The diversity and distribution of monodominant species in tropical ecosystems, a comparison of savanna and forest.

Shaoyi Zhang MSc dissertation

Abstract: the monodominance is a geographically extensive ecological phenomenon in tropics. Most of the studies focus on the mechanisms that form monodominance, while it is also important to understand the diversity and distribution of monodominant species. This project reviews the documented monodominant based on published papers and books, a detailed list and a distribution map are produced for mnodominant forest and savanna species.

This project also qualifies the bioclimatic factors in the modomininant species area, and pointed out that savanna dominant species have slightly more stringent requirements for precipitation than forests dominant species, savannas dominant species have harsher requirements for temperature, and forest species’ requirements for temperature are polarized between loose and harsh. Key words: tropics, monodominant, forest, savanna, distribution, diversity

Continent Introduction ...... 5 Mechanisms of monodominance in savannas ...... 8 Monodominance relies on multiple mechanisms ...... 9 Distribution of monodominant species ...... 10 Methods...... 11 Information and data collection ...... 11 Monodominant species information collection ...... 11 Monodominant species morphological information collection...... 11 Monodominant species distribution data collection ...... 12 Distribution habitat information collection ...... 12 Data analysis ...... 13 Distribution data analysis ...... 13 Habitat data analysis ...... 13 Result ...... 13 List of documented monodominant species ...... 13 Morphological information of monodominant species ...... 19 Distribution information of monodominant species ...... 19 Habitat information of monodominant species ...... 22 Precipitation analysis result ...... 22 ...... 26 Temperature analysis result ...... 27 Discussion ...... 32 Distribution and diversity of monodominant species ...... 32 Monodominant species and habitat information ...... 33 Shortcomings of this project ...... 34 Acknowledgements ...... 35 Reference ...... 36 Appendix ...... 42 Table 1 The terms used in searching literature and book ...... 42 Table 2 the websites used in searching species morphological information ...... 43 Table 5 A part of the morphological information of monodominant forest species ...... 44 Table 6 Another part of the morphological information of monodominant forest species ..... 47 Table 7 A part of the morphological information of monodominant forest species ...... 50 Table 8 Another part of the morphological information of monodominant forest species ..... 51 Table 9 The specific information of annual precipitation (mm) in the areas where monodominant forest species grow ...... 52 Table 10 The specific information of annual precipitation (mm) in the areas where monodominant savanna species grow ...... 55 Table 11 The specific information of annual temperature(°C) in the areas where monodominant forest species grow ...... 56 Table 12 The specific information of annual temperature(°C) in the areas where monodominant savanna species grow ...... 59 Table 13 The specific information of precipitation seasonality in the areas where monodominant forest species grow ...... 60 Table 14 The specific information of precipitation seasonality in the areas where monodominant savanna species grow ...... 63 Table 15 The specific information of temperature seasonality in the areas where monodominant forest species grow ...... 64 Table 16 The specific information of temperature seasonality in the areas where monodominant savanna species grow ...... 67

Introduction

Monodominance, originally named single-dominance, is an ecological condition across different regions in which more than 60% tree canopy occupied by a single species tree (Connell, J. H. & Lowman, 1989). The earliest research on monodominant species may be traced back to temperate coniferous forest. However,across the tropics are a diversity of ecosystems where just a single species dominates. Early records of monodominant species in the tropics are traced back to the discovery of forests dominated by two species, Eperua purpurea and Eperua leucantha, in Upper Rio Negro Basin in Guyana (Wallace,1853; Spruce,1854). Since the 1800’s numerous monodominant species have been recorded, but questions remain as to how in tropical regions known for their numerous ecosystems can be dominated by single species. The tropics are the areas around the equator with delimited in latitude between 23°26′11.8″ N and 23°26′11.8″S that constitute about 40% of the Earth’s surface. Due to receiving more direct sunlight than other regions of the Earth, the tropics are usually hot and humid (Lockwood, J.G., 1978). There is an estimated minimum of least 7,700 species of and 4,400 species of animals living in the tropics (Brown, J.H., 2014) as such the tropics are considered areas rich in biodiversity (Anon, 2008). There are various biomes in tropics, including desert, forest, wetland, grassland, etc, however, monodominance can be found in most of these biomes. For example, Rutherford(1982) mentioned two monodominant species(Combretum apiculatum and Combretum zeyheri, both Combretaceae) in Namibian savannas, he also pointed out a monodominant species (Burkea Africana, Fabaceae) in Botswana savannas. Moreover, Gris (2019) found a monodominant pantano formed by Erythrina fusca (Fabaceae) in Brazil. Even in rainforests, monodominance does not appear to be a rarity, and Richard, writing in the The Tropical Rainforest (Richard, 1952) listed at least eight monodominant rainforests distributed across the Neotropics, Australasia, Malesia and Africa. Understanding the extent of monodominant ecosystems remains unclear, and that is the aim of my research project to give insight into the commonality of the mechanisms enabling monodominance. Mechanisms of monodominance in forests In forests, monodominance, is defined as where more than 60% of the tree canopy is comprised of a single species tree (Hart, 1985; Connell and Lowman 1989; Hart & Murphy 1989). Ecological mechanisms maintaining monodominance have been the subject of debate for decades. Some studies show that most monodominant species seem to have same traits or characteristics such as shade-tolerant seedlings, mast flowering, poor dispersal seed. Several studies pointed out that there is no large-scale disturbance has occurred in monodominant forest, which means a forest without exogenous disturbance may be a prerequisite for the monodominance formation (Connell and Lowman 1989; Hart, 1985; Hart & Murphy 1989; Simon et al., 2009). The lack of exogenous disturbance may reduce the canopy gaps between forests and affect the abundance of non-shadow- tolerant species. Richards (1996), Whitmore (1998) and Torti et al. (2001) pointed out that the understory light conditions of some monodominant forest are darker than that of adjacent mixed-forests, suggesting that seedlings of monodominant forest species have good shade tolerance. Hence, seedlings of monodominant species with strong germination viability and seedling growth enable a species to continuously occupy a forest. However, this is not absolute, Julbernardia seretii (Fabaceae), an African monodominant species, is shade intolerant but also can continually form monodominance (Torti & Coley, 1999; Torti et al., 2001). Monodominant species may also have some mechanisms enabling their competitive abilities related to occupying space and acquiring nutrients. Torti et al. (2001) found that a Gilbertiodendron dewevrei (Fabaceae)-forest with slow leaf litter decomposition. Slow rates of leaf litter decomposition may negatively influence the survival of other species through soil nutrient cycling. Similarly, the seeds of monodominant species are large and may have the ability to establish in deep leaf litter (Torti et al., 2001; Peh et al. 2011). Although, large seeds may not be conducive to dispersal, they may germinate readily close to parent . These parent trees interfere with the growth of seedlings of other non-dominant plants by releasing growth inhibitors or the forming a physical isolation layer by the leaf litter (Swaine & Whitmore, 1988; Carson et al., 1990; Hans & David, 2001; Metcalfe & Grubb, 2003). Some monodominant species will not only form large seeds, but also form mast fruits to increase the satiety of the predator, thereby increasing the possibility that the seed falling near the parent trees (Rankin, 1978; Boucher, 1981; Nascimento et al., 1997; Turner, 2001). In this way, some monodominant species can continuously expand its territory, slowly but effectively (Hart, 1985; Leigh, 1994). Studies have also found that in monodominant forests, soils have higher availability of Mg than Ca (Haridasan, 1992; Nascimento, 1997). Van der Velden et al. (2014) recorded that Parashorea chinensis (accepted name: Shorea curtisii Dyer ex King, ), a species can tolerate high Mn, form a monodominant forest in south-west China, while other species have slight Mn poisoning (Barker & Pilbeam, 2007; Hue et al., 2001). However, the known monodominant species are rooted in various types of soil (Itoh, A., 1995; Marimon, 2016; Hall et al 2019), so it is impossible to determine whether the soil type is one of the mechanisms of monodominance. Mechanisms related to root symbioses have also been suggested. Most plants in the tropics form Arbuscular Mycorrhiza (VAM), but many famous monodominant species form Ectomycorrhizae (EM) that may help species maintaining monodominance that the hyphal network helps the to take up water and minerals which enhance the competitiveness of plants in nutrition. (Janos, 1983; Itoh, 1995; Richards, 1996). Some studies suggest EM is superior to VAM, especially in improving the survival rate of seedlings through nutrients and water absorption. Therefore, EM was once considered as one of the mechanisms to help species maintain monodominance (Kristina et al., 1993.; Nara, 2006; McGuire 2007; Tovar et al 2019). But, some studies also found that the formation of monodominance is not directly related to EM, because some species in Manilkara spp.(Sapotaceae) that can form EM do not maintain any level of dominance, besides, some species can form monodominance with forming VAM (Janzen, 1974; Torti et al., 1997; Torti & Coley, 1999; Jordan et al., 2006; Corrales et al., 2016). Recent studies pointed out that coppices may be linked to some monodominant species (Henkel, 2003; Woolley et al., 2008; Fonty et al., 2011; Gaddis et al., 2014). In Amazonian forests, this phenomenon that buds will born at the base of stem or root of the original tree can help species stay in the same position for a long time under fierce competition, thereby continuing their dominance (ter Steege et al., 2019). In addition, there are some special condition that can also form a monodominant forest. Steege (1994) pointed out that some monodominant forests, such as Prioria copaifera (Fabaceae) swamp forests in Panama and Mora excelsa (Fabaceae) forests along the rivers in Guyana, may formed due to seasonal flooding.

Mechanisms of monodominance in savannas Research into monodominant species in savannas is not as detailed as in forests. Kelly and Walker (1976) determined that species with woody plant biomass > 50% are monodominant species, while there are also some studies determined monodominant species that at least of the half of the trees ≥10cm diameter belonging to one species (Mapaure, 1994; White & Unesco, 1983.). Because sparse grassland is a relatively open ecological community, the formation of monodominant savannas seems to be more susceptible to external factors that fire, human disturbance, animals (Scholes & Archer, 1997; Ribeiro 1999; Ribeiro & Brown 2002; Ribeiro & Brown, 2006; Pennington et al., 2018). In savannas, environmental factors are one of the main factors affecting the distribution of monodominant species. Mapaure (2014) described the distribution of Colophospermum mopane (Fabaceae) in southern Africa, in Limpopo valley, C. mopane tree will form monodominant savanna with wetter and deep soil, while in some regions with sand soils and poor nutrient, it may only grow as shrubs. Werkmeister (2016) pointed out that mean annual precipitation and annual temperature are important in shaping the savannas’ modern distribution, which means that the formation of monodominant savannas requires suitable temperature and precipitation. The open canopies allow the growth of grassy ground layer, which provide fuel for fires and food for herbivores (Solofondranohatra et al., 2018). These external interventions will also greatly affect the formation of monodominant savannas (Hoffmann et al., 2003; Kull, 2002). Solofondranohatra et al.(2018) shows that monodominant savanna species in Madagascar maintain monodominant savanna with a series of anti-combustion mechanisms. For example, the bark of these species is twice as thick as the species in the adjacent forest that thick bark can reduce the damage of the fires to the tree. The thick bark can also ensure the survival of the seedlings from herbivores. Kuhnholtz- Lordat (1938) shows that some species, such as Uapaca bojeri (Phyllanthaceae), have retardant leaves and epicormic regeneration that can help trees survival and recovery after fires. Savannas are denser with animals, so trees are more likely to be affected by animals, so species with good biological defense capabilities may maintain monodominance. For example, Gandiwa (2011) shows that elephant activity can change the structure and composition of savannas habitats in Zimbabwe and that this animal activity may influence monodominance. High-density elephant activities have created gaps in the ecological niche, but Androstachys johnsoni (Picrodendraceae) can form the dense thickets that give plants an advantage in land competition. Some savannas re the continuum connecting grassland and tropical forest, was considered as the degraded forests (Faramalala, 1995; Dorr, 1998; House et al., 2001) Therefore, some monodominant savanna may be forest degradation, for example, Aron(2014) reported that a Codia mackeeana (Cunoniaceae)-savanna in New Caledonia has a tendency recovering to mixed forests.

Monodominance relies on multiple mechanisms The success of monodominant species does not rely on a single mechanism, rather, different combinations of mechanisms are likely to enable monodominace(Henkel, 2003). Peh et al. (2011) shows a new framework to analyze the classical monodominance pathways of forest species. In the framework, one factor will change the environment in favor of another factor forming a closed loop where multiple factors work together to form monodominance. For example, Dicymbe corymbose (Fabaceae), a monodominant forest species, has more mentioned above characters and traits, EM helps it gain an advantage in soil moisture and nutrient competition, large seeds and slow leaf litter make seedlings successfully plant on ground, then greatly grow under the shade of parent trees.

