"First Light" in the NTT R

Total Page:16

File Type:pdf, Size:1020Kb

No. 56 - June 1989 "First Light" in the NTT R. WILSON, ESO On the night 22-23 March 1989, "First Light" was achieved in the NlT in the sense that the first direct images of astronomical objects were produced with the optics in an optimized state near the zenith position. The fact that the quality of these im- ages turned out to be the best ever ' recorded in ground-based astronomy certainly made it the most memorable event in the ESO career of the author and his colleagues whose work on the NTT had led to this remarkable success. But this result did not drop out of the sky! Many years of hard work by a small group of dedicated colleagues were necessary to achieve it. The principal new technology feature of the N7T was its Active Optics control system, the background and principles of which were described in The Messenger No. 53 (September 1988), page 1. The i other new technology feature of funda- mental importance for the optical quality was the design of the building. Although its basic concept is the same as that of the MMT (a building rotating with the alt- az mounted telescope), the new I features were crucial, particularly the opening of the telescope area on both sides to allow maximum natural ventila- tion. These two new technology features, together with the excellent work of Carl Zeiss in figuring the optics, were the key to the image quality achieved at First Light. The Basic ("Passive") Alignment of the Optics This false-colour photo shows one of the best CCD frames obtained with the ESO NTduring the night of "first light" on March 23, 1989. The fieldjs near the centre of the bright southern The final stage for the NTT globular cluster Omega Centauri and the frame size is -47 x 47 arcseconds. The measured started in November 1988. The diameter of the stellar images (at half of the maximum intensity) is only 0.33 arcseconds. mechanics of the telescope had been Exposure time: 10 seconds; North is up and East is to the left. See page 3 for more details. assembled under the supervision of - Optical identification of OPT, the line the mean of many measurements as Gerardo Ihle. To him and his colleagues defined as the optical axis of the tele- about 12,800 nm or 4.5 arcsec with zero in Chile we owe, also for much help scope and which is perpendicular to correction (central position), of the x-y later, a deep sense of gratitude. The ALT and traverses the intersection movement of M2. Using the calibration optical alignment procedure and the point of ALT and AZ. value given by Bernard Delabre from the handling of all the elements involved, - Reduction of the angular error be- optical design of the telescope, it could required the definition and procurement tween OPT and AZ and the intersec- be deduced that the MI cell had to be of a considerable number of mounting tion (coplanarity) error in the knot tilted by about 2 arcmin to correct this and handling devices. This was planned point of AZ relative to ALT. large coma. This is a measure of the and defined by Francis Franza and Paul - Adjustment of M3 bearing axis to be extreme sensitivity of passive tele- Giordano last autumn and manufac- coincident in angle and position with scopes to decentring coma, since this is tured with the help of Rainer Grote. OPT. a quite small angle and well within the Francis and Paul then spent 6 weeks - Mount M2, centre it to OPT, set it mechanical tolerances of the telescope. from the beginning of November, with- perpendicular to OPT and align the A maximum of 2,5 mm had to be out intermission, preparing this material focus movement to OPT. machined off the flexion bar feet holding for the following alignment mission. This - Remove M 1 dummy (counterweight), the M 1 cell in order to achieve this tilt. included the mounting of the prime mount M 1 cell (without M 1) and The biggest problem was to interpret mirror supports and their testing with centre M 1 cell to OPT. the physical orientation of the coma in Lothar Noethe. As an example of the - Insert M3, adjust its tilt in both planes the telescope: an error here would have sort of auxiliary material involved, one and place its reflecting surface on the meant the whole operation of lowering can cite the temporary "bridge" over M 3 intersection of ALT with OPT. the cell and machining the flexion bars which serves for its mounting but also - Mount M 1, adjust tilt of the M 1 cell to would have to be repeated! It was there- as support for one of the sighting tele- eliminate decentring coma on a fore with a feeling of great relief that we scopes used in the alignment. natural star ("Technical First Light"). saw the confirmation of the orientation Then followed a second mission from The last step above is the final one in when the first image analysis showed 10 January, also of 6 weeks without any the passive alignment. In fact, it could that the coma had been reduced to less intermission, for the basic (passive) not be completed at that stage as the than one tenth of its original value. alignment of the optics of the NTT, image analyser (our off-line test system This formally completed the