Application for Field Release of Listronotus Appendiculatus Leconte

Total Page:16

File Type:pdf, Size:1020Kb

Application for Field Release of Listronotus Appendiculatus Leconte 1 Application for field release of Listronotus appendiculatus LeConte (Coleoptera: Curculionidae) for the biological control of Sagittaria platyphylla (Engelmann) JG Smith and S. calycina Engelmann (Alismataceae) in Australia Nominating Organisation: Victorian Department of Jobs, Precincts and Regions (DJPR) Technical contact: Dr Raelene Kwong Biosciences Research AgriBio, La Trobe University, 5 Ring Rd, Bundoora, VIC 3083 Email: [email protected] 2 Contents 1 Executive summary ........................................................................................................ 4 2 Information about the Target species ............................................................................. 7 Taxonomy ............................................................................................................... 7 Sagittaria platyphylla (Engelmann) J.G Smith .................................................. 7 Sagittaria calycina Engelmann ......................................................................... 9 Close relatives native in Australia: ........................................................................ 11 Close relatives introduced to Australia: ................................................................. 12 Habitat .................................................................................................................. 15 Native geographic range and climatic and edaphic variation between sites within range. Limits to distribution where known. .......................................................... 15 Current Australian distribution ........................................................................ 15 Control Methods ................................................................................................... 17 Herbicides ...................................................................................................... 17 Other treatments ............................................................................................ 17 Response to other human manipulations .............................................................. 18 Importance ............................................................................................................ 18 Detrimental .................................................................................................... 18 Beneficial ....................................................................................................... 19 Legislation ............................................................................................................ 19 Stakeholder Consultation ...................................................................................... 19 Approval as target species for biological control ................................................... 20 History of biological control ................................................................................... 20 3 Information on the biological control agent ................................................................... 22 Taxonomy ............................................................................................................. 22 Biology and ecology of the species ....................................................................... 22 Native range of the agent ...................................................................................... 23 Related species and a summary of their host range .............................................. 23 Source of the agent ............................................................................................... 26 Climate compatibility ...................................................................................... 26 Genetic compatibility ...................................................................................... 26 Agent’s potential for control of the target(s) ........................................................... 27 Possible interactions, including conflicts-of-interest with existing biological control programs ......................................................................................................................... 29 Information on where, when and how initial releases would be made ................... 29 3 Information on whether this species has established invasive populations, and if so, where those populations are ............................................................................................ 29 Information on the results of any other environmental risk assessments undertaken on the species in Australia and overseas ......................................................................... 29 Details on the quarantine facility and methods on containment ............................. 29 4 Information on non-target organisms at risk from the agent ......................................... 30 Test list for determining the host-specificity of Listronotus appendiculatus ............ 30 Materials and Methods .......................................................................................... 35 Trial 1. Adult no-choice and choice-minus-target oviposition trials ............................... 35 Trial 2. No-choice whole-plant adult oviposition and larval survival trials on native species ........................................................................................................................ 36 Trial 3. No-choice whole-plant larval development trial................................................. 37 Trial 4 Continuation trial ............................................................................................... 38 Trial 5. Achene predation trial ...................................................................................... 38 Native range studies .................................................................................................... 38 Statistical analyses ...................................................................................................... 39 Overall assessment of the reproductive rate of L. appendiculatus on single plant species over multiple generations ............................................................................................. 39 Overall assessment of plant damage ........................................................................... 41 Results .................................................................................................................. 43 Trial 1. Adult no-choice and choice-minus-target oviposition container trials ................ 