ION CYCLOTRON RESONANCE HEATING Cyclotron Resonance for This Species Is Discussed in [2] and [3] Satisfies Such Criteria

Total Page:16

File Type:pdf, Size:1020Kb

ION CYCLOTRON RESONANCE HEATING Cyclotron Resonance for This Species Is Discussed in [2] and [3] Satisfies Such Criteria of a plasma with a lighter minority species utilizing the ion ION CYCLOTRON RESONANCE HEATING cyclotron resonance for this species is discussed in [2] and [3] satisfies such criteria. In a tokamak plasma the antenna-launched T. TAJIMA fast Alfven wave is converted at the conversion layer into the Institute for Fusion Studies, electrostatic ion cyclotron wave and another fast Alfven wave. The electrostatic wave will eventually heat ions and absorb energy University of Texas, from the incoming electromagnetic wave'. Austin, Texas, United States of America In order to see the most efficient ion cyclotron resonance coupling/heating, we. have conducted a series of computer simula- tions on runs of fully self-consistent 2-1/2 dimensional electro- magnetic particle code. We model the problem by taking a portion of a particular q surface (q ~ 1-2) in the neighborhood of Abstract m = n|) (hydrogen cyclotron frequency) out of entire tokamak. The portion of the magnetic surface is mapped onto a cartesian x-y Ion cyclotron resonance heating of plasmas in tokamak and plane with the x-direction corresponding to the 8 (poloidal) EBT configurations has been studied using 1-2/2 and 2-1/2 dimen- direction and the y-direction to the <j> (toroidal) direction. The sional fully self-consistent electromagnetic particle codes. We toroidal magnetic field (y direction) varies as l/fx+x,,) and the have tested two major antenna configurations; we have also com- poloidal field (x direction) is uniform. The electromagnetic pared heating efficiencies for one and two ion species plasmas. field boundary conditions are handled by the Budden turning point We model a tokamak plasma with a uniform poloidal field and 1/R technique for complete absorption [4] in the positive ami negative toroidal field on a particular q surface. Ion cyclotron waves x direction and periodic in the y direction. The external antenna are excited on the low field side by antennas parallel either to current is given on the x=x. (xa: antenna position) line, where the poloidal direction or to the toroidal direction with different the current may point to either y or z direction with specified phase velocities. In 2D, minority ion heating (v, ) and electron wavenumber ky and frequency u. The particles are re-entrying heating (vn.vx) are observed. The exponential electron heating from the other side upon exit. Calculations are carried out on seems due to the decay instability. The minority heating is con- the 2-1/2 D(x,y,vx,vv,vz,Ex,Ey,E2,Bx,Bv,Bz) electromagnetic code sistent with mode conversion of fast Alfven waves and heating by with typically 128 X*128 grid'anâ 8 X 128 X 128 particles. electrostatic ion cyclotron modes. Minority heating is stronger with a polcidal antenna. The strong electron heating is accom- Me have tried cases of a single or double (proton-deuterium) panied by toroidal current generation. In ID, no thermal insta- species plasma with an antenna current running along the toroidal bility was observed and only strong minority heating resulted. (y) or poloidal (z) direction. Our antenna creates the wave mag- For an EBT plasma we model it by a multiple mirror. We have netic fields SB of the same order of magnitude as the poloidal tested heating efficiency with various minority concentrations, magnetic fields. A toroidal antenna (parallel to the toroidal temperatures, mirror ratios, and phase velocities. In this geo- direction) has only weak coupling to and weak heating of the plasma metry we have beach or inverse beach heating associated with the for a one-species case. The toroidal antenna primarily launches mode conversion layer perpendicular to the toroidal field. No the slow Alfven waves. A poloidal antenna has penetration Into a appreciable electron heating Is observed. Heating of Ions 1s plasma but not heating for a single species plasma. The poloidal linear in time. Foi- both tokamak and EBT slight majority heating antenna launches both the slow and fast Alfven waves. above the collisional rate Is observed due to the second harmonic heating. For a two-sped es plasma (proton-deuterium) at o> - 2fin (where fip 1s the deuterium cyclotron frequency) resonance with a toroidal antenna, we see good fast wave penetration and minority protons I. Ion cyclotron heating of a tokamak plasma (vi velocities perpendicular to the toroidal field) and electrons (in V|| parallel velocity and vi) heating. In the present case the Ion cyclotron resonance heating of a plasma 1s one of the proton population 1s 1/9 of the deuterium population. The quantity most direct ways of heating ions «nong various electromagnetic Bn/3e2n. defined in [3] is'less than unity (roughly 