Distribution of monodominant species With the increasing of the number of documented monodominant species, some scientists have found that the distribution of monodominant species seems to have some regularity. Whitermore (1984) pointed out that most of the monodominant species in the Asian tropics are Dipterocarpaceae, however, well-known monodominant species in the Neotropics and the African are leguminous family, such as G. dewevrei in Africa, M, excelsa in Trinidad, and Peltogyne gracilipes (Fabaceae) in Brazil (Conway,1992; Connell, J.H. & Lowman, M.D. 1989.; Hart et al. 1989). Basset (2012) pointed out that monodominant species in Brazil are distributed around the Amazonian Craton. However, the number of newly discovered monodominant species is rising, there is a lack of information on the distribution of more monodominant species. Moreover, the current research on the monodominant forest and savanna species seems to be separated, so it is necessary to link monodominance in different tropical ecosystems to seek more possible mechanisms maintaining monodominance. Finally, in different tropical systems, the understanding of climate space monodominant species occupying is also needed. The aims of this project are: 1) Review documented examples of monodominant forest and savanna species from the literature and relate these to and distribution information based on published papers and books. 2) Map the distribution of tropical monodominant species to determine whether monodomiance is geographically clustered. 3) Quantify the climates occupied by monodominant forest species and monodominant savanna species and interpret this information in the context tropical environments.

Methods

Information and data collection Monodominant species information collection The collection of monodominant species is not only the basis of this experiment, but also the understanding of the diversity of monodominant species. In this part, the author did a survey about related literature and books of monodominant species based on

‘Google Scholar’ (https://scholar.google.com/), ‘Journals, primary sources, books’ (JSTOR, https://www-jstor-org.ezproxy.is.ed.ac.uk) and related websites. In order to increase the credibility of the experiment, a list containing as more as possible of the documented monodominant species have been produced. The related terms have been searched on above websites (the information about the terms used refer to Appendix, Table 1). The information about plant’s label and publication also be collected from original literature. In order to understand the distribution of monodominant species, the distribution information has been mainly classified to country level. Regarding to plant taxonomy information, the original name in literature of monodominant species has been recorded and then been checked on the ‘Plants of the World’ (http://www.plantsoftheworldonline.org/) whether it was accepted, if not, the synonym had be record.

Monodominant species morphological information collection To understand the relationship between environmental factors and traits or characters in forest and savanna species, it is necessary to collect the traits and characteristics of plants for comparative analyses. Most morphological information was collected on websites (the information about the websites used in this part refer to (Appendix Table 2). Related information reported in original literature also be collected. The main data collected includes leaf phenology; maximum height (m) of the tree; type of leaf; flowering time; seeds dispersal; pollination; soil associations. The leaf phenology is related to the sensitivity of plants to climate changes, especially temperature changes (Seyednasrollah, 2008). Besides, most species ripen fruit before the rainy season, so the flowering time of the plant is also related to temperature and precipitation seasonality (Kushwaha, 2011). The maximum height of plants can show the competitiveness of plants to sunlight (Kelly et al., 2009). Also, the characteristics of the leaves also affect the photosynthesis rate of the plant and the formation of shade (Ovington, 1956).

Monodominant species distribution data collection The distribution information of monodominant cannot be directly collected. Therefore, the data downloaded from ‘Global Biodiversity Information Facility’ (GBIF, https://www.gbif.org/) and be processed later, then can be approximately regarded as the distribution data of monodominant species. Then using Microsoft Excel (version Microsoft 365) to convert data to readable file. The species distribution data downloaded now are not necessarily the distribution data of monodominant species, then, these data need to be cleaned up in Excel before next proceeding. Some single distribution data, data in the ocean, and laboratory observation data should be manually cleaned up. In addition, as this study aim to understand the diversity and distribution of tropical monodominant species, the data on the distribution of species north of 25°N latitude or south of 25°S latitude are cleaned to reduce the influence of species distribution data in analysis part

Distribution habitat information collection

Bioclimatic data via ‘Worldclim’(version 2) (https://www.worldclim.org/data/worldclim21.html) at a spatial resolutions of 30 seconds (~1 km2) were compiled for each species for mean annual temperature and mean annual precipitation, two of the main environmental factors that temperature and precipitation affect plant physiology, such as respiration and photosynthesis (Moles, 2014). Therefore, in this part, relevant information about annual average temperature(BIO 1) and annual average precipitation(BIO 12) that the average for the years 1970-2000 has been collected. Precipitation seasonality can well show the changes in the total monthly precipitation in the location of the dominant species (O’Donnell & Ignizio, 2012). The parts of the tropics are affected by the monsoon, so seasonal changes are obvious in these regions, while plants are more sensitive to seasonal changes of temperature and precipitation (Paruelo & Lauenroth, 1996), so the data of temperature seasonality(BIO 4) and precipitation seasonality (Coefficient of Variation, CV) (BIO 15) have been collected, among them, the standard deviation of temperature seasonality is x100.

Data analysis Distribution data analysis In the study, the distribution of monodominant forest species and savannas species were mapped using ArcGIS (version 10.2), WGS1984 system downloaded from ‘OpenResty’(https://openresty.org/cn/ ) is used make the world base map consistent with the raster data downloaded from Worldclim. To understand the changes in annual average temperature, annual average precipitation, seasonal precipitation and seasonal temperature of the entire tropical region, distribution maps for four types of environmental information have also been produced, which can be found in the Appendix Table 5 - 8.

Habitat data analysis Through RStudio (RStudio 1.3) and R (R version 4.0.2) using species distribution data and bioclimatic data related to annual average temperature, annual average precipitation, temperature seasonality and precipitation seasonality the environment of monodominant species was calculated. The downloaded occurrence records and enivoronmental data was used to summarise species geography and environments with data visualization carried out in Rstudio. In order to keep the data at normal distribution, a log 2 transformation is performed on average precipitation, precipitation seasonality and temperature seasonality, then boxplots of the four climatic variations across the two biomes were made with packages ‘readr’, ‘raster’, ‘ggplot2’, ‘RColorBrewer’, ‘reshape2’ and ‘tidyverse’ to visualize data.

Result

List of documented monodominant species In this project, 69 species were listed as monodominant and 5 monodominant genera. Among the monodominant species, 58 species form monodominant forests, while 11 species form monodominant savannas. Table 3 shows the information about the monodominant forest species. These 58 species belong to 22 families, among them, 24 species belong to Fabaceae, 5 species belong to Dipterocarpaceae, 5 species belong to Table 1 The list of monodominant forest species and genera Region Country (ies) Plant Family Species Reference Australia Australia Acacia shirleyi Maiden Prior et al., 2007. Australia Australia Fabaceae Adinandra dumosa Jack Russell-Smith, 2010 Africa Zambia Fabaceae Allosyncarpia ternata S.T.Blake Basset et al., 2014. Africa Zaire Fabaceae Androstachys johnsonii Prain Connell & Lowman, 1989. Africa Liberia(Bomi hillds) Fabaceae thurifera (Blanco) Blume Connell & Lowman, 1993. Africa Cameroon, Zaire Fabaceae Arillastrum gummiferum (Brongn. & Gris) Pancher ex Baill. Conway, 1992 Africa Gabon Burseraceae Aspidosperma excelsum Benth. DOUCET et al., 1996 Africa Uganda Rhamnaceae Aucoumea klaineana Pierre Eggeling, 1947. Africa Zimbabwe Picrodendraceae Backhousia bancroftii F.M.Bailey & F.Muell. Gandiwa et al., 2011. Africa Nigeria Fabaceae Brachystegia laurentii (De Wild.) Louis ex J.Léonard Gerard, 1960

Africa Uganda(Budongo) Fabaceae Brosimum rubescens Taub. Hart et al., 1989. Africa Fabaceae Callitris columellaris F.Muell. Maisels, 2004. Africa Uganda Chrysobalanaceae Calophyllum euryphyllum Lauterb. Richards, 1958

Africa Nigeria Urticaceae Castanopsis acuminatissima (Blume) A.DC. Ross, R., 1954. Africa Fabaceae Cecropia obtusifolia Bertol. Swaine et al., 1981 Australasia New Caledonia Cunoniaceae Codia mackeeana H.C.Hopkins & Fogliani Anon, 2014. Australasia New Guinea Fagaceae Cynometra alexandri C.H.Wright Paijmans, 1976. Australasia New Guinea Casuarinaceae Dacryodes excelsa Vahl Paijmans, 1977. Australasia Papua New Guinea Calophyllaceae Dicymbe corymbosa Spruce ex Benth. Prebble et al., 2010 Australasia New Guinea Myrtaceae Dimorphandra conjugata (Splitg.) Sandwith Richards, 1952 Australasia New Guinea Tetramelaceae Dryobalanops aromatica C.F.Gaertn. Richards, 1953 Australasia New Guinea Fabaceae Eperua falcata Aubl. Richards, 1956 Australasia New Guinea Dipterocarpaceae Eperua purpurea Benth. Whitmore, 1984 Australia Australia Cupressaceae Eucalyptus deglupta Blume Prior et al., 2008. Austrlalia Australia Myrtaceae Eusideroxylon zwageri Teijsm. & Binn. Connell & Lowman, 1990. East Africa Seychelles(islands) Arecaceae Gilbertiodendron dewevrei (De Wild.) J.Léonard Edwards et al., 2015. East Asia Himalayas Fagaceae Gymnostoma papuanum (S.Moore) L.A.S.Johnson Quazi et al., 2003 East Asia China Dipterocarpaceae Intsia bijuga (Colebr.) Kuntze van der Velden et al., 2014. Malesia Indonesia Altingiaceae Julbernardia pellegriniana Troupin Richards, 1957 Malesia Sabah Dipterocarpaceae Julbernardia seretii (De Wild.) Troupin Richards, 1996 Malesia Indonesia Lauraceae Liquidambar excelsa (Noronha) Oken Richards, 1998 Neotropics Costa Rica Fabaceae Lodoicea maldivica (J.F.Gmel.) Pers. Basset et al., 2012. Neotropics Brazil Burseraceae Maesopsis eminii Engl. Basset et al., 2013. Neotropics French Guiana Fabaceae Metrosideros kermadecensis W.R.B.Oliv. Basset et al., 2015. Neotropics Costa Rica(La Selva) Fabaceae Mora excelsa Benth. Boucher, D.H. 1981. Neotropics Costa Rica(La Selva) Fabaceae Mora gonggrijpii (Kleinhoonte) Sandwith Connell & Lowman, 1991. Neotropics Guyana(Moraballi) Fabaceae Mora oleifera (Triana ex Hemsl.) Ducke Connell & Lowman, 1992. Neotropics Panama Juglandaceae Musanga cecropioides R.Br. ex Tedlie Corrales et al., 2016. Neotropics Guyana(Moraballi) Fabaceae Nothofagus aequilateralis (Baum.-Bod.) Steenis Holdridge et al., 1971 Neotropics Brazil Moraceae Octomeles sumatrana Miq. Marimon et al., 2001. Neotropics Brazil Burseraceae Oreomunnea mexicana (Standl.) J.-F.Leroy Marimon et al., 2016. Neotropics México Picrodendraceae Parashorea malaanonan (Blanco) Merr. Martijena et al., 1998. Neotropics Maraca Island, Guyana Fabaceae Parinari excelsa Sabine Nascimento & Proctor, 1997. Neotropics Panama Urticaceae Peltogyne gracilipes Ducke Richards, 1952 Neotropics Guyana Fabaceae Pentaclethra macroloba (Willd.) Kuntze Richards, 1955 Neotropics Guyana Apocynaceae Piranhea mexicana (Standl.) Radcl.-Sm. Richards, 1997 Neotropics Puerto Rico Burseraceae Poeciloneuron indicum Bedd. Richards, 1999 Neotropics Upper Rio Negro Basin Fabaceae Prioria copaifera Griseb. Ter Steege et al., 2019 Neotropics Guyana Fabaceae Protium excelsior Byng & Christenh. Torti et al., 1997 Neotropics Trinidad(Mayaro) Fabaceae Protium pilosissimum Engl. Torti et al., 1998 North America Guyana Fabaceae Pterocarpus antunesii Harms Henkel et al., 2017. Pacific New Caledonia Myrtaceae Quercus oblongata D.Don Demenois et al., 2017 Pacific Hawaiian Islands Myrtaceae Quercus oleoides Schltdl. & Cham. Mueller-Dombois D. 2000. Pacific New Caledonia Nothofagaceae Shorea curtisii Dyer ex King Read et al., 1995. SE Asia Singapore Pentaphylacaceae Shorea wangtianshuea Y.K.Yang & J.K.Wu Burslem et al., 1994. SE Asia Malaysia(Malaya) Dipterocarpaceae Spirotropis longifolia (DC.) Baill. Itoh, 1995. Southeast Asia Malaysia(Sarawak) Dipterocarpaceae gentii Hutch. & Greenway Burslem et al., 1994. Southeast Asia SW Indian Pentaphylacaceae Tetraberlinia tubmaniana J.Léonard Hart et al., 1989.

