Leccion 32 Monoplacoforos

Total Page:16

File Type:pdf, Size:1020Kb

Leccion 32 Monoplacoforos Lección 33.- Los Monoplacóforos. Definición. Anatomía externa e interna. Reproducción y desarrollo embrionario. Brusca & Brusca, 2003 Tryblidium reticulatum, a typical Early Palaeozoic shallow-water Tryblidiid Length about 3.5 cm. Silurian (Wenlock Age) of Baltica (Gotland) "Monoplacophora" - Tryblidiida - Tryblidiidae Los primeros fósiles de Tryblidiidos aparecieron durante el Cámbrico temprano (las primeras formas son consideradas Helcionelloida), más tarde se sucede una importante radiación que supuso el nacimiento de numerosas y nuevas clases, es posible que evolucionaran desde un predecesor común, otras teorías apuntan a que podrían ser grupos tardíos con apariencias primitivas. Los "tryblidiidos" nunca fueron un grupo muy diverso o abundante, su registro fósil abarca desde el cámbrico temprano hasta el devónico. Después de este tiempo desaparecieron, está asumido que migraron a las aguas profundas donde han sobrevivido hasta hoy. Hasta el descubrimiento de Neopilina galathea en 1952, los Tryblidiidos y otros "Monoplacóforos" fueron considerados un brazo extinto de moluscos denominados Amphigastropodos, lo que los relacionó con los gasterópodos primitivos. Las formas actuales supervivientes presentan escasos cambios desde el paleozoico, con formas muy similares a las formas extintas. Se cree que estos antepasados ya eran formas bentónicas que se alimentaban de algas y bacterias que conseguían de los turbios fondos marinos y que la migración a las profundidades abisales se dio posteriormente Figure 3. This is the fossil shell of a monoplacophoran mollusk, Helcionella walcotti, that lived almost 500,000,000 years ago. Such animals are thought to be very similar to the ancestors of most shelled mollusks. Living monoplacophorans have smooth shells, and tend to be found in deep water. Neopilina galatheae Neopilina galatheae Morfología externa Class Monoplacophora - estimated to have about 25 to 50 species. o They have a single limpet-like shell; similar to fossils found at the beginning of the Paleozoic Era, 450 million years ago. o These are classic living fossils; almost all the living mollusks are thought to have descended from Monoplacophoran ancestors. o Their major distinguishing characteristic is that virtually all organ systems are found in multiples, unlike all other mollusks. For example in Neoplina: • 10 pair of lateral pedal connectives in the nervous system. • 8 pair of pedal retractor muscles. • 6 pair of nephridia. • 6 pair of gills. • 2 pair of gonads. • 2 pair of auricles. • 1 pair of ventricles o Living examples are small, deep-water limpets, and their ecology is unknown. o They are not found on coral reefs or in reef tanks. CARACTERÍSTICAS GENERALES 1. Tiene una concha muy tenue, por lo que los músculos retractores del pie no dejan impresiones musculares 2. Se conocen unas 5 especies de Neopilina, 3 de Vema y otras Monoplacophorus de Monoplacophorus 3. Viven a grandes profundidades 4. Son Microfágicos, la boca está rodeada por: • 2 labios, uno dorsal (muy grande) y otro ventral (muy pequeño) • Un reborde lateral, que se interpreta como restos del VELO de la larva • Sobre el Velo existen tentáculos: 1. Dos tentáculos Preorales 2. Dos tentáculos Postorales 5. La concha es pateliforme y tiene el endostraco muy delgado, ápice curvado hacia delante ESTUDIO DE LAS PARTES BLANDAS 1. Pie redondeado, musculoso 2. Cavidad paleal alrededor del pie (cavidad paleal), donde encontramos: • 5 pares de branquias, los ctenidios unipectinados (otras especies 6 pares) • 6 pares de Nefridioporos, el 3º y 4º par también funcionan como