passive carried out by Francis Franza, Paul Gior- called "ANTARES") was not yet avail- adjustment of the telescope. It remained dano and Ray Wilson. The procedure for able at that time with a CCD detector. At to optimize its performance in the zenith this alignment was laid down by the that stage, therefore, no attempt was by the dc active optics correction, i.e. above on the basis of a standard proce- made to adjust the M 1 cell but about ?h the correction of residual fixed errors. dure used by them on a number of La of the considerable coma (which was Silla telescopes, notably the 3.6 m, the normal and expected at this stage with- The Night of "'First Light" Danish 1.54 m, the CAT and, in its final out adjustment of the MI cell) was stages, for the MPlA 2.2 m. The NTT corrected by a visual inspection of the Apart from one effect, the image anal- alignment procedure was a more refined defocused image and by using the full ysis had brought no surprises. This one and complete form, taking account of its range available of the M2 x-y movement effect was a residual of axi-symmetric alt-az mount and double Nasmyth for fine coma correction. "Technical (spherical) aberration which was some focus. If one considers certain inevitable First Light" was celebrated on 15 Febru- five times larger than the maximum we problems of control of the telescope, ary with an image on TV of Jupiter, with had expected. Variations of this value this alignment programme, comprising modest seeing and at a zenith distance could be explained by a hot-air bubble 56 individual technical steps, rep- of about 50". effect on the primary, but a fixed re- resented the absolute maximum achiev- sidual of about 0.5 arcsec remained. able in 6 weeks of continuous work. In The Final Effort: Trimming the This exceeded the passive specifica- fact, without the absolutely excellent NTT Optics to the Limit tion. Because its correction absorbed a support from the La Silla colleagues in much larger part of our total active dy- electronics, mechanics and optics, it The final stage of the setting up and namic range than we expected, it would not have been possible in the optimization of the optics near the proved most convenient to correct us- time. In particular, the continuous zenith was accomplished by the above ing the "natural mode", a system of superb support of the mechanical work- team and Lothar Noethe in a 16-day modal formulation suggested by Noethe shop must be emphasized as playing a mission ending on 23 March. Lothar and Schneermann for the VLT. In this key role in the completion of the heavy played the central role as the person way, this aberration as well as the other work load. This general procedure in- responsible for the entire software and fairly small residuals were all reduced to cluded the aluminization of the three image analysis side, following up the values within one tenth of an arcsec, mirrors, carried out under the supervi- work on the 1 m experiment and the including the residue of coma. This re- sion of Paul Giordano who has many acceptance of the optics at the quired the averaging of ten or more years of experience in this field. Of manufacturers, Carl Zeiss. measurements. We were helped by the course, the biggest task here was the The first essential step was to get the fact that, during the nights leading up to primary aluminization, above all be- image analysis working. This was rapid- "First Light" on 22-23 March, the exter- cause of the delicate handling proce- ly achieved with no significant prob- nal seeing was extremely good. dure involved. lems. Gaetano Andreoni of La Silla be- On 20 March we could already The individual steps of the alignment came an invaluable member of our team announce that the "INTRINSIC QUALI- procedure can be grouped in the follow- and worked with us the whole time. TY" of the telescope optics (80 % of the ing work packages: The image analysis confirmed im- light of a star concentrated in about 0.15 - Optical identification of the ALT-axis mediately the amount of decentring arcsec) had already been reached.
Recommended publications
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Ioptron CEM40 Center-Balanced Equatorial Mount
    iOptron®CEM40 Center-Balanced Equatorial Mount Instruction Manual Product CEM40 (#7400A series) and CEM40EC (#7400ECA series, as shown) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. 2 Table of Contents Table of Contents ........................................................................................................................................ 3 1. CEM40 Introduction ............................................................................................................................... 5 2. CEM40 Overview ................................................................................................................................... 6 2.1. Parts List .........................................................................................................................................
    [Show full text]
  • Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
    Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates.