Panama, West Africa Malvaceae ochroma spp. Richards, 1952 Panama, Malaysia, Richards, 1952 Africa Cannabaceae trema spp. Malaysia, west Africa Euphorbiaceae macaranga spp. Richards, 1952 southern Asia,south Richards, 1952 America Euphorbiaceae mallotus spp. New Caledonia Nothofagaceae mothofagus spp. Read et al., 2000 Myrtaceae, 4 species belong to Burseraceae. These 58 monodominant forest species grow in 30 different countries, while 5 species grow in Guyana and 5 species in New Guinea. A total of 20 monodominant forest species have been reported to form monodominant species forests in Neotropics, while the number of documented monodominant forest species in Africa and Asia are 14 and 9 respectively, besides, there are 15 species are reported to maintain monodominance in Australasia and Pacific. Other detailed information can be seen in Table 3. It should be noted that although Quercus oblongata (Fabaceae) be reported to maintain tropical monodominant rainforest, but it be found in Nepal, so it is only recorded in the list without research on related ecological factors. On the other hand, 4 of the monodominant genera are reported in ‘The tropical forest’ published by Richard in 1952, they are Ochroma spp.(Malvaceae), Trema spp.(Cannabaceae), Macaranga spp.( Euphorbiaceae), Mallotus spp.(Euphorbiaceae), while these genera extensively form monodominance in Africa, Asia and Pacific. The remain monodominance genus is Nothofagus spp.(Nothofagaceae), reported by Read et al.(200), which form dominance in New Caledonia. Because the information about these monodominant genera is relatively reliable, it is difficult to determine which species formed monodominance or all the species of the genera can for monodominance. Here the author did not any analysis on them but just recorded in the list. Table 4 shows the information about the monodominant savanna species. The number of documented monodominant savanna species is 11 that is less much than in forest. Among them, 3 species belong to Fabaceae, 2 species belong to Combretaceae and 2 species belong to Bignoniaceae, other taxonomy information can be seen in table 2. Most of the monodominant savanna species are in Africa, of which 4 species are in Madagascar, while 5 are in central and southern Africa, and the remaining 2 species are in Brazil. Table 2 The list of monodominant savanna species Region Country (ies) Plant Family Species Reference Africa Zimbabwe Fabaceae Baikiaea plurijuga Harms Gambiza et al., 2005. Africa Angola Fabaceae Burkea africana Hook. Mapaure, 1994. Africa Botswana Fabaceae Colophospermum mopane(J.Kirk ex Benth.) J.Leonard Rutherford, 1982 Africa Namibia Combretaceae Combretum apiculatum Sond. Rutherford, 1983 Africa Namibia Combretaceae Combretum zeyheri Sond. Rutherford, 1984 Madagascar Madagascar Asteropeiaceae Asteropeia densiflora Baker Solofondranohatra et al., 2018. Madagascar Madagascar Sarcolaenaceae Sarcolaena oblongifolia F.Gérard Solofondranohatra et al., 2018. Madagascar Madagascar Schizolaena Schizolaena microphylla H.Perrier Solofondranohatra et al., 2018. Madagascar Madagascar Phyllanthaceae Tabebuia aurea(Silva Manso) Benth. & Hook.f. ex S.Moore Solofondranohatra et al., 2018. Neotropics Brazil Bignoniaceae Tabebuia ochracea(Cham.) Standl. Ribeiro & Brown, 2002 Neotropics Brazil Bignoniaceae Uapaca bojeri Baill. Ribeiro & Brown., 2006.

Morphological information of monodominant species There is a shortage of information about this part, Appecdix Table 5-8 shows the detalied information of forest species and savanna species respectively. The main information collected is the maximum height (m), the leaf phenology and some of the soil type monodominant species grow. The information about mast flowering and soil associations mainly refers to descriptions associated with Peh et al. (2011) and Hart et al. (1989). There are 52 kinds of information obtained about leaf phenology are be collected, most of which are evergreen. However, the 9 species are deciduous or semi- deciduous, 6 of which are monodominant savanna species. The collection of the maximum height information includes 58 species, ranging from 6 (Liquidambar excelsa Oken) to 80m (Shorea wangtianshuea Y.K.Yang & J.K.Wu). The average max height of these 58 species is 36.03m, among them the average max height of monodominant savanna species is 19.6m, compared 38.6m for monodominant forest species. It is worth mentioning that in the collected soil information for the colonization of 17 species, the 6 monodominant species grow in sandy soil or acid soil.

Distribution information of monodominant species The distribution map made using the distribution information downloaded on GBIF is shown below (Figure 1 and 2). Figure 1 shows the distribution of monodominant forest species. The three densely distributed areas are the Neotropics and America, the coastal areas of several countries near the Atlantic Ocean in Africa and the central African region, and the islands of Southeast Asia and the surrounding archipelago and the northern part of Australia. In Neotropics and America, there are 19 species grow in neotropics and 1 species in southern U.S., these 20 species belong to 7 families, among them, 12 species belong to Fabaceae that mainly distributed in Costa Rica, Guyana and Trinidad; 3 species belong to Burseraceae, 2 of which distributed in Brazil, another grow in Puerto Rico. While, in Africa, there are 7 families and 14 species, among them, 8 species belong to Fabaceae that mainly distributed in central African counties. In Asia and Australia, there are 24 species belong to 13 families, 5 species belong to Dipterocarpaceae, 4 species belong to Fabaceae and 4 species belong to Myrtaceae. Figure 1 The distribution map of monodominant forest species Figure 2 The distribution map of monodominant forest species Besides, Myrtaceae species are mainly distributed on the pacific islands, while Dipterocarpaceae and Pentaphylacaceae mainly distributed in Asia. Figure 2 shows the distribution of monodominant savanna species. These species mainly distributed in the Neotropics and Africa, while 9 species grow in Africa and Madagascar and 2 species grow in Brazil. In Africa and Madagascar, B. africana (Fabaceae) mainly distributed in Nigeria and Ghana and Togo, while other 2 Fabaceae and 2 Combretaceae mainly distributed in southern African countries. Although the 4 monodominant species in Madagascar come from 4 different family, their distribution areas overlap in map.

Habitat information of monodominant species Figure 3-10 shows the result produced in RStudio and specific data refer to Appendix Table 9-16. It should be noted that although Metrosideros kermadecensis (Myrtaceae) just has only one distribution in tropics, it conforms to the area recorded in the original literature. Therefore, the average, maximum, and minimum of each data type for this species are the same.

Precipitation analysis result The mean annual precipitation in tropical areas varies according to different climate types, among them, the mean annual precipitation of tropical rain forest is above 2000mm. In the results, the average annual precipitation of 23 forest species are lower than this level, among them the mean annual precipitation of 5 species are less than 1000 mm, while there are 7 species with more than 3000mm precipitation per year, 4 of which belong to Fabaceae, more details can refer to Appedix Table 9. The mean annual precipitation of species in the Neotropics and Australia are generally higher than that of African species. Besides, in Figure 3, the forest species show a similar range of annual precipitation, among them, Brosimum rubescens (Moraceae) has a big gap between minimum and maximum. In contrast, the mean annual precipitation of monodominant savanna species differs from 490 to 1800 mm, which is obviously lower than the data of forest species, among them Fabaceae and Combretaceae form monodominant savannas in Africa with less Figure 3 The boxplot of annual precipitation for monodominant forest species annual precipitation. C. mopane (Fabaceae) is with lowest mean annual precipitation (490mm), while Tabebuia ochracea (Bignoniaceae) is with highest mean annual precipitation (1734mm). By the way, C. mophane also is the species growing in the area with the lowest minimum precipitation( 102mm), compared with the same family species, T. ochracea (Bignoniaceae) grows in the area with highest maximum precipitation (3224mm), more detailed information can refer to Appecdix Table 10. In addition, the savanna species generally have a poorer dispersion, most of them have a positive skew in boxplot (Figure 4).

Figure 4 The boxplot of annual precipitation for monodominant savanna species

For monodominant forest species (Appendix Table 11), the mean precipitation seasonality are various between 10 and 130, while there are just 3 species grow in the area with more than 100 precipitation seasonality, among them Poeciloneuron indicum (Pentaphylacaceae) grow in the area with highest mean precipitation (130), by the contrast, the mean precipitation seasonality of the area precipitation of Calophyllum euryphyllum (Calophyllaceae) can be as low as 14.5. Interestingly, most of the Fabaceae family species grow in the area with mean precipitation seasonality between 40% and 60%. Moreover, the minimum precipitation seasonality in the area where most species grow are less than 100, only Allosyncarpia ternata (Myrtaceae) and P. indicum are with 104 and 122 respectively. The maximum precipitation seasonality of the growing area of monodominant forest species can be as high as 155 (Anisoptera thurifera, Dipterocarpaceae). However, the boxplot of forest species (Figure 5) shows a two-level result that 15 species have a wide range and a symmetrical distribution, while 14 species are retricted in the climatic space and have a positive skew. For monodominant savanna species (Appendix Table 12), the mean precipitation seasonality of all species growing areas are higher than 50, and the highest is the area Baikiaea plurijuga (Fabaceae) growing with 108, while two Bignoniaceae species, T. ochracea and Tabebuia aurea, are growing in the area with 62.9 and 98.7, which are lowest in monodominant savanna species. Also, the minimum precipitation seasonality of these two Bignoniaceae species are lowest with 20 and 24. The minimum precipitation seasonality of all savanna species growing areas are below 100, compared with that almost all species grow in the area with maximum precipitation seasonality more than 100, the only exception is T. ochracea with 96. The boxplot (Figure 6) shows that savanna species have a poor dispersion in temperature, while the species in Brazil and Africa continent have a positive skew. Figure 5 The boxplot of precipitation seasonality for monodominant forest species Figure 6 The boxplot of precipitation seasonality for monodominant savanna species

Temperature analysis result The annual temperature in the areas where monodominant species grow are generally higher than 20°C, which is in line with the climate type of tropical regions. For monodominant forest species (Appendix Table 13), Oreomunnea mexicana (Juglandaceae), which maintain monodominance in Panama, is the only species grow in the area with mean annual temperature lower than 20°C. The minimum annual temperature in the colonization area of monodominant species forest species is as low as 8.6°C (Protium excelsior, Chrysobalanaceae), in addition, there are a total of 25 species grow in areas where the minimum annual temperature are lower than 20°C. The maximum annual temperature of all forest species colonization areas is above 20 °C, and the maximum annual temperature of Parinari excelsa (Chrysobalanaceae) colonization area can be as high as 29.6 °C. In boxplot (Figure 7), there are many Figure 7 The boxplot of annual temperature for monodominant forest species outliers, in addition, most of the species are narrowed in the annual temperature, the difference in some family, such as Fabaceae and Burseraceae are not so significant. For monodominant savanna species (Appendix Table 14), the mean annual temperature in the colonization area of most species are higher than 20°C, except the four species grow in Madagascar with all about 17°C. The minimum annual temperature in the colonization area of all monodominant savanna species are below 20°C, among them, T. aurea grow in the region with minimum annual temperature just 6.6°C. Except Schizolaena microphylla (Schizolaena), most species grow in the area with more than 20°C in maximum annual temperature. The boxplot (Figure 8) of savanna species is narrowed in the annual temperature, the difference between B. Africana and B. plurijuga is siginicant (both Fabaceae). Figure 8 The boxplot of annual temperature for monodominant savanna speciesa

Temperature seasonality show the changes in average annual temperature from 1970 to 2000. For forest species, the mean temperature seasonality differs from 276 to 3894, while the mean temperature seasonality of species in Australasia and African is generally higher than species in Neotropics (Appendix Table 15). There are 20 species grow in the area with more than 1000 mean temperature seasonality, while there is a large gap between Intsia bijuga (Fabaceae) and Quercus oleoides(Fabaceae) that most of these species grow in the area close to Pacific. There are only 11 species grow in the area with more than 2000 minimum temperature seasonality, 4 of which belong to Myrtaceae, however, I. bijuga grows in the area with the lowest minimum temperature seasonality(107). By contrast, two thirds species grow in the area with more than 1000 maximum temperature seasonality, among them, the maximum temperature seasonality of Callitris columellaris (Cupressaceae) can be as high as 6207. The boxplot (Figure 9) shows that there are 13 species with wide range in temperature seasonality, while the others are more restricted and have a positive skew. For savanna species, the mean temperature seasonality of all species is more than 1000, while the data of African species are generally higher than the Brazilian species, in Africa, the mean temperature seasonality of species on the Madagascar is higher than the mean temperature seasonality of species on the African continent (Appendix Table 16). Two Bignoniaceae monodominant savanna species, T. ochracea and T. aurea, growing in brazil are also with lowest minimum temperature seasonality(262 and 333 respecitively). Regarding to maximum temperature seasonality for monodominant savanna species, except for the four savanna species that distributed in Madagascar, the maximum temperature seasonality of other species is higher than 3000, among them, the maximum temperature seasonality of two Combretaceae species reach 4757. The boxplot (Figure 10) shows a similar pattern with the boxplot of savanna species in annual temperature.

Figure 9 The boxplot of temperature seasonality for monodominant forest species Figure 10 The boxplot of temperature seasonality for monodominant savanna species

Discussion

Distribution and diversity of monodominant species Based on the literature review and their geographic data monodominant species are concentrated in Neotropics, Africa, Australia and Pacific islands (Figure 1-2). With monodominant forest species, my results support Whitemore (1984) species of the Dipterocarpaceae are mainly distributed in Asia, while species in Fabaceae are mainly distributed Neotropics and Africa, and these biogeographic distributions are mirrored in the monodominant species. All four Myrtaceae species found as monodominant grow in either Australasia or the Pacific islands. Generally, the distribution of plants overlaps with the monodominant ecosystems reported in the original literature, but they also distribute in other area with potential extent of monodominance formation, such as Acacia shirleyi (Fabaceae), a species reported form monodminance in Queensland of Australis, also grow in the neighbor regions, while these two regions are at same range of latitude, so it may also form monodominance. Also, Lodoicea maldivica (Arecaceae), form monodominance in Seychelles, may be possible to form modominance in Madagascar that these two islands have climate condition. However, there is no monodominance be reported in these regions yet, so This may be due to other factors, such as competition with non- monodominant species. Besides, in the where multiple species overlap on the map, it is also possible to form monodominance, such as Aucoumea klaineana (Burseraceae) form monodominance in Gabon where also distributed other three monodominance species. Another example is the four savanna species in Madagascar, that all they distributed in central Madagascar but are reported to form monodminance. In conclusion, the map mainly shows the distribution of the species can maintain monodominance but not the distribution of monodominant forest.