0.4). The wave heating techniques. Experimentally, in fact, it has been antennapstructure is such that it creates a standing wave (no the most successful rf heating method to date [1]. An efficient Poynting vector) in the. toroidal direction in the present setup. method for heating tokamak plasmas calls for both good wave pene- The parallel phase velocity u/k\\ is roughly several times the tration into a large bulk plasm* and good wave absorption by the electron thermal velocity Initially. When the leunched fast wave plasma, preferably, by plasm» Ions. A fast Alfven wave heating structure reaches the singular layer (to - 2S1Q) from the antenna, it seems that mode character undergoes some change (see Fig. 1): II. Ion cyclotron heating of an EBT plasma The wavenumber k^ seems slightly different for ID < ZSQ. Since the wave is launched from x*xa and the antenna is roughly parallel The basic mechanism of heating ions in mirror geometry is the •to the toroidal field with a given wavenumber for antenna current, same as in tokamak geometry. The major differences is that the the mode conversio2 n process would be best understood with fixed inhomogeneity along the external static magnetic field contributes kii2 or Njf*(knc/u) : the dispersion relation is given in terms of an essential role to mode conversion for the Elmo bumpy torus Nx vs. u/nH(x) as in [2] and [3]. It is, however, noticed that (EBT) configuration, while thé inhomogeneity across the external because the magnetic field has shear, the excited wave cannot be static magnetic field or the toroidal field plays an important said to have a completely fixed parallel wavenumber [5]. Detailed role for the tokamak configuration. Because of this geometrical mode structure is under Investigations. difference for EBT it is advantageous to write the dispersion relation in terms of Njj as a function of u/ng with fixed Hjf. The While the above is occurring, the perpendicular minority ion left-circularly polarized component of the wave has a resonance temperature rises (Fig. 2). At the same time the electrons are at u = S!» t" the cold theory (see Fig. 3). heated in both parallel and perpendicular directions. Wave injection from large w/Sfy (weak-side Injection) consti- With the toroidal antenna in a two-species plasma we have tutes an inverse beach heating: a portion of wave is reflected observed more current generation and electron heating and a little near the cut-off back to the weak-side, a portion is transmitted less ion heating than with the poloidal antenna in a two-species toward the strong-side, and the rest is converted near the reso- plasma discussed in the above. nance and contributes to absorption of wave energy by plasma. Wave injection from small co/% (strong-side Injection) constitutes As the electron temperature rises, the parallel mode number a beach heating: a portion of wave is reflected near the conver- reduces (or the parallel wavelength increases) perhaps due to the sion layer, a portion directly goes into the slow wave and even- electron Landau damping (See Fig. 1). By now the parallel phase tually thermal mode, the rest is transmitted beyond the cut-off velocity of the launched wave is in the bulk distribution of elec- point. The wave coupling on the plasma surface is determined by trons. This is accompanied by generation of a toroidally directed the surface impedance current, which amounts to a percent of the antenna current. This current generation saems due to the deviation from 90° of the angle between the electromagnetic Poynting vector leaving the antenna (in the x direction) and the total magnetic field line 0) (tilted from the y direction). The majority temperature rise in the perpendicular direction seems due to the second harmonic (deuterium) cyclotron resonance heating. The collisional heating with the hot hydroden ions would be slower than the observed heating rate (Fig. 2). The late stage electron temperature surge where £„ = 1 + 1 + is accompanied by the exponential growth of electromagnetic energy. The growth rate of this thermal Instability is y ~ 1/4 2 2 The fraction of reflection is given by |R| |(ZS-1)/(ZS+1)| In order to understand the origin of this instability, we and Zs ~ 1 means a good coupling. have reduced the dimensionality from 2-1/2 to 1-2/2. The spatial variation is in the x-direction only and the toroidal field point- Electromagnetic, fully self-consistent particle simulation ing in the y-direction varies 1n x. The poloidal field is in the of EBT-ICRH has been carried out. In order to accomodate rele- x-direction. The antenna current can be in either y or z direc- vant wavelengths in a manageable memory, we take a quarter of a ' tion. The heating results are very similar. The major difference multiple mirror plasma (mirror ratio ^ 1.4) with an appropriate now is that we do not observe the thermal instability nor strong symmetry dependent on the parity of the EH fields in a two-and- electron heating.