    [Show full text]
  • Discovery of a Magnetic Field in the Early B-Type Star Sigma Lupi
    Astronomy & Astrophysics manuscript no. Henrichs˙sigmaLup˙Printed c ESO 2018 July 10, 2018 Discovery of a magnetic field in the early B-type star σ Lupi⋆ H.F. Henrichs1,2, K. Kolenberg3,4, B. Plaggenborg1, S.C. Marsden5,6, I.A. Waite7, J.D. Landstreet8,9, G.A. Wade10, J.H. Grunhut10, M.E. Oksala11, and the MiMeS collaboration 1 Astronomical Institute ’Anton Pannekoek’, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands 2 Department of Astrophysics/IMAPP Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA 4 Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 5 Australian Astronomical Observatory, PO Box 296, Epping, NSW 1710, Australia 6 Centre for Astronomy, School of Engineering and Physical Sciences, James Cook University, Townsville, 4811, Australia 7 Faculty of Sciences, University of Southern Queensland, Toowoomba, Qld 4350 Australia 8 Dept. of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 Canada 9 Armagh Observatory, College Hill, Armagh, Northern Ireland BT61 9DG 10 Dept. of Physics, Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada 11 Dept. of Physics and Astronomy, University of Delaware, Newark, DE, USA Received date / Accepted date ABSTRACT Context. Magnetic early B-type stars are rare. Indirect indicators are needed to identify them before investing in time-intensive spectropolari- metric observations. Aims. We use the strongest indirect indicator of a magnetic field in B stars, which is periodic variability of ultraviolet (UV) stellar wind lines occurring symmetric about the approximate rest wavelength.
    [Show full text]
  • Arxiv:1807.06205V1 [Astro-Ph.CO] 17 Jul 2018 1 Introduction2 3 the ΛCDM Model 18 2 the Sky According to Planck 3 3.1 Assumptions Underlying ΛCDM
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 July 18, 2018 Planck 2018 results. I. Overview, and the cosmological legacy of Planck Planck Collaboration: Y. Akrami59;61, F. Arroja63, M. Ashdown69;5, J. Aumont99, C. Baccigalupi81, M. Ballardini22;42, A. J. Banday99;8, R. B. Barreiro64, N. Bartolo31;65, S. Basak88, R. Battye67, K. Benabed57;97, J.-P. Bernard99;8, M. Bersanelli34;46, P. Bielewicz80;8;81, J. J. Bock66;10, 7 12;95 57;92 71;56;57 2;6 45;32;48 42 85 J. R. Bond , J. Borrill , F. R. Bouchet ∗, F. Boulanger , M. Bucher , C. Burigana , R. C. Butler , E. Calabrese , J.-F. Cardoso57, J. Carron24, B. Casaponsa64, A. Challinor60;69;11, H. C. Chiang26;6, L. P. L. Colombo34, C. Combet73, D. Contreras21, B. P. Crill66;10, F. Cuttaia42, P. de Bernardis33, G. de Zotti43;81, J. Delabrouille2, J.-M. Delouis57;97, F.-X. Desert´ 98, E. Di Valentino67, C. Dickinson67, J. M. Diego64, S. Donzelli46;34, O. Dore´66;10, M. Douspis56, A. Ducout57;54, X. Dupac37, G. Efstathiou69;60, F. Elsner77, T. A. Enßlin77, H. K. Eriksen61, E. Falgarone70, Y. Fantaye3;20, J. Fergusson11, R. Fernandez-Cobos64, F. Finelli42;48, F. Forastieri32;49, M. Frailis44, E. Franceschi42, A. Frolov90, S. Galeotta44, S. Galli68, K. Ganga2, R. T. Genova-Santos´ 62;15, M. Gerbino96, T. Ghosh84;9, J. Gonzalez-Nuevo´ 16, K. M. Gorski´ 66;101, S. Gratton69;60, A. Gruppuso42;48, J. E. Gudmundsson96;26, J. Hamann89, W. Handley69;5, F. K. Hansen61, G. Helou10, D. Herranz64, E. Hivon57;97, Z. Huang86, A.