Monodominant species and habitat information Monodominant forests appear to be found where mean annual precipitation ranges from 697 to 3993 mm and mean annual temperature from 14.2 to 28°C. Across savannas, monodominant form where mean annual precipitation ranges from 490 to 1735 mm and mean annual temperature ranges from 17 to 26.6°C, which means that the savanna species occupy a smaller climatic scale in temperature and prrcipitation, but this may also be caused by the fact that the savanna species mainly gather in Africa and Brazil. In Asian forests, although the five Dipterocarpaceae grow in different parts of southeast Asia there is a wide range of precipitation seasonality (24 to 91) and temperature seasonality (340 to 3886 ). However, these five species are found in wet (mean annual precipitation 1996 to 3000 mm) and warm (mean annual temperature 23 to 26 °C) environments, where the seasonality suggests that the growth of these forests may be related to the tropical monsoon climate. However, even the 23 Fabaceae distribued in different area, most of the these are poor dispersion in annual seasonality and temperature seasonality that means the growth of Fabaceae species may has high requirements for sunlight. Besides, the author noticed that during make the boxplot of precipitation seasonality, the species near the Caribbean have more outliers than species in other region, possibly because the extreme weather, but combined with the view of Steege (1994) that Prioria copaifera and Mora excelsa formed monodominance due to flooding, the author think that these species may have a serious of anti-flood mechanisms that may help them survive the flood. In contrast, due to the small database of savanna species and more species distributed in the same area, which means these species have similar data in four environmental factors, while there is no savanna species belong to same family with them, here the auother do not any discussion about them. For boxplot, monodominant forest species and savannas species have similar pattern in annual precipitation and precipitation seasonality that same family species have similar range and dispersion, the only difference may be that savanna species are poorer in dispersion. It means that the growth of savanna species has slightly more stringent requirements for precipitation. One of the biggest differences between forest species and savanna species in boxplot is that all savanna species have smaller range in annual temperature, which shows savanna species are more restricted in temperature space (Werkmeister, 2016), while a part of forest species has wider range that these species may grow in rain forest, and a part of forest species has narrowly dispersion. However, there is no clear relationship between the range of forest species in temperature and taxonomy or distribution.

Shortcomings of this project In the distributed data cleaning stage, although part of the abnormal data was manually cleaned up, there are still some data should be processed that are mainly the data on some small islands, and the scattered data far away from the reported monodominance region. To analyze the distribution and habitat information of monodominant species more accurately, a discrete analysis can be used to clean the abnormal data, or the species distribution information beyond the country or region where the dominant species is reported can be cleaned up. In the analysis of habitat information, outliers were not be processed. The reason for this was that the distribution database is usually large, so retention of few outliers may not affect the analysis. Moreover, the climate situation in tropics is more complicated, for example, annual precipitation usually has a wide range, therefore, rash cleaning of data may lead to deviations from actual results. In this project, a log transformation has been done to keep the normal distribution of the environmental factors data. However, some extreme data will be retained. For example, firstly the minimum annual precipitation data of the area C. mopane calculated from RStudio is 60 mm, which means may be an incorrect record compared with other data in same areas, but after log transformation, this data is no longer an outlier. In a large database, this may not affect the normal distribution of the data, but if it is a small sample, it may cause deviation. In addition, the author believes that human intervention is also a possible mechanism that causes monodominance. This intervention includes is not only limited to logging, but should also include intervention in the succession of secondary ecosystems. According to Ribeiro & Brown (2006), One of the ecological functions of savanna is to provide grassland for grazing, however, grazing is a continuous and long-term impact on biome. In this case, some species may gain an advantage by escaping from herbivories.

Acknowledgements

The author gratefully acknowledge the guidance from my supervisors, Caroline Lehmann and David Harries from Royal Botanic Garden of Edinburgh (RBGE); the help in RStudio from TELFORD Elizabeth( RBGE), Yaxin Zhao (Tianjin University), Jens Ringelberg (University of Zurich) and Peter Moonlight (RBGE) and the support from who I worked with in RBGE.

Reference Anon, 2008. A new report, "Biomarkers, The Expanding Global Market," by Piribo predicts that mass spectrometry will play a decisive role in accelerating protein biomarker research.(Research). Spectroscopy, 23(1), p.17. BARKER, A.V. & PILBEAM, D. J. 2007. Handbook of plant nutrition. CRC Press, Boca Raton. 632 pp. Basset, C., Rodrigues, A.M., Eparvier, V., Silva, M.R., Lopes, N.P., Sabatier, D., Fonty, E., Espindola, L.S. and Stien, D., 2012. Secondary metabolites from Spirotropis longifolia (DC) Baill and their antifungal activity against human pathogenic fungi. Phytochemistry, 74, pp.166-172. Boucher, D.H., 1981. Seed Predation by Mammals and Forest Dominance by Quercus oleoides, a Tropical Lowland Oak. Oecologia, 49(3), pp.409–414. Brown, J.H., 2014. Why are there so many species in the tropics? Journal of Biogeography, 41(1), pp.8–22. Carson, Walter P & Peterson, Chris J, 1990. The role of litter in an old-field community: impact of litter quantity in different seasons on plant species richness and abundance. Oecologia, 85(1), pp.8–13. Chen, Jun et al., 2015. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103(C), pp.7–27. Connell, J.H. & Lowman, M.D., 1989. Low-diversity tropical rain forests: some possible mechanisms for their existence. The American naturalist, (1), pp.88–119. Conway, D. ,1992. A Comparison of Soil Parameters in Monodominant and Mixed Forest in the Ituri Forest Reserve, Zaire, Tropical Environmental Science Honours Project. University of Aberdeen, Aberdeen. Corrales, Adriana et al., 2016. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology letters, 19(4), pp.383–392. Dorr, L.J., 1998. Flore et végétation de Madagascar. , 47(3), pp.783–784. Eggeling, W.J., 1947. Observations on the Ecology of the Budongo Rain Forest, Uganda. Journal of Ecology, 34(1), pp.20–87. Faramalala, M. H. 1995. Formations végétales et domaine forestier national de Madagascar. Conservation International (et al.), 1. Fonty, Émile et al., 2011. A new case of neotropical monodominant forest: Spirotropis longifolia (Leguminosae-Papilionoideae) in French Guiana. Journal of tropical ecology, 27(6), pp.641–644. Gaddis, K. D., Zukin, H. L., Dieterich, I. A., Braker, E., & Sork, V. L. 2014. Effect of clonal reproduction on genetic structure in Pentaclethra macroloba (Fabaceae: Mimosoideae). Revista de Biología Tropical, 62(2), 443-454. Gandiwa, E et al., 2011. Structure and composition of Androstachys johnsonii woodland across various strata in Gonarezhou National Park, southeast Zimbabwe. Tropical conservation science, 4(2), pp.218–229. Hall, J.S., Harris, D.J., Saltonstall, K., Medjibe, V.D.P., Ashton, M.S. and Turner, B.L., 2020. Resource acquisition strategies facilitate Gilbertiodendron dewevrei monodominance in African lowland forests. Journal of Ecology, 108(2), pp.433-448. Hans ter Steege & David S. Hammond, 2001. Character Convergence, Diversity, and Disturbance in Tropical Rain Forest in Guyana. Ecology (Durham), 82(11), pp.3197–3212. Haridasan, M., Silva Jr, M.C., Felfili, J.M., Rezende, A.V. and Silva, P.E.N., 1997. Gradient analysis of soil properties and phytosociological parameters of some gallery forests on the Chapada dos Veadeiros in the cerrado region of Central Brazil. In Proceedings of the international symposium on assessment and monitoring of forests in tropical dry regions with special reference to gallery forests (J. Imanã-Encinas. & C. Kleinn, eds.). Universidade de Brasília, Brasília (pp. 259-275). Hart, T., 1985. THE ECOLOGY OF A SINGLE-SPECIES-DOMINANT FOREST AND OF A MIXED FOREST IN ZAIRE, AFRICA (DIVERSITY, RAINFOREST, MONODOMINANCE), pp.ProQuest Dissertations and Theses. Hart, Terese B., Hart, John A. & Murphy, Peter G., 1989. Monodominant and Species-Rich Forests of the Humid Tropics: Causes for Their Co-Occurrence. The American Naturalist, 133(5), pp.613–633. Henkel, T.W., 2003. Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. Journal of tropical ecology, 19(4), pp.417–437. Henkel, T.W., 2003. Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. Journal of Tropical Ecology, pp.417-437. Hoffmann, William A & Franco, Augusto C, 2003. Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. The Journal of ecology, 91(3), pp.475–484. House, Jo I & Hall, David O, 2001. 16 - Productivity of Tropical Savannas and Grasslands. In Terrestrial Global Productivity. Academic Press, pp. 363–400. Hue, N. V., Vega, S., & Silva, J. A. 2001. Manganese toxicity in a Hawaiian Oxisol affected by soil pH and organic amendments. Soil Science Society of America Journal, 65(1), 153-160. Itoh, A., 1995. Effects of forest floor environment on germination and seedling establishment of two Bornean rainforest emergent species. Journal of tropical ecology, 11(4), pp.517– 527. Itoh, A., 1995. Effects of forest floor environment on germination and seedling establishment of two Bornean rainforest emergent species. Journal of tropical ecology, 11(4), pp.517– 527. Janos, D. P. 1983. Tropical mycorrhizas, nutrient cycles and plant growth. Special publications series of the British Ecological Society. Janzen, D.H., 1974. Tropical Blackwater Rivers, Animals, and Mast Fruiting by the Dipterocarpaceae. Biotropica, 6(2), pp.69–103. Jordan R. Mayor & Terry W. Henkel, 2006. Do Ectomycorrhizas Alter Leaf-Litter Decomposition in Monodominant Tropical Forests of Guyana? The New phytologist, 169(3), pp.579–588. Kelly, J., Jose, S., Nichols, J. D., & Bristow, M. 2009. Growth and physiological response of six Australian rainforest tree species to a light gradient. Forest Ecology and Management, 257(1), 287-293. Kristina Arnebrant et al., 1993. Nitrogen Translocation between Alnus glutinosa (L.) Gaertn. Seedlings Inoculated with Frankia sp. and Pinus contorta Doug. ex Loud Seedlings Connected by a Common Ectomycorrhizal Mycelium. The New phytologist, 124(2), pp.231–242. Kuhnholtz-Lordat, G. 1938. La Terre Incendiée: Essai D’agronomie Comparée.Nîmes: Editions de La Maison Carrée, Ateliers Brugier. Kull, C.A., 2002. The "Degraded" Tapia Woodlands of Highland Madagascar: Rural Economy, Fire Ecology, and Forest Conservation. Journal of Cultural Geography, 19(2), pp.95–128. Kushwaha, C. P., Tripathi, S. K., & Singh, K. P. 2011. Tree specific traits affect flowering time in Indian dry tropical forest. Plant Ecology, 212(6), 985-998. Leigh, E.G., 1994. Do Insect Pests Promote Mutualism among Tropical Trees? The Journal of ecology, 82(3), pp.677–680. Lockwood, J.G., 1978. The physical geography of the tropics: an introduction, Kuala Lumpur; London: Oxford University Press. Mapaure, I., 1994. THE DISTRIBUTION OF COLOPHOSPERMUM MOPANE (LEGUMINOSAE - CAESALPINIOIDEAE) IN AFRICA. Kirkia., 15(1), pp.1–5. Marimon, B.S., Felfili, J.M. and Haridasan, M., 2001. Studies in monodominant forests in eastern Mato Grosso, Brazil: I. A forest of Brosimum rubescens Taub. Edinburgh Journal of Botany, 58(1), p.123. Metcalfe, D. J & Grubb, P. J, 2003. The responses to shade of seedlings of very small‐seeded tree and shrub species from tropical rain forest in Singapore. Functional ecology, 11(2), pp.215–221. Moles, A. T., Perkins, S. E., Laffan, S. W., Flores‐Moreno, H., Awasthy, M., Tindall, M. L., ... & Anand, M. 2014. Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 25(5), 1167-1180. Nara, K., 2006. Ectomycorrhizal Networks and Seedling Establishment during Early Primary Succession. The New phytologist, 169(1), pp.169–178. Nascimento, M. T., Proctor, J., & Villela, D. M. 1997. Forest structure, floristic composition and soils of an Amazonian monodominant forest on Maracá Island, Roraima, Brazil. Edinburgh Journal of Botany, 54(1), 1-38. Nascimento, M.T., Barbosa, R.I., Dexter, K.G., de Castilho, C.V., da Silva Carvalho, L.C. and Villela, D.M., 2017. Is the Peltogyne gracilipes monodominant forest characterised by distinct soils?. Acta Oecologica, 85, pp.104-107. O’Donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series, 691(10). Ovington, J. D. 1956. The composition of tree leaves. Forestry: An International Journal of Forest Research, 29(1), 22-28. Paruelo, J. M., & Lauenroth, W. K. (1996). Relative abundance of plant functional types in grasslands and shrublands of North America. Ecological Applications, 6(4), 1212-1224. Peh, Kelvin S.-H., Lewis, Simon L. & Lloyd, Jon, 2011. Mechanisms of monodominance in diverse tropical tree-dominated systems.(Report). The Journal of Ecology, 99(4), pp.891– 898. Pennington, R. Toby, Lehmann, Caroline E.R & Rowland, Lucy M, 2018. Tropical savannas and dry forests. Current biology, 28(9), pp.R541–R545. Rankin, J.M., 1978. THE INFLUENCE OF SEED PREDATION AND PLANT COMPETITION ON TREE SPECIES ABUNDANCES IN TWO ADJACENT TROPICAL RAIN FOREST COMMUNITIES IN TRINIDAD, WEST INDIES. Ribeiro, S. P. 1999. The Role of Herbivory in Tabeuia Spp. Life History and Evolution (Doctoral dissertation, Silwood Park, Imperial College). Ribeiro, S. P., & Brown, V. K. 2002. Tree species monodominance or species-rich savannas? The influence of abiotic factors in designing plant communities of the Brazilian cerrado and Pantanal Matogrossense: a review. Ecotropica, 8(1), 31-45. Richards, P.W., 1996. The tropical rain forest : an ecological study Second., Cambridge ; New York: Cambridge University Press. Scholes, R. J & Archer, S. R, 1997. TREE-GRASS INTERACTIONS IN SAVANNAS. Annual review of ecology and systematics, 28(1), pp.517–544. Sérvio P. Ribeiro & Valerie K. Brown, 2006. Prevalence of Monodominant Vigorous Tree Populations in the Tropics: Herbivory Pressure on Tabebuia Species in Very Different Habitats. The Journal of ecology, 94(5), pp.932–941. Seyednasrollah, B., Swenson, J. J., Domec, J. C., & Clark, J. S. 2018. Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sensing of Environment, 209, 446-455. Simon L. Lewis et al., 2009. Increasing carbon storage in intact African tropical forests. Nature, 457(7232), pp.1003–1006. Solofondranohatra, Cedrique L et al., 2018. Grass Functional Traits Differentiate Forest and Savanna in the Madagascar Central Highlands. Frontiers in ecology and evolution, 6, pp.Frontiers in ecology and evolution, 2018–11-15, Vol.6. Spruce, R. 1854. Letter to Joseph Hooker dated 19 March 1854. Hooker’s Journal of Botany and Kew Garden Miscellany 6, 333–337 Steege, H.ter, 1994. Flooding and Drought Tolerance in Seeds and Seedlings of Two Mora Species Segregated along a Soil Hydrological Gradient in the Tropical Rain Forest of Guyana. Oecologia, 100(4), pp.356–367. Swaine, M. D., & Whitmore, T. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio, 75(1-2), 81-86. ter Steege, Hans et al., 2019. Rarity of monodominance in hyperdiverse Amazonian forests. Scientific reports, 9(1), pp.1–15. Torti, S.D. & Coley, P.D., 1999. Tropical Monodominance: A Preliminary Test of the Ectomycorrhizal Hypothesis 1. Biotropica, 31(2), pp.220–228. Torti, Sylvia D, Coley, P. D & Janos, David P, 1997. Vesicular-arbuscular mycorrhizae in two tropical monodominant trees. Journal of tropical ecology, 13(4), pp.623–629. Torti, Sylvia D, Coley, Phyllis D & Kursar, Thomas A, 2001. Causes and Consequences of Monodominance in Tropical Lowland Forests. The American naturalist, 157(2), pp.141– 153. Tovar, Carolina et al., 2019. Tropical monodominant forest resilience to climate change in Central Africa: A Gilbertiodendron dewevrei forest pollen record over the past 2,700 years. Journal of vegetation science, 30(3), pp.575–586. Turner, I.M., 2001. The Ecology of Trees in the Tropical Rain Forest, Cambridge: Cambridge University Press. van der Velden, Nic et al., 2014. Monodominance of Parashorea chinensis on fertile soils in a Chinese tropical rain forest. Journal of tropical ecology, 30(4), pp.311–322. Wallace, A.R., 1853. A narrative of travels on the Amazon and Rio Negro : with an account of the native tribes, and observations on the climate, geology, and natural history of the Amazon Valley, London: Reeve. Werkmeister, G. 2016. MaxEnt Modelling of the Distribution and Environmental Constraints of Endemic Tree Species Uapaca bojeri (tapia) in Madagascar.Master’s thesis, Queen Mary University of London. Werkmeister, G. 2016. MaxEnt Modelling of the Distribution and Environmental Constraints of Endemic Tree Species Uapaca bojeri (tapia) in Madagascar. Master’s thesis, Queen Mary University of London White, F. & Unesco, 1983. The vegetation of Africa : a descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa, Paris: Unesco. Whitmore, T.C., 1998. An introduction to tropical rain forests Second., Oxford: OUP. Woolley, Lance P, Henkel, Terry W & Sillett, Stephen C, 2008. Reiteration in the Monodominant Tropical Tree Dicymbe corymbosa (Caesalpiniaceae) and its Potential Adaptive Significance. Biotropica, 40(1), pp.32–43. Seyednasrollah, B., Swenson, J. J., Domec, J. C., & Clark, J. S. 2018. Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sensing of Environment, 209, 446-455. Simon L. Lewis et al., 2009. Increasing carbon storage in intact African tropical forests. Nature, 457(7232), pp.1003–1006. Solofondranohatra, Cedrique L et al., 2018. Grass Functional Traits Differentiate Forest and Savanna in the Madagascar Central Highlands. Frontiers in ecology and evolution, 6, pp.Frontiers in ecology and evolution, 2018–11-15, Vol.6. Spruce, R. 1854. Letter to Joseph Hooker dated 19 March 1854. Hooker’s Journal of Botany and Kew Garden Miscellany 6, 333–337 Steege, H.ter, 1994. Flooding and Drought Tolerance in Seeds and Seedlings of Two Mora Species Segregated along a Soil Hydrological Gradient in the Tropical Rain Forest of Guyana. Oecologia, 100(4), pp.356–367. Swaine, M. D., & Whitmore, T. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio, 75(1-2), 81-86. ter Steege, Hans et al., 2019. Rarity of monodominance in hyperdiverse Amazonian forests. Scientific reports, 9(1), pp.1–15. Torti, S.D. & Coley, P.D., 1999. Tropical Monodominance: A Preliminary Test of the Ectomycorrhizal Hypothesis 1. Biotropica, 31(2), pp.220–228. Torti, Sylvia D, Coley, P. D & Janos, David P, 1997. Vesicular-arbuscular mycorrhizae in two tropical monodominant trees. Journal of tropical ecology, 13(4), pp.623–629. Torti, Sylvia D, Coley, Phyllis D & Kursar, Thomas A, 2001. Causes and Consequences of Monodominance in Tropical Lowland Forests. The American naturalist, 157(2), pp.141– 153. Tovar, Carolina et al., 2019. Tropical monodominant forest resilience to climate change in Central Africa: A Gilbertiodendron dewevrei forest pollen record over the past 2,700 years. Journal of vegetation science, 30(3), pp.575–586. Turner, I.M., 2001. The Ecology of Trees in the Tropical Rain Forest, Cambridge: Cambridge University Press. van der Velden, Nic et al., 2014. Monodominance of Parashorea chinensis on fertile soils in a Chinese tropical rain forest. Journal of tropical ecology, 30(4), pp.311–322. Wallace, A.R., 1853. A narrative of travels on the Amazon and Rio Negro : with an account of the native tribes, and observations on the climate, geology, and natural history of the Amazon Valley, London: Reeve. Werkmeister, G. 2016. MaxEnt Modelling of the Distribution and Environmental Constraints of Endemic Tree Species Uapaca bojeri (tapia) in Madagascar.Master’s thesis, Queen Mary University of London. Werkmeister, G. 2016. MaxEnt Modelling of the Distribution and Environmental Constraints of Endemic Tree Species Uapaca bojeri (tapia) in Madagascar. Master’s thesis, Queen Mary University of London White, F. & Unesco, 1983. The vegetation of Africa : a descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa, Paris: Unesco. Whitmore, T.C., 1998. An introduction to tropical rain forests Second., Oxford: OUP. Woolley, Lance P, Henkel, Terry W & Sillett, Stephen C, 2008. Reiteration in the Monodominant Tropical Tree Dicymbe corymbosa (Caesalpiniaceae) and its Potential Adaptive Significance. Biotropica, 40(1), pp.32–43.