43 Trial 2. No-choice whole-plant adult oviposition and larval survival trials ...................... 45 Trial 3. No-choice whole-plant larval development trial................................................. 45 Trial 4. Continuation trial .............................................................................................. 46 Overall assessment of the reproductive rate of L. appendiculatus on single plant over multiple generations ..................................................................................................... 48 Overall assessment of plant damage ........................................................................... 49 Trial 5. Achene predation trial ...................................................................................... 53 Native range studies .................................................................................................... 53 5 Discussion ................................................................................................................... 56 6 Conclusion ................................................................................................................... 60 7 References .................................................................................................................. 60 8 Supplementary Material ............................................................................................... 64 4 1 Executive summary Sagittaria platyphylla and Sagittaria calycina (Alismataceae) are emergent aquatic herbs native to north America that have become serious weeds of shallow ephemeral or permanent water bodies, in natural and ruderal habitats. In Australia, S. platyphylla extends from the tropical (Townsville) to the temperate regions of New South Wales, Australian Capital Territory, Victoria, South Australia and Western Australia. It is a serious invader of irrigation channels and drains in south-eastern Australia, forming dense monocultures that impede water flow, increasing risk of flooding and damaging irrigation infrastructure. In natural waterways, extensive infestations threaten native biodiversity and potentially impede the movement of native fish. Sagittaria calycina is much less widespread than S. platyphylla and is currently only present in NSW where it is a major crop competitor in rice crops of the Murrumbidgee and Coleambally irrigation areas, causing yield reductions of up to 75%, increased production costs and reductions in rice quality. Few effective options are available for the management of S. platyphylla and S. calycina, particularly in sensitive aquatic habitats or where off- target damage to horticultural and rice crops is a concern. Sagittaria platyphylla and S. calycina were declared targets for biological control in Australia in November 2015 after an in-depth biogeographical study on the genetic, demographic and herbivory differences between native USA and invasive Australian populations concluded that the prospects for successful
Recommended publications
  • The Aquatic Macrophyte Flora of the Pandeiros River Wildlife Sanctuary
    Check List 9(2): 415–424, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution The Aquatic Macrophyte Flora of the Pandeiros River PECIES S Wildlife Sanctuary, Minas Gerais, Brazil OF Marco Otávio Dias Pivari 1*, Pedro Lage Viana 1 and Felipe Sá Fortes Leite 2 ISTS L 1 Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Laboratório de Sistemática Vegetal. Avenida Antônio Carlos 6621. CEP 31270-010. Belo Horizonte, MG, Brazil. 2 Universidade Federal de Minas Gerais, Departamento de Zoologia. Avenida Antônio Carlos 6621. CEP 31270-010. Belo Horizonte, MG, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The São Francisco River forms one of the main Brazilian hydrographic basins of ca. 645,000 km2. The Pandeiros River is a tributary situated on the left margin of the São Francisco and is considered a strategic component for conservation Sanctuary was carried out, using collections of botanical samples and examination of specimens at the BHCB Herbarium. of biodiversity of that hydrographic basin. An inventory of the aquatic macrophyte flora of the Pandeiros River Wildlife swamps. A total of 101 species was inventoried, distributed in 37 families (1 charophytes, 1 liverworts, 3 ferns and 32 Aquatic environments in the study area were classified as follows: the Pandeiros riverbed, floodplains, oxbow lakes, and representative. The area shows a high diversity in its aquatic macrophytes and has an important role in the conservation of biodiversityangiosperms) of and the 71region. genera. The species were classified into seven life forms, with the amphibian and rafted plants the more Introduction forests, and several aquatic macrophyte environments, Aquatic environments correspond to approximately associated with watercourses (Barbosa and Maillard 11% of the continental area of tropical regions (Rebouças 2010).
    [Show full text]
  • Intensified Agriculture Favors Evolved Resistance to Biological Control
    Intensified agriculture favors evolved resistance to biological control Federico Tomasettoa,1, Jason M. Tylianakisb,c, Marco Realed, Steve Wrattene, and Stephen L. Goldsona,e aAgResearch Ltd., Christchurch 8140, New Zealand; bCentre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, United Kingdom; dSchool of Mathematics and Statistics, University of Canterbury, Christchurch 8140, New Zealand; and eBio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved February 14, 2017 (received for review November 6, 2016) Increased regulation of chemical pesticides and rapid evolution of source–sink evolutionary dynamics whereby vulnerable genotypes pesticide resistance have increased calls for sustainable pest are maintained by immigration from refuges (16). In addition, management. Biological control offers sustainable pest suppres- combinations of different enemy species may exert separate se- sion, partly because evolution of resistance to predators and lective pressures, and thereby prevent the pest from evolving re- parasitoids is prevented by several factors (e.g., spatial or tempo- sistance to any single enemy across its entire range (17). ral refuges from attacks, reciprocal evolution by control agents, However, these mechanisms that prevent resistance to biological and contrasting selection pressures from other enemy species). control could in theory be undermined in large-scale homoge- However, evolution of resistance may become more probable as neous agricultural systems, which may have few refuges to sustain agricultural intensification reduces the availability of refuges and susceptible strains of the pest, low variability in attack rates, and diversity of enemy species, or if control agents have genetic low biodiversity of enemy species (9).