Recommended publications
  • Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transfom Ion Cyclotron Resonance Mass Spectrometry
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-09-01 Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transfom Ion Cyclotron Resonance Mass Spectrometry Chad A. Jones Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biochemistry Commons, and the Chemistry Commons BYU ScholarsArchive Citation Jones, Chad A., "Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transfom Ion Cyclotron Resonance Mass Spectrometry" (2014). Theses and Dissertations. 4253. https://scholarsarchive.byu.edu/etd/4253 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Chad A. Jones A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy David V. Dearden, Chair Matthew Asplund Daniel Austin James Patterson Randall B. Shirts Department of Chemistry and Biochemistry Brigham Young University September 2014 Copyright © 2014 Chad A. Jones All Rights Reserved ABSTRACT Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Chad A. Jones Department of Chemistry and Biochemistry, BYU Doctor of Philosophy In this dissertation, I use Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to study the structure and energetics of gas phase ions. Infrared multiphoton dissociation spectroscopy (IRMPD) is a technique for measuring the IR spectrum of gas phase ions in a Penning trap.
    [Show full text]
  • Analysis of Stress Due to Plasma Disruption Current in the KSTAR ICRF Antenna
    Transactions of the Korean Nuclear Society Autumn Meeting Gyeongju, Korea, November 2-3, 2006 Analysis of Stress due to Plasma Disruption Current in the KSTAR ICRF Antenna Suk-Kwon Kim, Dong-Won Lee, Young-Dug Bae, Jong-Gu Kwak Korea Atomic Energy Research Institute, Daejeon 305-353, Korea [email protected] 1. Introduction 3 The stress analysis of KSTAR ICRF antenna has been The dimension of antenna is 730W×1030H×1865L mm , performed by ANSYSTM analytic code. The stress of antenna is composed of the shell-type main box of 20 antenna is caused by the torque of Faraday shield tube mm thickness, inter-plate of 35 mm, cavity of 200 mm which is produced by the induced-current in the case of length, and Faraday shield tube of Φ5/8″(Fig. 2). tokamak plasma disruption. The stress of antenna box and cavity has been analyzed with respect to structural deformation inside the KSTAR RF port. From this (A) (A) analysis, the techniques and mechanism will be prepared, which put ICRF antenna in the rigid position of KSTAR Figure 2. Single component of 5/8″ Faraday shield tube. port. 2. Methods and Results The ASME yield stress (S ) for Inconel 625 of m Faraday shield tube is about 252 MPa for temperature The change of magnetic field is due to the plasma up to 149 °C, and the allowable thermal stress is 3 S , if disruption current decay from 2 MA to 0 in 2 ms and m there are no other stresses. The Faraday shield tubes of vertical drift in the ICRF antenna position [1,2], the ICRF antenna satisfy these requirements from the early cavity current is induced by this varying magnetic field.
    [Show full text]
  • Ion Cyclotron System Design for KSTAR Tokamak
    KAERJ/TR-1053/98 KR9900053 Ion Cyclotron System Design for KSTAR Tokamak 1998 30-40 Ion Cyclotron System Design for KSTAR Tokamak"0<| 1998y 51 , Post-doc. ) , Post-doc. ) g £|(ffl|l-a| m, Post-doc. ) T220-KB0-EN1-980520/BGHONG-E1-D04 Design Description Document WBS22 Ion Cyclotron System Korea Atomic Energy Research Institute Issued for Ancillary Systems Engineering Review Abstract The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (Ro = 1.8 m, a = 0.5 m, K 2, BT = 3.5 T, Ip = 2 MA, tpuise = 300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of rf power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher SL KSTAR RF2HSXI gTII3=?o| i®2^ 0ISSS?m^CH^(lCRF)O| 2^3} 2W^e SXI2I M oigga?nf^raicRF)o| j\^\ &wm SXIQI WUB 47H°I 2| strapg resonant loopg g&sKH 27H2I line stretcher^ §6(1 tuning, matching, decoupling 5|gl gsH 2 MWO| RF Sg!0|| <£MQ0\ 910- 0IS°l ^ mmm ^^sfsn, on mm a?g^ 6MWO| RF OIIUXB SBEDKJII sea Table of Contents 1.