Appendix Table 3 The terms used in searching literature and book Monodominant species Monodominant vegetation tropical Monodominant species tropics Monodominant tropical dry forest Monodominant species Africa Monodominant tropical rainforest Monodominant species Asia Monodominant vegetation Africa Monodominant species Australia Monodominant vegetation Asia Monodominant species tropics Monodominant vegetation Australia Monodominant species forest Monodominant vegetation America Monodominant species savanna Monodominance species Monodominant species woodland Monodominance tropics Monodominant vegetation forest Monodominance Africa Monodominant vegetation savanna Monodominance Asia Monodominant vegetation tropical Monodominance Australia Monodominant tropical dry forest

Table 4 the websites used in searching species morphological information Website name Website

Australian Tropical Rainforest Plant http://www.anbg.gov.au/cpbr/cd-keys/RFK7/key/RFK7/Media/Html/index_rfk.htm

Biodiversity Heritage Library https://www.biodiversitylibrary.org/

Brazil Flora https://www.brazil.org.za/brazil-flora.html

Catalogue of Vascular Plants of Madagascar http://legacy.tropicos.org/Project/Madagascar

Dave's Garden https://davesgarden.com/

Earth of Life-forms https://eol.org/docs/what-is-eol

Faune et Flore de Nouvelle-Calédonie http://endemia.nc/

Flora of Australia Online http://www.anbg.gov.au/abrs/online-resources/flora/main-query-styles.html

Flora of the Guianas http://portal.cybertaxonomy.org/flora-guianas/

Flora of the Guianas Online http://portal.cybertaxonomy.org/flora-guianas/

Flowers of India https://www.flowersofindia.net/

Monaco Nature Encyclopedia https://www.monaconatureencyclopedia.com/?lang=en

Oaks of the world http://oaks.of.the.world.free.fr/index.htm

Pl@ntUse https://uses.plantnet-project.org/en/Main_Page

Plants of Southeast http://www.asianplant.net/

PlantZAfrica http://pza.sanbi.org/

Smithsonian Tropical Research Institute https://stricollections.org/portal/index.php