    [Show full text]
  • MVG 21 – Other Grasslands, Herblands, Sedgelands and Rushlands
    NVIS Fact sheet MVG 21 – Other grasslands, herblands, sedgelands and rushlands Australia’s native vegetation is a rich and fundamental • communities and support a large range of species, partly element of our natural heritage. It binds and nourishes as a result of their geographical range, and variation in our ancient soils; shelters and sustains wildlife, protects soils and site conditions streams, wetlands, estuaries, and coastlines; and absorbs • include many plant species capable of vegetative carbon dioxide while emitting oxygen. The National reproduction by rhizomes, or stolons Vegetation Information System (NVIS) has been developed • can comprise associated species that may include and maintained by all Australian governments to provide perennial forbs or/and short-lived ephemeral plants that a national picture that captures and explains the broad proliferate after seasonal or cyclonic rains, to longer-term diversity of our native vegetation. perennials that rely on underground organs such This is part of a series of fact sheets which the Australian as rhizomes Government developed based on NVIS Version 4.2 data to • occur on a range of sites including intermittently provide detailed descriptions of the major vegetation groups inundated depressions, margins of perennial freshwater (MVGs) and other MVG types. The series is comprised of lagoons and brackish tidal or inland wetlands. Ferns tend a fact sheet for each of the 25 MVGs to inform their use by to dominate specific humid areas where the environment planners and policy makers. An additional eight MVGs are is less variable between seasons available outlining other MVG types. • have structurally distinctive features of landscape that provide a variety of habitats for faunal species For more information on these fact sheets, including its limitations and caveats related to its use, please see: • may be associated with an overstorey of scattered and ‘Introduction to the Major Vegetation Group (MVG) isolated trees fact sheets’.
    [Show full text]
  • Coleoptera) (Excluding Anthribidae
    A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included.
    [Show full text]
  • Reproductive Phasirna Loci and DICER-LIKE5, but Not Microrna
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061721; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Reproductive phasiRNA loci and DICER‐LIKE5, but not microRNA loci, diversified in monocotyledonous plants Parth Patel2§, Sandra M. Mathioni1§, Reza Hammond2, Alex E. Harkess1, Atul Kakrana2, Siwaret Arikit3, Ayush Dusia2, and Blake C. Meyers1,2,4* 1Donald Danforth Plant Science Center, Saint Louis, Missouri 63132 2Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716 3Department of Agronomy, Kamphaeng Saen and Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand 4Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 §These authors contributed equally to this work. *Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061721; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract (200 words) 2 In monocots other than maize and rice, the repertoire and diversity of microRNAs (miRNAs) and 3 the populations of phased, secondary, small interfering RNAs (phasiRNAs) are poorly 4 characterized. To remedy this, we sequenced small RNAs from vegetative and dissected 5 inflorescence tissue in 28 phylogenetically diverse monocots and from several early‐diverging 6 angiosperm lineages, as well as publicly available data from 10 additional monocot species.
    [Show full text]
  • Biological Resources Assessment
    Biological Resources Assessment Valle Vista Properties HAYWARD, ALAMEDA COUNTY, CALIFORNIA Prepared For: William Lyon Homes, Inc. 2603 Camino Ramon, Suite 450 San Ramon, California 94583 Contact: Scott Roylance WRA Contact: Mark Kalnins [email protected] Date: July 10, 2017 Revised: November 16, 2017 2169-G East Francisco Blvd., San Rafael, CA 94702 (415) 454-8868 tel [email protected] www.wra-ca.com This page intentionally blank. TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................... 3 2.0 REGULATORY BACKGROUND ........................................................................................... 3 2.1 Sensitive Biological Communities .............................................................................. 3 2.2 Special-Status Species .............................................................................................. 8 2.3 Relevant Local Policies, Ordinances, Regulations ..................................................... 9 3.0 METHODS ............................................................................................................................. 9 3.1 Biological Communities ............................................................................................ 10 3.1.1 Non-Sensitive Biological Communities ...................................................... 10 3.1.2 Sensitive Biological Communities .............................................................. 10 3.2 Special-Status Species ...........................................................................................