    [Show full text]
  • Studies of Electron Cyclotron Resonance Ion Source Plasma Physics
    DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. 8/2005 STUDIES OF ELECTRON CYCLOTRON RESONANCE ION SOURCE PLASMA PHYSICS BY OLLI TARVAINEN Academic Disser tation for the Degree of Doctor of Philosophy To be presented, by permission of the Faculty of Mathematics and Science of the University of Jyväskylä, for public examination in Auditorium FYS-1 of the University of Jyväskylä on Decenber 16, 2005 at 12 o’clock Jyväskylä, Finland December, 2005 PREFACE PREFACE The work presented in this thesis has been carried out at the JYFL Accelerator Laboratory in the University of Jyväskylä and at Argonne National Laboratory during the years 2003-2005. First, I would like to thank my supervisor Dr. Hannu Koivisto for giving me an opportunity to work in the ion source group of the JYFL Accelerator Laboratory and for his invaluable guidance and support in the course of this work. Another person who deserves my sincere gratitude is Mr. Pekka Suominen, without whom I could not have finished this thesis. I wish to thank him not only for professional help and fruitful comments but also for all the cheerful moments that we have spent together in work, free time and international conferences and summer schools. I extend my thanks to all the people working at the JYFL Accelerator Laboratory, especially my closest colleagues in cyclotron- and RADEF-groups. I am also indebted to the technical personnel of our laboratory. I have been privileged to work and share thoughts with colleagues from accelerator laboratories all over the world. I would like to thank especially the ion source people from Argonne National Laboratory and Lawrence Berkeley National Laboratory.
    [Show full text]
  • Broadband Phase Correction of Fourier Transform Ion Cyclotron Mass Spectra
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Broadband Phase Correction of Fourier Transform Ion Cyclotron Resanonce Mass Spectra Feng Xian Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES BROADBAND PHASE CORRECTION OF FOURIER TRANSFORM ION CYCLOTRON RESANONCE MASS SPECTRA By FENG XIAN A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2012 Feng Xian defended this dissertation on March 30, 2012. The members of the supervisory committee were: Alan G. Marshall Professor Directing Dissertation Christopher L. Hendrickson Professor Co-Directing Dissertation Stephen Hill University Representative Naresh S. Dalal Committee Member Michael Roper Committee Member The Grduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii To my parents, Huaiyun Xian and Mingxiang Gao; my wife, Donghong Min; my daughter, Stephanie Xian, my son, Anthony Xian. iii ACKNOWLEDGEMENTS I am sincerely and heartily grateful to my supervisor, Dr. Alan G. Marshall, for his excellent guidance, caring and support. Dr. Marshall gives me valuable suggestions on how to become a successful scientist and provides me with a scientific environment for doing research. I am sure that it would have not been possible without his patient and intelligent advising. I would also like to thank Dr. Stephen Hill, Dr. Naresh S. Dalal and Dr.
    [Show full text]
  • Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: a Primer
    FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETRY: A PRIMER Alan G. Marshall,*² Christopher L. Hendrickson, and George S. Jackson² Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, FL 32310 Received 7 January 1998; revised 4 May 1998; accepted 6 May 1998 I. Introduction .......................................................................................................... 2 II. Ion Cyclotron Motion: Ion Cyclotron Orbital Frequency, Radius, Velocity, and Energy................................ 2 III. Excitation and Detection of an ICR Signal ............................................................................ 5 A. Azimuthal Dipolar Single-Frequency Excitation ................................................................... 5 B. Azimuthal Dipolar Single-Frequency Detection .................................................................... 6 C. Broadband Excitation ............................................................................................. 7 D. Broadband Detection: Detection Limit............................................................................. 9 IV. Ion-Neutral Collisions ................................................................................................ 9 V. Effects of Axial Con®nement of Ions in a Trap of Finite Size ......................................................... 11 A. Axial Ion Oscillation Due to z-Component of Electrostatic Trapping Potential ....................................
    [Show full text]
  • Observations and Modelling of Ion Cyclotron Emission Observed in JET Plasmas Using a Sub-Harmonic Arc Detection System During Ion Cyclotron Resonance Heating
    This is a repository copy of Observations and modelling of ion cyclotron emission observed in JET plasmas using a sub-harmonic arc detection system during ion cyclotron resonance heating. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/160197/ Version: Published Version Article: McClements, K G, Brisset, Alexandra Helene Marie Brigitte orcid.org/0000-0003-3217- 1106, Chapman, B et al. (6 more authors) (2018) Observations and modelling of ion cyclotron emission observed in JET plasmas using a sub-harmonic arc detection system during ion cyclotron resonance heating. Nuclear Fusion. ISSN 1741-4326 https://doi.org/10.1088/1741-4326/aace03 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ PAPER • OPEN ACCESS Related content - Energetic particles in spherical tokamak Observations and modelling of ion cyclotron plasmas K G McClements and E D Fredrickson emission observed in JET plasmas using a sub- - Fast particle-driven ion cyclotron emission (ICE) in tokamak plasmas and the case for harmonic arc detection system during ion cyclotron an ICE diagnostic in ITER K.G.