Steere Herbarium http://sweetgum.nybg.org/science/

The New Zealand Plant Conservation Network https://www.nzpcn.org.nz/

The Plant list http://www.theplantlist.org/1.1/browse/

The Useful Tropical Plants Database http://tropical.theferns.info/

Urban Forest Ecosystems Institute https://ufei.calpoly.edu/

Wikispecies https://species.wikimedia.org/wiki/Main_Page

World Checklist of Selected Plant Families(WCSP) https://wcsp.science.kew.org/home.do Table 5 A part of the morphological information of monodominant forest species Maximum Plant Family Species Leaf phenology Type of leaf Flowering time height (m) Altingiaceae Liquidambar excelsa (Noronha) Oken evergreen 6 simple, broad ? Apocynaceae Aspidosperma excelsum Benth. evergreen 35 opposite ? Arecaceae Lodoicea maldivica (J.F.Gmel.) Pers. evergreen 25 ? ? Burseraceae Aucoumea klaineana Pierre evergreen 40 ? ? Burseraceae Dacryodes excelsa Vahl evergreen 36 compound, pinnately May to November Burseraceae Protium excelsior Byng & Christenh. evergreen 30 ? ? Burseraceae Protium pilosissimum Engl. ? ? ? ? Calophyllaceae Calophyllum euryphyllum Lauterb. ? 26 ? ? Gymnostoma papuanum (S.Moore) Casuarinaceae Evergreen 12 simple ? L.A.S.Johnson Chrysobalanaceae Parinari excelsa Sabine evergreen 50 simple, alternate ? Cunoniaceae Codia mackeeana H.C.Hopkins & Fogliani ? 15 opposite September to January Cupressaceae Callitris columellaris F.Muell. evergreen 30 ? ? evergreen and Dipterocarpaceae Anisoptera thurifera (Blanco) Blume 60 simple, alternate ? semi-evergreen Dipterocarpaceae Shorea curtisii Dyer ex King evergreen 80 simple ? Dipterocarpaceae Parashorea malaanonan (Blanco) Merr. evergreen 60 ? ? Dipterocarpaceae Dryobalanops aromatica C.F.Gaertn. evergreen 75 simple, broad ? Shorea wangtianshuea Y.K.Yang & Dipterocarpaceae evergreen 70 simple, broad ? J.K.Wu Brachystegia laurentii (De Wild.) Louis ex Fabaceae evergreen 45 compound, alternate, pinnate ? J.Léonard Fabaceae Cynometra alexandri C.H.Wright evergreen 46 simple, opposite ? Gilbertiodendron dewevrei (De Wild.) Fabaceae evergreen 45 alternate and pinnate ? J.Léonard Fabaceae Julbernardia pellegriniana Troupin evergreen 40 compound, alternate ? Fabaceae Julbernardia seretii (De Wild.) Troupin evergreen 45 compound, alternate, pair-pinnate ? Fabaceae Pterocarpus antunesii Harms deciduous ? compound, alternate November to December Fabaceae Talbotiella gentii Hutch. & Greenway evergreen 18 compound, alternate ? Fabaceae Tetraberlinia tubmaniana J.Léonard evergreen 42 broad ? Fabaceae Intsia bijuga (Colebr.) Kuntze semi-deciduous 50 simple, broad ? early Mar.–late May in Northern Fabaceae Acacia shirleyi Maiden evergreen 15 linear to slightly curved phyllodes Territory, late Apr.–mid-July in Queensland Dimorphandra conjugata (Splitg.) Fabaceae ? 25 bipinnate ? Sandwith Fabaceae Eperua falcata Aubl. evergreen 35 ? ? Fabaceae Eperua purpurea Benth. evergreen 70 simple, opposite ? Fabaceae Mora excelsa Benth. ? 45 ? ? Fabaceae Mora gonggrijpii (Kleinhoonte) Sandwith evergreen 36 simple, compound, broad ? Fabaceae Mora oleifera (Triana ex Hemsl.) Ducke ? 45 ? ? Fabaceae Peltogyne gracilipes Ducke ? ? ? ? Fabaceae Pentaclethra macroloba (Willd.) Kuntze evergreen 35 twice compound April to August Fabaceae Prioria copaifera Griseb. evergreen 50 compound, alternate ? Fabaceae Quercus oleoides Schltdl. & Cham. evergreen 15 simple, alternate December to May Fabaceae Spirotropis longifolia (DC.) Baill. ? 15 alternate or opposite ? Fabaceae Dicymbe corymbosa Spruce ex Benth. ? ? ? ? Castanopsis acuminatissima (Blume) Fagaceae evergreen 40 simple ? A.DC. Juglandaceae Oreomunnea mexicana (Standl.) J.-F.Leroy evergreen 30 opposite, compound, pinnate ? Lauraceae Eusideroxylon zwageri Teijsm. & Binn. evergreen 50 alternate, simple, penni-veined ? Moraceae Brosimum rubescens Taub. evergreen 40 ? ? Myrtaceae Eucalyptus deglupta Blume evergreen 75 opposite ? Myrtaceae Allosyncarpia ternata S.T.Blake evergreen 18 ternate ? Backhousia bancroftii F.M.Bailey & Myrtaceae evergreen ? ? ? F.Muell. Arillastrum gummiferum (Brongn. & Gris) Myrtaceae evergreen 35 opposite September to January Pancher ex Baill. Myrtaceae Metrosideros kermadecensis W.R.B.Oliv.* evergreen 20 ? throughout the year Nothofagus aequilateralis (Baum.-Bod.) Nothofagaceae ? 25 simple, alternate ? Steenis Pentaphylacaceae Adinandra dumosa Jack ? ? ? ? Pentaphylacaceae Poeciloneuron indicum Bedd. evergreen 36 simple, opposite, decussate March to May Picrodendraceae Androstachys johnsonii Prain evergreen 20 simple, opposite October to November Picrodendraceae Piranhea mexicana (Standl.) Radcl.-Sm. ? ? ? ? Rhamnaceae Maesopsis eminii Engl. semi-deciduous 45 simple, opposite ? Tetramelaceae Octomeles sumatrana Miq. evergreen 75 ? ? Urticaceae Musanga cecropioides R.Br. ex Tedlie evergreen 45 simple ? Urticaceae Cecropia obtusifolia Bertol. evergreen 14 simple, alternate spring

Table 6 Another part of the morphological information of monodominant forest species Plant Family Species Dispersal Pollination Mast flowering Soil associations Altingiaceae Liquidambar excelsa (Noronha) Oken ? ? ? ? Apocynaceae Aspidosperma excelsum Benth. ? insects ? ? Arecaceae Lodoicea maldivica (J.F.Gmel.) Pers. ? ? ? ? Burseraceae Aucoumea klaineana Pierre ? bees, flies Yes ? Burseraceae Dacryodes excelsa Vahl fall ? ? acid soils Burseraceae Protium excelsior Byng & Christenh. ? ? ? ? Burseraceae Protium pilosissimum Engl. ? ? ? ? Calophyllaceae Calophyllum euryphyllum Lauterb. ? ? ? ? Casuarinaceae Gymnostoma papuanum (S.Moore) L.A.S.Johnson ? wind ? nitrogen fixation Chrysobalanaceae Parinari excelsa Sabine ? mammals ? ? Cunoniaceae Codia mackeeana H.C.Hopkins & Fogliani ? ? ? ? Cupressaceae Callitris columellaris F.Muell. ? wind ? light soils Dipterocarpaceae Anisoptera thurifera (Blanco) Blume ? ? ? ? Dipterocarpaceae Shorea curtisii Dyer ex King poor dispersal ? Yes EM Dipterocarpaceae Parashorea malaanonan (Blanco) Merr. poor dispersal ? Yes EM deep humic yellow Dipterocarpaceae Dryobalanops aromatica C.F.Gaertn. poor dispersal ? Yes sandy soils, EM dry soils on coastal Dipterocarpaceae Shorea wangtianshuea Y.K.Yang & J.K.Wu ? ? ? hills Fabaceae Brachystegia laurentii (De Wild.) Louis ex J.Léonard ? ? ? ? Fabaceae Cynometra alexandri C.H.Wright poor dispersal ? ? ? pods split explosively, Fabaceae Gilbertiodendron dewevrei (De Wild.) J.Léonard wind Yes sandy soils, EM poor dispersal Fabaceae Julbernardia pellegriniana Troupin poor dispersal ? ? ? Fabaceae Julbernardia seretii (De Wild.) Troupin pod ? Yes EM Fabaceae Pterocarpus antunesii Harms ? ? ? ? Fabaceae Talbotiella gentii Hutch. & Greenway ? wind ? ? flat to slightly Fabaceae Tetraberlinia tubmaniana J.Léonard ? ? ? undulate terrain with deep soils Fabaceae Intsia bijuga (Colebr.) Kuntze ? ? ? ? Fabaceae Acacia shirleyi Maiden ? ? ? ? white sandy soils on Fabaceae Dimorphandra conjugata (Splitg.) Sandwith ? ? ? or near watersheds Fabaceae Eperua falcata Aubl. poor dispersal bats ? moist soils, EM Fabaceae Eperua purpurea Benth. ? ? ? Fabaceae Mora excelsa Benth. poor dispersal ? No heavy clay soils Fabaceae Mora gonggrijpii (Kleinhoonte) Sandwith poor dispersal ? No ? Fabaceae Mora oleifera (Triana ex Hemsl.) Ducke poor dispersal ? No ? Fabaceae Peltogyne gracilipes Ducke poor dispersal ? ? nitrogen fixation dehiscent pod, poor Fabaceae Pentaclethra macroloba (Willd.) Kuntze ? No ? dispersal often found floating in the Fabaceae Prioria copaifera Griseb. ? ? swampy ground water Fabaceae Quercus oleoides Schltdl. & Cham. oak fruit, poor dispersal ? ? ? Fabaceae Spirotropis longifolia (DC.) Baill. ? ? ? Fabaceae Dicymbe corymbosa Spruce ex Benth. poor dispersal ? Yes EM Fagaceae Castanopsis acuminatissima (Blume) A.DC. ? ? ? ? Juglandaceae Oreomunnea mexicana (Standl.) J.-F.Leroy ? ? ? ? Lauraceae Eusideroxylon zwageri Teijsm. & Binn. ? water and procupines ? ? Moraceae Brosimum rubescens Taub. ? ? ? ? Myrtaceae Eucalyptus deglupta Blume ? bees, insects ? ? Myrtaceae Allosyncarpia ternata S.T.Blake ? ? ? ? Myrtaceae Backhousia bancroftii F.M.Bailey & F.Muell. ? insects ? ? Arillastrum gummiferum (Brongn. & Gris) Pancher ex Myrtaceae ? ? ? ? Baill. Myrtaceae Metrosideros kermadecensis W.R.B.Oliv.* ? ? ? ? Nothofagaceae Nothofagus aequilateralis (Baum.-Bod.) Steenis ? ? ? ? Pentaphylacaceae Poeciloneuron indicum Bedd. fleshy fruit, autochory entomophilous ? ? Pentaphylacaceae Adinandra dumosa Jack ? ? ? ? Picrodendraceae Androstachys johnsonii Prain ? wind ? ? Picrodendraceae Piranhea mexicana (Standl.) Radcl.-Sm. ? ? ? ? monkeys and large Rhamnaceae Maesopsis eminii Engl. ? ? ? birds Tetramelaceae Octomeles sumatrana Miq. ? ? ? ? Urticaceae Musanga cecropioides R.Br. ex Tedlie ? ? ? ? Urticaceae Cecropia obtusifolia Bertol. ? ? ? ?

Table 7 A part of the morphological information of monodominant forest species Maximum Plant Family Species Leaf phenology Type of leaf Flowering time height (m) Fabaceae Baikiaea plurijuga Harms deciduous 25 compound,alternate November to April Fabaceae Burkea africana Hook. deciduous 20 ? ? Asteropeiaceae Asteropeia densiflora Baker ? ? ? ? Tabebuia aurea(Silva Manso) Benth. & Bignoniaceae semi-deciduous 20 compound, opposite ? Hook.f. ex S.Moore Bignoniaceae Tabebuia ochracea(Cham.) Standl. ? ? ? ? Combretaceae Combretum apiculatum Sond. semi-deciduous 13 simple, opposite September to February Combretaceae Combretum zeyheri Sond. deciduous 15 simple, opposite ? Colophospermum mopane(J.Kirk ex Benth.) Fabaceae deciduous 30 compound December to January J.Leonard Phyllanthaceae Uapaca bojeri Baill. ? 12 alternate and sclerophyllous March to September Sarcolaenaceae Sarcolaena oblongifolia F.Gérard ? ? ? ? Schizolaena Schizolaena microphylla H.Perrier ? ? ? ?

Table 8 Another part of the morphological information of monodominant forest species Plant Family Species Dispersal Pollination Mast flowering Soil associations flattened, woody pods, Fabaceae Baikiaea plurijuga Harms insects ? sandy soils exposion Fabaceae Burkea africana Hook. ? bees ? sandy soils Asteropeiaceae Asteropeia densiflora Baker ? ? ? Tabebuia aurea(Silva Manso) Benth. & Hook.f. ex Bignoniaceae ? birds ? ? S.Moore Bignoniaceae Tabebuia ochracea(Cham.) Standl. ? ? ? ? granitic and rhyolitic Combretaceae Combretum apiculatum Sond. ? ? ? soils tolerant of Combretaceae Combretum zeyheri Sond. ? ? ? metalliferous and acidic soils Fabaceae Colophospermum mopane(J.Kirk ex Benth.) J.Leonard ? ? ? ? Phyllanthaceae Uapaca bojeri Baill. ? ? ? ? Sarcolaenaceae Sarcolaena oblongifolia F.Gérard ? ? ? ? Schizolaena Schizolaena microphylla H.Perrier ? ? ? ?