    [Show full text]
  • Luronium Natans
    Luronium natans Status UK Biodiversity Action Plan Priority species. Nationally Scarce. Schedule 8, Wildlife & Countryside Act (1981). IUCN Threat category: Least concern (2005). Taxonomy Magnoliopsida: Alismataceae Scientific names: Luronium natans (L.) Raf. Common names: Floating Water-plantain, Dŵr-lyriad Nofiadwy Luronium natans (Alisma natans L.) is a distinct member of the Water-plantain family, and is the only representative of its genus. Biology & Distribution Luronium is under-recorded due to its generally submerged aquatic habitat, shy flowering, great phenotypic plasticity and similarity to other aquatic plants. The leaves do not tend to be caught on NB. Floating grapnels or get washed ashore and often the easiest leaves are way to find it in water is to dive or use a long hooked usually more blunt than pole. It may also be found easily when exposed in Submerged illustrated seasonal ponds. The species can grow in both isolated leaves clumps or extensive lawns on the bottom of canals, lochs, ponds, etc., in water up to 4 m depth. Figure 1. Luronium natans (from J. Sowerby & J. E. Sowerby Although its stronghold is Wales and the Welsh (1902). English Botany. London) borders, it has been found recently in Cumbria, Scotland and Ireland where it is probably an over- that they have flat leaves). In still or gently flowing looked native rather than a recent arrival; it may well water the submerged rosette leaves are typically c. 5-15 be more widespread still. cm long, strongly flattened, linear-triangular, tapering uniformly from a base c. 4-7 mm wide to a fine acute Identification & Field survey tip.
    [Show full text]
  • Low Risk Aquarium and Pond Plants
    Plant Identification Guide Low-risk aquarium and pond plants Planting these in your pond or aquarium is environmentally-friendly. Glossostigma elatinoides, image © Sonia Frimmel. One of the biggest threats to New Zealand’s waterbodies is the establishment and proliferation of weeds. The majority of New Zealand’s current aquatic weeds started out as aquarium and pond plants. To reduce the occurrence of new weeds becoming established in waterbodies this guide has been prepared to encourage the use of aquarium and pond plants that pose minimal risk to waterbodies. Guide prepared by Dr John Clayton, Paula Reeves, Paul Champion and Tracey Edwards, National Centre of Aquatic Biodiversity and Biosecurity, NIWA with funding from the Department of Conservation. The guides will be updated on a regular basis and will be available on the NIWA website: www.niwa.co.nz/ncabb/tools. Key to plant life-forms Sprawling marginal plants. Grow across the ground and out over water. Pond plants Short turf-like plants. Grow in shallow water on the edges of ponds and foreground of aquariums. Includes very small plants (up to 2-3 cm in height). Most species can grow both submerged (usually more erect) and emergent. Pond and aquarium plants Tall emergent plants. Can grow in water depths up to 2 m deep depending on the species. Usually tall reed-like plants but sometimes with broad leaves. Ideal for deeper ponds. Pond plants Free floating plants. These plants grow on the water surface and are not anchored to banks or bottom substrates. Pond and aquarium plants Floating-leaved plants. Water lily-type plants.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Alisma Lanceolatum
    Alisma lanceolatum COMMON NAME Water plantain FAMILY Alismataceae AUTHORITY Alisma lanceolatum With. FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Herbs - Monocots NVS CODE ALILAN BRIEF DESCRIPTION A marginal aquatic plant, with lance-shaped leaves, with many tiny pink flowers held on a pyramid-shaped inflorescence, much taller than the rest of the plant. DISTRIBUTION Scattered in Hawkes Bay, Wellington and Canterbury. HABITAT Margins of still and slow flowing water bodies and wetlands. FEATURES Upper Hutt. Dec 2006. Photographer: Jeremy Leafy emergent perennial herb up to c. 1 m high, although non-flowering Rolfe plants are much shorter. Aerial parts die off over winter to the rootstock. Leaves all basal, broad ovate 7-23 (28) × 2-5 cm, with a tapered base with a long petiole up to or exceeding the leaf blade. Petiole is semi- circular in cross-section (D-shaped). Submerged or floating leaved plants sometimes occur, these have narrower than emergent leaves. Inflorescence a large, much-branched panicle; branches whorled. Flowers usually pale lilac, c. 1 cm across. C. 20 rounded and flattened seeds (achenes) c. 2.5 mm long, in a dense circular head. SIMILAR TAXA Alisma plantago-aquatica has broader lance-shaped leaves and lilac rather than pink coloured flowers. Sagittaria platyphylla has larger flowers on a smaller inflorescence and triangular petioles. FLOWERING Summer FLOWER COLOURS Red/Pink FRUITING Summer to autumn Upper Hutt. Dec 2006. Photographer: Jeremy Rolfe LIFE CYCLE Spreads by waterfowl and water dispersed seed. YEAR NATURALISED 1895 ORIGIN Native to Europe, North Africa and West Asia. REASON FOR INTRODUCTION Possibly ornamental pond plant, or a seed or soil contaminant.