    [Show full text]
  • Fifty Years of Progress in ICRF, from First Experiments on the Model C Stellarator to the Design of an ICRF System for DEMO
    Fifty Years of Progress in ICRF, From First Experiments on the Model C Stellarator to the Design of an ICRF System for DEMO J.-M. Noterdaeme1,2 1Max Planck Institute for Plasmaphysics, EURATOM Association, D-85748 Garching, Germany, 2Ghent University, Applied Physics Department, B-9000 Gent, Belgium Abstract. We present a comprehensive overview of the use of ICRF (ion cyclotron range of frequency) scheme from its beginnings, with specific attention paid to the progress that has been achieved on the understanding of the interaction between the plasma edge and the ICRF heating. The developments and the progress made in overcoming the challenges faced are emphasized. We also describe, based on personal experiences, some of the dead-end roads, the sound deductions that sometimes were prematurely discarded or the intuitive conclusions that were later confirmed by more experimental data. We end with a vision for the future. Keywords: ICRF, ICRH, heating, coupling, impurity production, SOL PACS: 52.55.Fa, 52.50.Qt, 52.35.Hr INTRODUCTION Ion cyclotron heating is one of the methods that is used to heat magnetically confined plasmas. It has a very long tradition, having been used on the very first confinement concepts and, after having overcome a number of challenges, is now planned to be used for the next steps ITER and DEMO. Since it is now about 50 years (a golden anniversary) from its initial use for significant heating on the Model C stellarator in 1969 [1], it is appropriate take a look at the past achievements and cast a glance to the future. The paper is organized along the five decades.
    [Show full text]
  • High Rate Electron Capture Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 956 High Rate Electron Capture Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry BY YOURI TSYBIN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 !" !##$ %#&%' ( ) ( ( *) )+ ,) - . )+ , /+ !##$+ ) 0 . 1 , ( 2 1 0 3 4 + 54 ( 6 (7 ( 89 6 8 6 :+ + ;'<+ << + + 24=> ;%8''$8';%?8@ ) ) ) ) ) ( ) ( A + = ) ( ) ) B + - ( ) B ( ) + 2 ) ) ) ( ) C ) ) B 8 8 ) C ( + ,) ( ) ( ) ) ) ( ( 3 (( )) (( ) B+ ,) ( ) ) B - ( -8 9 ) ) + ) ( ) - 9 ( - ( ) B )) ( ) + 4 ( - ) ) ) ( D ) ) C + ) )) - 8 ) B ) )A ) 8 + ,) ( ) ) B ) 8 - B ( !; 6 B ( - ) ( ( 5 ( : - ) C ( B ) ) ) + ) ( ( C ( ( - ) 8 ( + ( 8 ( ) B ) ) ) ! " # $ # % & # '( )*+# # ,-)./. # E / , !##$ 244> %%#$8!"!@ 24=> ;%8''$8';%?8@ & &&& 8$%"< 5) &DD +6+D F G & &&& 8$%"<: To my parents Publications included in this thesis This thesis is a summary
    [Show full text]
  • ICRF Fast Wave Heating and Current Drive on KSTAR Plasma
    KR9800092 KAERI/TR- ICRF Fast Wave Heating and Current Drive on KSTAR Plasma 1997 29-16 £ fijl-Mf- ICRF Fast Wave Heating and Current Drive on KSTAR Plasma 1997 V! 7 € , Post Doc.) , Post Doc.) ABSTRACT For the efficient plasma heating and current drive, the structure of ICRF fast wave propagation and absorption in a tokamak plasma should be first investigated. Several operating scenarios for ICRF fast wave heating and current drive have been explored over a fairly large range of density and temperature on KSTAR [Korea Superconducting Tokamak Advanced Research] [1]. Numerical calculations have been performed using the global wave code, TORIC [2]. The code TORIC solves the finite Larmor radius wave equations in the ion cyclotron frequency range in an arbitrary axisymmetric toroidal geometry. The fast wave propagation/absorption characteristics, power partitions among plasma species and the driven current/current drive efficiencies are calculated. ^l- ifloflA) KSTAR ^?W £ TORIC Contents Abstract List of Tables List of Figures 1. Introduction 1 2. Overview of Heating and Current Drive Scenarios on KSTAR 2 3. Model Equations 3 3.1 Wave Equation 3 3.2 Magnetic Equilibrium 4 3.3 Power Balance 5 3.4 FWCD Modeling 6 4. ICRF Fast Wave Heating 6 5. FWCD 8 6. Summary 9 Acknowledgements 10 References 10 List of Tables Table. 1 The Reference KSTAR Parameters Table. 2 TPower Partitions of Plasma Species List of Figures Fig. 1 Variation of cyclotron resonance frequency of various ion species across the plasma minor radius Fig. 2 The flux-Surface Averaged Power Deposition Profile .vs. p Fig.