    [Show full text]
  • Managing Many Files with Disk Archiver (DAR)
    Intro Manual demos Function demos Summary Managing many files with Disk ARchiver (DAR) ALEX RAZOUMOV [email protected] WestGrid webinar - ZIP file with slides and functions http://bit.ly/2GGR9hX 2019-May-01 1 / 16 Intro Manual demos Function demos Summary To ask questions Websteam: email [email protected] Vidyo: use the GROUP CHAT to ask questions Please mute your microphone unless you have a question Feel free to ask questions via audio at any time WestGrid webinar - ZIP file with slides and functions http://bit.ly/2GGR9hX 2019-May-01 2 / 16 Intro Manual demos Function demos Summary Parallel file system limitations Lustre object storage servers (OSS) can get overloaded with lots of small requests I /home, /scratch, /project I Lustre is very different from your laptop’s HDD/SSD I a bad workflow will affect all other users on the system Avoid too many files, lots of small reads/writes I use quota command to see your current usage I maximum 5 × 105 files in /home, 106 in /scratch, 5 × 106 in /project (1) organize your code’s output (2) use TAR or another tool to pack files into archives and then delete the originals WestGrid webinar - ZIP file with slides and functions http://bit.ly/2GGR9hX 2019-May-01 3 / 16 Intro Manual demos Function demos Summary TAR limitations TAR is the most widely used archiving format on UNIX-like systems I first released in 1979 Each TAR archive is a sequence of files I each file inside contains: a header + some padding to reach a multiple of 512 bytes + file content I EOF padding (some zeroed blocks) at the end of the
    [Show full text]
  • Probing Dust Grain Evolution in IM Lupi's Circumstellar Disc
    A&A 489, 633–650 (2008) Astronomy DOI: 10.1051/0004-6361:200810121 & c ESO 2008 Astrophysics Probing dust grain evolution in IM Lupi’s circumstellar disc Multi-wavelength observations and modelling of the dust disc C. Pinte1,2,D.L.Padgett3, F. Ménard2, K. R. Stapelfeldt4,G.Schneider5, J. Olofsson2,O.Panic´ 6,J.C.Augereau2, G. Duchêne2,7, J. Krist4, K. Pontoppidan8, M. D. Perrin9,C.A.Grady10, J. Kessler-Silacci11,E.F.vanDishoeck6,12, D. Lommen6, M. Silverstone13,D.C.Hines14,S.Wolf15,G.A.Blake8, T. Henning16, and B. Stecklum17 1 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK e-mail: [email protected] 2 Laboratoire d’Astrophysique de Grenoble, CNRS/UJF UMR 5571, 414 rue de la Piscine, BP 53, 38041 Grenoble Cedex 9, France 3 Spitzer Science Center, Caltech, Pasadena, CA 91125, USA 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 5 Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 6 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 7 Astronomy Dept, UC Berkeley, Berkeley CA 94720-3411, USA 8 Division of Geological and Planetary Sciences 150-21, California Institute of Technology, Pasadena, CA 91125, USA 9 Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1562, USA 10 Eureka Scientific and Goddard Space Flight Center, Code 667, Greenbelt, MD 20771, USA 11 The University of Texas at Austin, Department of Astronomy, 1 University Station C1400, Austin, Texas 78712–0259, USA 12 Max Planck
    [Show full text]
  • Hydraspace: Computational Data Storage for Autonomous Vehicles
    HydraSpace: Computational Data Storage for Autonomous Vehicles Ruijun Wang, Liangkai Liu and Weisong Shi Wayne State University fruijun, liangkai, [email protected] Abstract— To ensure the safety and reliability of an The current vehicle data logging system is designed autonomous driving system, multiple sensors have been for capturing a wide range of signals of traditional CAN installed in various positions around the vehicle to elim- bus data, including temperature, brakes, throttle settings, inate any blind point which could bring potential risks. Although the sensor data is quite useful for localization engine, speed, etc. [4]. However, it cannot handle sensor and perception, the high volume of these data becomes a data because both the data type and the amount far burden for on-board computing systems. More importantly, exceed its processing capability. Thus, it is urgent to the situation will worsen with the demand for increased propose efficient data computing and storage methods for precision and reduced response time of self-driving appli- both CAN bus and sensed data to assist the development cations. Therefore, how to manage this massive amount of sensed data has become a big challenge. The existing of self-driving techniques. As it refers to the installed vehicle data logging system cannot handle sensor data sensors, camera and LiDAR are the most commonly because both the data type and the amount far exceed its used because the camera can show a realistic view processing capability. In this paper, we propose a computa- of the surrounding environment while LiDAR is able tional storage system called HydraSpace with multi-layered to measure distances with laser lights quickly [5], [6].
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]