of a thin plate at (x,y), a measure of the amount of mass per unit area around the point (x,y).
    [Show full text]
  • Integration Rules and Techniques
    Integration Rules and Techniques Antiderivatives of Basic Functions Power Rule (Complete) 8 xn+1 > + C; if n 6= −1 Z <>n + 1 xn dx = > :ln jxj + C; if n = −1 Exponential Functions With base a: Z ax ax dx = + C ln(a) With base e, this becomes: Z ex dx = ex + C If we have base e and a linear function in the exponent, then Z 1 eax+b dx = eax+b + C a Trigonometric Functions Z sin(x) dx = − cos(x) + C Z cos(x) dx = sin(x) + C Z 2 Z sec (x) dx = tan(x) + C csc2(x) dx = − cot(x) + C Z sec(x) tan(x) dx = sec(x) + C Z csc(x) cot(x) dx = − csc(x) + C 1 Inverse Trigonometric Functions Z 1 p dx = arcsin(x) + C 1 − x2 Z 1 p dx = arcsec(x) + C x x2 − 1 Z 1 dx = arctan(x) + C 1 + x2 More generally, Z 1 1 x dx = arctan + C a2 + x2 a a Hyperbolic Functions Z sinh(x) dx = cosh(x) + C Z − csch(x) coth(x) dx = csch(x) + C Z Z cosh(x) dx = sinh(x) + C − sech(x) tanh(x) dx = sech(x) + C Z 2 Z sech (x) dx = tanh(x) + C 2 − csch (x) dx = coth(x) + C Integration Theorems and Techniques u-Substitution If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then Z Z f (g(x)) g0(x) dx = f(u) du If we have a definite integral, then we can either change back to xs at the end and evaluate as usual; alternatively, we can leave the anti-derivative in terms of u, convert the limits of integration to us, and evaluate everything in terms of u without changing back to xs: b g(b) Z Z f (g(x)) g0(x) dx = f(u) du a g(a) Integration by Parts Recall the Product Rule: d du dv [u(x)v(x)] = v(x) + u(x) dx dx dx 2 Integrating both sides and solving for one of the integrals leads to our Integration by Parts formula: Z Z u dv = u v − v du Integration by Parts (which I may abbreviate as IbP or IBP) \undoes" the Product Rule.
    [Show full text]