    [Show full text]
  • United States Patent [191 [Ill Patent Number: 5,726,448 Smith Et Al
    United States Patent [191 [ill Patent Number: 5,726,448 Smith et al. [451 Date of Patent: Mar. 10, 1998 [54] ROTATING FIELD MASS AND VELOCITY Grosshans. Peter B. and Shields, Patrick J. Comprehensive ANALYZER theory of the fourier transform ion cyclotron resonance signal for all ion trap geometries. J. Chemical Physics. vol. r/5] Inventors: Steven Joel Smith, Alhambra; Am 94(8), Apr. 15. 1991. Chutjian, La Crescenta. both of Calif. Grosshans. Peter B., Chen. Ruidan, Limbach. PatrickA. and [73] Assignee: California Institute of Technology. Marshall. Alan G. Linear excitation and detection in Fourier Pasadena, Calif. transform ion cyclotron resonance mass spectrometry.Inter- national Journal of Mass Spectrometry and Ion Process, vol. [21] Appl. No.: 803,331 139, pp. 169-189. 1994. Guan, Shenheng, Gorshkov, Michael V.. Marshall. Alan G. [22] Filed Feb. 21, 1997 Cicularly polarized quadrature excitation for Fouria-trans- Related U.S. Application Data form ion cyclotron resonance mass spectometry. Chemical Physical Letters, vol. 198. No. 1, 2. pp. 143-148. 1992. [63] Continuation of Ser. No. 694,850,Aug. 9,1996,abandonad. Guan. Shenheng and Marshall. Alan G. Filar ion cyclotron [51] Int. C1.6 ..................................................... BOlD 59/44 resonance ion trap: Spatially multiplexed dipolar and qua- [52] U.S. CI. ............................................. 290/270; 250/295 drupolar excitation for simultaneous ion axialization and [58] Field of Search ..................................... 250/290, 291, detection. Rev. Sci. Insh., vol. 66(1). pp. 63-66, Jan. 1995. 2501292, 293. 294.295 Hatakeyama, Rikizo, Sato, Naoyuki and Sato, Noriyoshi. An efficient mass separation by using traveling waves with ion [561 References Cited cyclotron frequencies.
    [Show full text]
  • Developments in FTICR-MS and Its Potential for Body Fluid Signatures
    Review Developments in FTICR-MS and Its Potential for Body Fluid Signatures Simone Nicolardi 1, Bogdan Bogdanov 2, André M. Deelder 1, Magnus Palmblad 1 and Yuri E. M. van der Burgt 1,* Received: 22 September 2015 ; Accepted: 5 November 2015 ; Published: 13 November 2015 Academic Editor: Laszlo Prokai 1 Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands; [email protected] (S.N.); [email protected] (A.M.D.); [email protected] (M.P.) 2 PerkinElmer, San Jose Technology Center, San Jose, CA 95134, USA; [email protected] * Correspondence: [email protected]; Tel.: +31-71-526-9527 Abstract: Fourier transform mass spectrometry (FTMS) is the method of choice for measurements that require ultra-high resolution. The establishment of Fourier transform ion cyclotron resonance (FTICR) MS, the availability of biomolecular ionization techniques and the introduction of the Orbitrap™ mass spectrometer have widened the number of FTMS-applications enormously. One recent example involves clinical proteomics using FTICR-MS to discover and validate protein biomarker signatures in body fluids such as serum or plasma. These biological samples are highly complex in terms of the type and number of components, their concentration range, and the structural identity of each species, and thus require extensive sample cleanup and chromatographic separation procedures. Clearly, such an elaborate and multi-step sample preparation process hampers high-throughput analysis of large clinical cohorts. A final MS read-out at ultra-high resolution enables the analysis of a more complex sample and can thus simplify upfront fractionations.
    [Show full text]