Table 9 The specific information of annual precipitation (mm) in the areas where monodominant forest species grow Annual Precipitation (mm per year) Region Plant Family Species Mean Minimum Maximum Africa Fabaceae Pterocarpus antunesii Harms 697.15 195 1646 Africa Picrodendraceae Androstachys johnsonii Prain 707.93 397 1041 Australia Fabaceae Acacia shirleyi Maiden 710.9753 232 2071 Neotropics Picrodendraceae Piranhea mexicana (Standl.) Radcl.-Sm. 836.23 524 1502 Australia Cupressaceae Callitris columellaris F.Muell. 937.18 186 4258 Africa Fabaceae Talbotiella gentii Hutch. & Greenway 1244.22 867 1600 Australia Myrtaceae Allosyncarpia ternata S.T.Blake 1381.78 1209 1625 Australasia Cunoniaceae Codia mackeeana H.C.Hopkins & Fogliani 1457.94 1433 1857 Africa Fabaceae Cynometra alexandri C.H.Wright 1486.18 904 2101 Neotropics Fabaceae Peltogyne gracilipes Ducke 1628.71 1622 2257 Neotropics Fabaceae Quercus oleoides Schltdl. & Cham. 1769.31 510 3833 Africa Fabaceae Gilbertiodendron dewevrei (De Wild.) J.Léonard 1780.79 1118 3104 Africa Urticaceae Musanga cecropioides R.Br. ex Tedlie 1805.97 781 4090 Africa Rhamnaceae Maesopsis eminii Engl. 1861.513 1057 4159 Pacific Myrtaceae Metrosideros kermadecensis W.R.B.Oliv.* 1873 1873 1873 Pacific Myrtaceae Arillastrum gummiferum (Brongn. & Gris) Pancher ex Baill. 1919.4 1064 2390 Pacific Nothofagaceae Nothofagus aequilateralis (Baum.-Bod.) Steenis 1923.114 1447 2222 Africa Fabaceae Brachystegia laurentii (De Wild.) Louis ex J.Léonard 1949.94 1035 2979 Africa Fabaceae Julbernardia pellegriniana Troupin 1973.204 1118 3125 Africa Fabaceae Julbernardia seretii (De Wild.) Troupin 1984.596 1541 3056 Africa Chrysobalanaceae Parinari excelsa Sabine 1995.08 328 4679 East Asia Dipterocarpaceae Shorea curtisii Dyer ex King 1996.83 1709 2437 Neotropics Burseraceae Protium excelsior Byng & Christenh. 2004.19 650 3503 Neotropics Burseraceae Protium pilosissimum Engl. 2012.95 1093 3883 North America Fabaceae Dicymbe corymbosa Spruce ex Benth. 2016.8 1631 2405 Neotropics Fabaceae Mora excelsa Benth. 2054.231 1510 2822 Africa Burseraceae Aucoumea klaineana Pierre 2060.91 1125 3116 Neotropics Fabaceae Mora gonggrijpii (Kleinhoonte) Sandwith 2112.844 1301 2838 East Africa,Western Indian Ocean Arecaceae Lodoicea maldivica (J.F.Gmel.) Pers. 2170.26 2159 2269 Neotropics Fabaceae Dimorphandra conjugata (Splitg.) Sandwith 2188.41 1497 2838 Neotropics Juglandaceae Oreomunnea mexicana (Standl.) J.-F.Leroy 2287.67 915 4260 Neotropics Burseraceae Dacryodes excelsa Vahl 2295.08 1100 2748 Neotropics Moraceae Brosimum rubescens Taub. 2444.41 27 7415 Neotropics Urticaceae Cecropia obtusifolia Bertol. 2500.28 289 8069 Australasia Fabaceae Intsia bijuga (Colebr.) Kuntze 2518.9 1237 5530 Neotropics Fabaceae Eperua falcata Aubl. 2522.51 1564 3791 Neotropics Apocynaceae Aspidosperma excelsum Benth. 2591.43 657 7415 Malesia Altingiaceae Liquidambar excelsa (Noronha) Oken 2645.64 809 3868 Australasia Myrtaceae Eucalyptus deglupta Blume 2647.01 785 5447 Malesia Dipterocarpaceae Parashorea malaanonan (Blanco) Merr. 2648.063 1459 4511 Australasia Fagaceae Castanopsis acuminatissima (Blume) A.DC. 2670.83 795 6252 Malesia Lauraceae Eusideroxylon zwageri Teijsm. & Binn. 2673.62 167 4173 Australasia Casuarinaceae Gymnostoma papuanum (S.Moore) L.A.S.Johnson 2780.02 976 5557 Australasia Dipterocarpaceae Anisoptera thurifera (Blanco) Blume 2787.26 1319 4224 Southeast Asia Dipterocarpaceae Shorea wangtianshuea Y.K.Yang & J.K.Wu 2815.845 2074 4101 SE Asia Pentaphylacaceae Adinandra dumosa Jack 2856.89 1755 4143 Austrlalia Myrtaceae Backhousia bancroftii F.M.Bailey & F.Muell. 2891.57 1492 3658 Neotropics Fabaceae Eperua purpurea Benth. 2938.56 1793 3547 Neotropics Fabaceae Spirotropis longifolia (DC.) Baill. 2960.76 2343 3780 Southeast Asia Pentaphylacaceae Poeciloneuron indicum Bedd. 3013.4 1131 5270 SE Asia Dipterocarpaceae Dryobalanops aromatica C.F.Gaertn. 3077.26 2254 4011 Africa Fabaceae Tetraberlinia tubmaniana J.Léonard 3142.76 2173 3775 Neotropics Fabaceae Prioria copaifera Griseb. 3236.81 1323 7338 Australasia Calophyllaceae Calophyllum euryphyllum Lauterb. 3271.5 2425 3920 Neotropics Fabaceae Pentaclethra macroloba (Willd.) Kuntze 3316.96 1062 8167 Australasia Tetramelaceae Octomeles sumatrana Miq. 3795.14 2932 4106 Neotropics Fabaceae Mora oleifera (Triana ex Hemsl.) Ducke 3993.33 1754 7455

Table 10 The specific information of annual precipitation (mm) in the areas where monodominant savanna species grow Annual Precipitation (mm per year) Region Plant Family Species Mean Minimum Maximum Africa Fabaceae Colophospermum mopane(J.Kirk ex Benth.) J.Leonard 490.05 60 1045 Africa Fabaceae Baikiaea plurijuga Harms 601.71 254 1300 Africa Combretaceae Combretum apiculatum Sond. 634.02 159 1587 Africa Combretaceae Combretum zeyheri Sond. 812.35 233 1708 Africa Fabaceae Burkea africana Hook. 1080.179 222 2184 Neotropics Bignoniaceae Tabebuia aurea(Silva Manso) Benth. & Hook.f. ex S.Moore 1278.4 160 2936 Madagascar Phyllanthaceae Uapaca bojeri Baill. 1315.445 731 2103 Madagascar Asteropeiaceae Asteropeia densiflora Baker 1362.4 1113 1500 Madagascar Sarcolaenaceae Sarcolaena oblongifolia F.Gérard 1363.63 769 2254 Madagascar Schizolaena Schizolaena microphylla H.Perrier 1365.96 1295 1446 Neotropics Bignoniaceae Tabebuia ochracea(Cham.) Standl. 1734.47 611 3224

Table 11 The specific information of annual temperature(°C) in the areas where monodominant forest species grow Annual Temperature (°C) Region Plant Family Species Mean Minimum Maximum Pacific Myrtaceae Metrosideros kermadecensis W.R.B.Oliv.* 14.2 14.2 14.2 Neotropics Juglandaceae Oreomunnea mexicana (Standl.) J.-F.Leroy 18.436 11.9 26.5 Africa Picrodendraceae Androstachys johnsonii Prain 20.836 18.5 24 Pacific Nothofagaceae Nothofagus aequilateralis (Baum.-Bod.) Steenis 21.085 20 21.9 Australasia Cunoniaceae Codia mackeeana H.C.Hopkins & Fogliani 21.147 21.1 21.9 Pacific Myrtaceae Arillastrum gummiferum (Brongn. & Gris) Pancher ex Baill. 21.631 20 22.8 Australasia Fagaceae Castanopsis acuminatissima (Blume) A.DC. 21.798 12.6 27.7 Austrlalia Myrtaceae Backhousia bancroftii F.M.Bailey & F.Muell. 22.507 20.4 24.9 North America Fabaceae Dicymbe corymbosa Spruce ex Benth. 22.619 21.1 26.7 Africa Fabaceae Cynometra alexandri C.H.Wright 22.817 19.3 25.5 Australasia Myrtaceae Eucalyptus deglupta Blume 22.85 13.4 27.4 East Asia Dipterocarpaceae Shorea curtisii Dyer ex King 23.066 22 24.2 Africa Fabaceae Pterocarpus antunesii Harms 23.168 18.5 26.1 Australasia Casuarinaceae Gymnostoma papuanum (S.Moore) L.A.S.Johnson 23.44 12.6 27 Neotropics Urticaceae Cecropia obtusifolia Bertol. 23.55 8.6 28.6 Malesia Altingiaceae Liquidambar excelsa (Noronha) Oken 23.587 19 28.1 Neotropics Fabaceae Quercus oleoides Schltdl. & Cham. 23.83 12.1 27.7 Africa Fabaceae Julbernardia pellegriniana Troupin 23.89198 20.5 26.8 Southeast Asia Pentaphylacaceae Poeciloneuron indicum Bedd. 23.92 22.7 24.9 Africa Rhamnaceae Maesopsis eminii Engl. 24.046 14.7 27.6 Australia Cupressaceae Callitris columellaris F.Muell. 24.217 17.7 28.7 Neotropics Burseraceae Dacryodes excelsa Vahl 24.217 22.2 27.4 Africa Fabaceae Gilbertiodendron dewevrei (De Wild.) J.Léonard 24.427 20.5 26.5 Australasia Fabaceae Intsia bijuga (Colebr.) Kuntze 24.734 17.9 27.5 Africa Burseraceae Aucoumea klaineana Pierre 24.736 21.9 26.7 Africa Chrysobalanaceae Parinari excelsa Sabine 24.977 11.2 29.6 Africa Fabaceae Brachystegia laurentii (De Wild.) Louis ex J.Léonard 25.194 19.9 26.6 Africa Fabaceae Julbernardia seretii (De Wild.) Troupin 25.205 23.5 26 Australia Fabaceae Acacia shirleyi Maiden 25.2725 18.1 27.6 Neotropics Fabaceae Mora excelsa Benth. 25.288 21.7 27 Neotropics Burseraceae Protium excelsior Byng & Christenh. 25.343 8.6 27.7 Africa Urticaceae Musanga cecropioides R.Br. ex Tedlie 25.408 17.5 27.6 Neotropics Burseraceae Protium pilosissimum Engl. 25.43 21.6 27.8 Australasia Dipterocarpaceae Anisoptera thurifera (Blanco) Blume 25.441 19.4 27.3 Africa Fabaceae Tetraberlinia tubmaniana J.Léonard 25.656 24.3 26.2 Neotropics Fabaceae Pentaclethra macroloba (Willd.) Kuntze 25.745 17.2 28.6 Neotropics Fabaceae Spirotropis longifolia (DC.) Baill. 25.76 21.7 26.7 Neotropics Apocynaceae Aspidosperma excelsum Benth. 25.77 15.2 28.2 Neotropics Moraceae Brosimum rubescens Taub. 25.828 19.6 28 Neotropics Fabaceae Mora oleifera (Triana ex Hemsl.) Ducke 25.847 24.6 26.7 Australasia Calophyllaceae Calophyllum euryphyllum Lauterb. 25.85 24.8 26.9 Neotropics Fabaceae Eperua falcata Aubl. 25.886 20.7 27.2 Neotropics Fabaceae Mora gonggrijpii (Kleinhoonte) Sandwith 25.993 21.1 27.3 SE Asia Pentaphylacaceae Adinandra dumosa Jack 26.013 17.3 27.5 East Africa,Western Indian Ocean Arecaceae Lodoicea maldivica (J.F.Gmel.) Pers. 26.108 25.5 26.2 Australasia Tetramelaceae Octomeles sumatrana Miq. 26.128 25.7 26.2 Neotropics Fabaceae Prioria copaifera Griseb. 26.188 16.9 28.6 Malesia Dipterocarpaceae Parashorea malaanonan (Blanco) Merr. 26.213 23 27.5 Neotropics Fabaceae Eperua purpurea Benth. 26.296 21.4 27.7 Southeast Asia Dipterocarpaceae Shorea wangtianshuea Y.K.Yang & J.K.Wu 26.367 21.6 27.2 SE Asia Dipterocarpaceae Dryobalanops aromatica C.F.Gaertn. 26.375 22.6 27.7 Africa Fabaceae Talbotiella gentii Hutch. & Greenway 26.44 23.9 27.8 Malesia Lauraceae Eusideroxylon zwageri Teijsm. & Binn. 26.514 21.7 27.5 Neotropics Fabaceae Dimorphandra conjugata (Splitg.) Sandwith 26.523 26.1 27.2 Neotropics Fabaceae Peltogyne gracilipes Ducke 26.891 26.5 27 Australia Myrtaceae Allosyncarpia ternata S.T.Blake 26.964 25.9 27.9 Neotropics Picrodendraceae Piranhea mexicana (Standl.) Radcl.-Sm. 27.936 12.4 27.1

Table 12 The specific information of annual temperature(°C) in the areas where monodominant savanna species grow Annual Temperature(°C) Region Plant Family Species Mean Minimum Maximum Madagascar Asteropeiaceae Asteropeia densiflora Baker 17 15.9 21.6 Madagascar Schizolaena Schizolaena microphylla H.Perrier 17.04 15.9 18.6 Madagascar Sarcolaenaceae Sarcolaena oblongifolia F.Gérard 17.7 15.9 25.8 Madagascar Phyllanthaceae Uapaca bojeri Baill. 17.978 15.6 24.6 Africa Combretaceae Combretum apiculatum Sond. 21.358 14.7 27 Africa Combretaceae Combretum zeyheri Sond. 21.382 16.4 26.5 Africa Fabaceae Baikiaea plurijuga Harms 21.881 19.9 23.3 Africa Fabaceae Colophospermum mopane(J.Kirk ex Benth.) J.Leonard 22.114 17.4 28.7 Neotropics Bignoniaceae Tabebuia ochracea(Cham.) Standl. 23.779 15.4 28.1 Neotropics Bignoniaceae Tabebuia aurea(Silva Manso) Benth. & Hook.f. ex S.Moore 24.055 6.6 27.7 Africa Fabaceae Burkea africana Hook. 26.642 17.8 29