    [Show full text]
  • Cytologia 49: 295-304, 1984
    Cytologia 49: 295-304, 1984 Cytological Studies of Some Helobiales of Kashmir Himalayas I. Family Alismataceae P. N. Mehra and T. K. Pandita Department of Botany, Panjab University, Chandigarh-160 014, India Received June 16, 198 The family 2 Alismataceae belongs to the order Helobiales, and according to Lawrence (1951) comprises 14 genera and 50-60 species distributed mainly in the temperate and tropical regions of the northern hemisphere. Airy Shaw (1973) estimated 13 genera and 90 species in this family. Plants grow mostly in fresh- water swamps and streams. Hooker (1894) divided the family Alismaceae into two tribes, Alismae and Butomeae, on the basis of nature of the fruit. In the former the fruit is of 3 or more achenes, while in the latter it is always of follicles. Pichon (1946) proposed family ranks for the two tribes and stated that Alismataceae be treated as constituting mem- bers having latiferous ducts, leaves petiolate with expanded blades, petals mostly caducous, ovules campylotropous, and seeds with curved embryos. This emenda- tion resulted in the transfer to Alismataceae of all members of Alismaceae except Butomus. Phylogenetically the family Alismataceae represents one of the most primitive of the extant monocots. The objective presently was to investigate the cytology of members of this family with a view to trace the evolutionary trends in their karyotypes and also to study the meiotic behaviour of chromosomes. Material and methods Collections were made from nature. Meiotic studies were carried out from pollen mother-cells (PMC's). Young inflorescences were fixed in 1:3 acetic al- cohol with a few drops of chloroform for 24 hours and preserved in 70% alcohol.
    [Show full text]
  • Weevils) of the George Washington Memorial Parkway, Virginia
    September 2020 The Maryland Entomologist Volume 7, Number 4 The Maryland Entomologist 7(4):43–62 The Curculionoidea (Weevils) of the George Washington Memorial Parkway, Virginia Brent W. Steury1*, Robert S. Anderson2, and Arthur V. Evans3 1U.S. National Park Service, 700 George Washington Memorial Parkway, Turkey Run Park Headquarters, McLean, Virginia 22101; [email protected] *Corresponding author 2The Beaty Centre for Species Discovery, Research and Collection Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON. K1P 6P4, CANADA;[email protected] 3Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia 24112; [email protected] ABSTRACT: One-hundred thirty-five taxa (130 identified to species), in at least 97 genera, of weevils (superfamily Curculionoidea) were documented during a 21-year field survey (1998–2018) of the George Washington Memorial Parkway national park site that spans parts of Fairfax and Arlington Counties in Virginia. Twenty-three species documented from the parkway are first records for the state. Of the nine capture methods used during the survey, Malaise traps were the most successful. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Sixteen species adventive to North America are documented from the parkway, including three species documented for the first time in the state. Range extensions are documented for two species. Images of five species new to Virginia are provided. Keywords: beetles, biodiversity, Malaise traps, national parks, new state records, Potomac Gorge. INTRODUCTION This study provides a preliminary list of the weevils of the superfamily Curculionoidea within the George Washington Memorial Parkway (GWMP) national park site in northern Virginia.
    [Show full text]