Table 13 The specific information of precipitation seasonality in the areas where monodominant forest species grow Precipitation seasonality Region Plant Family Species Mean Minimum Maximum Australasia Calophyllaceae Calophyllum euryphyllum Lauterb. 14.5 4 22 SE Asia Dipterocarpaceae Dryobalanops aromatica C.F.Gaertn. 24.59 14 60 Australasia Casuarinaceae Gymnostoma papuanum (S.Moore) L.A.S.Johnson 25.27 9 80 Australasia Dipterocarpaceae Anisoptera thurifera (Blanco) Blume 26.74 9 155 SE Asia Pentaphylacaceae Adinandra dumosa Jack 26.8 11 61 Southeast Asia Dipterocarpaceae Shorea wangtianshuea Y.K.Yang & J.K.Wu 27.03 11 59 Malesia Lauraceae Eusideroxylon zwageri Teijsm. & Binn. 28.14 10 61 Australasia Tetramelaceae Octomeles sumatrana Miq. 31.14 27 34 Malesia Dipterocarpaceae Parashorea malaanonan (Blanco) Merr. 32.97 11 84 Australasia Fagaceae Castanopsis acuminatissima (Blume) A.DC. 34.57 6 102 Africa Fabaceae Cynometra alexandri C.H.Wright 35.18 23 57 Pacific Nothofagaceae Nothofagus aequilateralis (Baum.-Bod.) Steenis 35.6 34 50 Pacific Myrtaceae Arillastrum gummiferum (Brongn. & Gris) Pancher ex Baill. 36.48 32 49 Australasia Myrtaceae Eucalyptus deglupta Blume 38.23 7 98 Neotropics Fabaceae Eperua purpurea Benth. 39.21 18 85 Pacific Myrtaceae Metrosideros kermadecensis W.R.B.Oliv.* 40 40 40 Neotropics Fabaceae Pentaclethra macroloba (Willd.) Kuntze 41.3 15 95 Neotropics Burseraceae Dacryodes excelsa Vahl 41.36 31 110 Neotropics Moraceae Brosimum rubescens Taub. 41.56 11 98 Malesia Altingiaceae Liquidambar excelsa (Noronha) Oken 41.92 21 122 Australasia Cunoniaceae Codia mackeeana H.C.Hopkins & Fogliani 42 34 43 Neotropics Apocynaceae Aspidosperma excelsum Benth. 43.11 10 135 Neotropics Fabaceae Dimorphandra conjugata (Splitg.) Sandwith 43.52 33 83 Neotropics Fabaceae Prioria copaifera Griseb. 44.14 18 72 Neotropics Fabaceae Eperua falcata Aubl. 44.23 19 85 North America Fabaceae Dicymbe corymbosa Spruce ex Benth. 44.73 41 48 Neotropics Fabaceae Spirotropis longifolia (DC.) Baill. 47.5 37 65 East Africa,Western Indian Ocean Arecaceae Lodoicea maldivica (J.F.Gmel.) Pers. 48 48 48 Neotropics Fabaceae Mora excelsa Benth. 48.38 36 85 Australasia Fabaceae Intsia bijuga (Colebr.) Kuntze 49.14 4 125 Africa Fabaceae Gilbertiodendron dewevrei (De Wild.) J.Léonard 49.69 19 80 Africa Fabaceae Brachystegia laurentii (De Wild.) Louis ex J.Léonard 50.18 18 96 Neotropics Fabaceae Mora gonggrijpii (Kleinhoonte) Sandwith 50.78 33 87 Africa Fabaceae Julbernardia pellegriniana Troupin 54.53 21 79 Africa Fabaceae Talbotiella gentii Hutch. & Greenway 55.29 46 96 Neotropics Fabaceae Mora oleifera (Triana ex Hemsl.) Ducke 55.47 20 72 Africa Fabaceae Tetraberlinia tubmaniana J.Léonard 59.2 45 76 Africa Urticaceae Musanga cecropioides R.Br. ex Tedlie 59.64 28 96 Africa Rhamnaceae Maesopsis eminii Engl. 60 22 104 Neotropics Burseraceae Protium pilosissimum Engl. 62.23 19 92 Neotropics Burseraceae Protium excelsior Byng & Christenh. 63.33 11 93 Neotropics Juglandaceae Oreomunnea mexicana (Standl.) J.-F.Leroy 63.57 26 89 Neotropics Urticaceae Cecropia obtusifolia Bertol. 64.13 10 130 Africa Fabaceae Julbernardia seretii (De Wild.) Troupin 64.94 28 77 Africa Chrysobalanaceae Parinari excelsa Sabine 65 17 151 Africa Burseraceae Aucoumea klaineana Pierre 67.68 54 96 Neotropics Fabaceae Quercus oleoides Schltdl. & Cham. 69.87 32 104 Austrlalia Myrtaceae Backhousia bancroftii F.M.Bailey & F.Muell. 75.51 69 94 Neotropics Fabaceae Peltogyne gracilipes Ducke 75.65 41 76 Australia Cupressaceae Callitris columellaris F.Muell. 83.62 23 132 Africa Picrodendraceae Androstachys johnsonii Prain 84.45 80 101 East Asia Dipterocarpaceae Shorea curtisii Dyer ex King 91 81 100 Australia Fabaceae Acacia shirleyi Maiden 98.40 39 123 Africa Fabaceae Pterocarpus antunesii Harms 102.42 72 127 Australia Myrtaceae Allosyncarpia ternata S.T.Blake 107.24 104 110 Neotropics Picrodendraceae Piranhea mexicana (Standl.) Radcl.-Sm. 113.06 81 121 Southeast Asia Pentaphylacaceae Poeciloneuron indicum Bedd. 130.8 122 143

Table 14 The specific information of precipitation seasonality in the areas where monodominant savanna species grow Precipitation seasonality(%) Region Plant Family Species Mean Minimum Maximum Neotropics Bignoniaceae Tabebuia ochracea(Cham.) Standl. 62.91 24 96 Neotropics Bignoniaceae Tabebuia aurea(Silva Manso) Benth. & Hook.f. ex S.Moore 68.7 20 115 Madagascar Sarcolaenaceae Sarcolaena oblongifolia F.Gérard 89.5 44 115 Madagascar Schizolaena Schizolaena microphylla H.Perrier 91.13 79 100 Madagascar Asteropeiaceae Asteropeia densiflora Baker 91.55 79 106 Africa Fabaceae Burkea africana Hook. 92.74 54 162 Africa Combretaceae Combretum apiculatum Sond. 94.93 46 128 Madagascar Phyllanthaceae Uapaca bojeri Baill. 95.06 64 113 Africa Combretaceae Combretum zeyheri Sond. 95.48 49 128 Africa Fabaceae Colophospermum mopane(J.Kirk ex Benth.) J.Leonard 99.67 63 130 Africa Fabaceae Baikiaea plurijuga Harms 108.09 88 125

Table 15 The specific information of temperature seasonality in the areas where monodominant forest species grow Temperature seasonality Region Plant Family Species Mean Minimum Maximum Australasia Tetramelaceae Octomeles sumatrana Miq. 276 232 458 Malesia Lauraceae Eusideroxylon zwageri Teijsm. & Binn. 324.49 165 512 SE Asia Pentaphylacaceae Adinandra dumosa Jack 339.8 138 699 SE Asia Dipterocarpaceae Dryobalanops aromatica C.F.Gaertn. 340.54 210 706 Southeast Asia Dipterocarpaceae Shorea wangtianshuea Y.K.Yang & J.K.Wu 376.98 161 681 North America Fabaceae Dicymbe corymbosa Spruce ex Benth. 451.38 384 589 Australasia Calophyllaceae Calophyllum euryphyllum Lauterb. 474.94 195 670 Africa Fabaceae Cynometra alexandri C.H.Wright 477.02 249 987 Neotropics Fabaceae Spirotropis longifolia (DC.) Baill. 494.21 325 722 Neotropics Fabaceae Peltogyne gracilipes Ducke 504.51 405 506 Neotropics Fabaceae Eperua purpurea Benth. 505.26 284 923 Neotropics Fabaceae Prioria copaifera Griseb. 510.57 178 915 Neotropics Fabaceae Pentaclethra macroloba (Willd.) Kuntze 525.56 193 915 Neotropics Fabaceae Mora excelsa Benth. 539.15 384 643 Neotropics Fabaceae Eperua falcata Aubl. 558.35 321 732 Neotropics Fabaceae Mora gonggrijpii (Kleinhoonte) Sandwith 561.7 393 687 Australasia Dipterocarpaceae Anisoptera thurifera (Blanco) Blume 566.42 166 2792 Australasia Casuarinaceae Gymnostoma papuanum (S.Moore) L.A.S.Johnson 572.85 166 1088 Neotropics Apocynaceae Aspidosperma excelsum Benth. 574.02 180 2008 Neotropics Fabaceae Dimorphandra conjugata (Splitg.) Sandwith 593.11 421 721 Neotropics Moraceae Brosimum rubescens Taub. 596.27 234 2307 Malesia Dipterocarpaceae Parashorea malaanonan (Blanco) Merr. 610.08 193 1401 East Africa,Western Indian Ocean Arecaceae Lodoicea maldivica (J.F.Gmel.) Pers. 612.304 595 617 Malesia Altingiaceae Liquidambar excelsa (Noronha) Oken 657.36 247 3773 Neotropics Fabaceae Mora oleifera (Triana ex Hemsl.) Ducke 677.77 240 915 Africa Fabaceae Brachystegia laurentii (De Wild.) Louis ex J.Léonard 723.5 310 1799 Africa Fabaceae Tetraberlinia tubmaniana J.Léonard 729.48 545 867 Africa Fabaceae Gilbertiodendron dewevrei (De Wild.) J.Léonard 738.89 293 2038 Africa Fabaceae Julbernardia pellegriniana Troupin 742.25 293 1993 Neotropics Burseraceae Protium excelsior Byng & Christenh. 754.95 256 2008 Neotropics Burseraceae Protium pilosissimum Engl. 769.79 272 2081 Australasia Fagaceae Castanopsis acuminatissima (Blume) A.DC. 799.09 165 5022 Australasia Myrtaceae Eucalyptus deglupta Blume 836.13 109 2717 Africa Rhamnaceae Maesopsis eminii Engl. 904.21 228 2038 Africa Chrysobalanaceae Parinari excelsa Sabine 929.44 227 3186 Africa Fabaceae Julbernardia seretii (De Wild.) Troupin 936.05 548 1184 Africa Urticaceae Musanga cecropioides R.Br. ex Tedlie 963.48 393 1840 Africa Burseraceae Aucoumea klaineana Pierre 1078 673 2038 Africa Fabaceae Talbotiella gentii Hutch. & Greenway 1103.67 907 1857 Neotropics Burseraceae Dacryodes excelsa Vahl 1113.19 575 1416 Neotropics Urticaceae Cecropia obtusifolia Bertol. 1181.75 144 3737 Neotropics Juglandaceae Oreomunnea mexicana (Standl.) J.-F.Leroy 1236.75 472 2404 Pacific Myrtaceae Metrosideros kermadecensis W.R.B.Oliv.* 1273 1273 1273 Australasia Fabaceae Intsia bijuga (Colebr.) Kuntze 1355.278 107 3877 Neotropics Fabaceae Quercus oleoides Schltdl. & Cham. 2090.272 662 4399 Australia Myrtaceae Allosyncarpia ternata S.T.Blake 2162.31 1568 2765 Neotropics Picrodendraceae Piranhea mexicana (Standl.) Radcl.-Sm. 2278.335 738 3538 Australasia Cunoniaceae Codia mackeeana H.C.Hopkins & Fogliani 2346.64 2345 2373 Arillastrum gummiferum (Brongn. & Gris) Pancher ex Pacific Myrtaceae 2358.71 2106 2434 Baill. Pacific Nothofagaceae Nothofagus aequilateralis (Baum.-Bod.) Steenis 2378.914 2159 2426 Austrlalia Myrtaceae Backhousia bancroftii F.M.Bailey & F.Muell. 2575.27 2048 2811 Southeast Asia Pentaphylacaceae Poeciloneuron indicum Bedd. 2794.6 1284 4974 Africa Fabaceae Pterocarpus antunesii Harms 2815.78 1116 3733 Africa Picrodendraceae Androstachys johnsonii Prain 3074.65 2769 3277 Australia Cupressaceae Callitris columellaris F.Muell. 3631.86 782 6207 East Asia Dipterocarpaceae Shorea curtisii Dyer ex King 3886.5 2746 4699 Australia Fabaceae Acacia shirleyi Maiden 3894.872 2235 6148

Table 16 The specific information of temperature seasonality in the areas where monodominant savanna species grow Temperature seasonality Region Plant Family Species Mean Minimum Maximum Neotropics Bignoniaceae Tabebuia ochracea(Cham.) Standl. 1477.76 262 3930 Neotropics Bignoniaceae Tabebuia aurea(Silva Manso) Benth. & Hook.f. ex S.Moore 1588.192 333 3976 Africa Fabaceae Burkea africana Hook. 1722.85 496 4246 Madagascar Phyllanthaceae Uapaca bojeri Baill. 2383.24 2119 2652 Madagascar Sarcolaenaceae Sarcolaena oblongifolia F.Gérard 2480.94 1208 2666 Madagascar Asteropeiaceae Asteropeia densiflora Baker 2488.413 2234 2607 Madagascar Schizolaena Schizolaena microphylla H.Perrier 2494.34 2385 2576 Africa Combretaceae Combretum zeyheri Sond. 2797.7 351 4757 Africa Combretaceae Combretum apiculatum Sond. 3127.08 783 4757 Africa Fabaceae Baikiaea plurijuga Harms 3302.84 1999 3799 Africa Fabaceae Colophospermum mopane(J.Kirk ex Benth.) J.Leonard 3450.55 1530 4663