Gonoporo • Parte posterior ano, anterior boca 1. Son Microfágicos, la boca está rodeada por: • 2 labios, uno dorsal (muy grande) y otro ventral (muy pequeño) • Un reborde lateral, que se interpreta como restos del VELO de la larva • Sobre el Velo existen tentáculos: 1. Dos tentáculos Preorales 2. Dos tentáculos Postorales Musculatura 1. Existen 8 pares de músculos retractores del pie 2. Existen 3 músculos circulares • Externo • Medio • Interno 3. Músculos cruzados 4. Todos los músculos ayudan a la adherencia del animal al sustrato Tubo digestivo de Neopilina 1. Se inicia en la boca Cavidad Bucal en su fondo está el “órgano subradular” con células Glandulares y Sensoriales (como en quitones) 2. Rádula de tipo LACINOIDE (Lacinia = lat. Flap (franja, tira) 1C+5L 3. Estómago con protostilo Intestino con 6 circovoluciones 4. Recto Ano RÉGIMEN ALIMENTICIO Microfágico. Diatomeas, foraminíferos, espículas de esponjas RENO-GONADAL-PERICÁRDICO Bránquias Gónada Corazón Nefridios Pericardio Vena Aorta 1. Existen 2 sacos celomáticos dorsales, bien separados, algunos autores los consideran espacios sanguíneos 2. Los sacos están en contacto con los 5 últimos pares de “nefridios” por medio de celomoductos 3. El corazón está rodeado por un par de cámaras celomáticas pericárdicas 4. Lleva 1 ventrículo hendido + y 2 pares de aurículas que reciben la sangre de los 2 últimos pares de branquias 5. La sangre sale del corazón por la VENA AORTA que se ramifica para dar un sistema de lagunas SISTEMA EXCRETOR 1. Existen 6 pares de metanefridios 2. En un principio el 6º par no se interpretó como un nefridio ya que nos e veía donde desembocaba 3. Los tres pares anteriores abren el los sacos celomáticos dorsales 4. Los tres pares últimos abren en el pericardio 5. Evolutivamente pudiera ser que los 5 últimos pares de nefridios abrieran en el celoma dorsal GÓNADAS • Son animales dioicos , las gónadas están independientes del pericardio • Las gónadas abren al exterior por medio de los nefridios 3º y 4º par • Se piensa que la fecundación es externa, el desarrollo es desconocido SISTEMA NERVIOSO 1. Es primitivo, del tipo TETRANEURAL 2. Existe un anillo periesofágico que presenta 2 concentraciones laterales, son los “ganglios cerebroideos” 3. Del anillo periesofágico salen: • Dos nervios que van por los costados del cuerpo: “nervios pleurales o laterales” • De la parte ventral salen los “nervios pedios” que se unen por una “comisura anterior” y “otra posterior” 4. Entre los cordones nerviosos laterales y pedios existen “10 comisuras” nerviosas seriadas 5. No se ha visto con detalle el Sistema Nervioso Estomatogstrioco ÓRGANOS DE LOS SENTIDOS • Debajo de los tentáculos existen dos “estatocistos” IMPORTANCIA FILOGENÉTICA Los monoplacóforos se caracterizan: 1. Por poseer una concha dorsal cónica (pateliforme) 2. Por la repetición seriada de una serie de estructuras • Branquias • Nefridios • Músculos • Comisuras nerviosas) 3. Pero esta aparente segmentación no afecta: • A la cavidad celomática • Ni coincide para todos los sistemas de órganos de la misma especie • Ni coincide al comparar el número de pares de órganos entre distintas especies de monoplacóforos 4. Por lo que no es comparable a la auténtica metamería de anélidos y artrópodos. FIGURA 166. Monoplacóforos (Neopilina galatheae); (a) vistas dorsal y ventral, (b) vista dorsal del sistema nervioso, (c) vista lateral de la anatomía interna (tomado de PECHENIK, 2000). IMPORTANCIA FILOGENÉTICA del descubriento de Neopilina galathea 1. Cuando descubrieron Neopilina se quisieron ver en el hasta un antecesor de los artrópodos 2. Pero existen una serie de rasgos que nos permiten ver la organización de los moluscos: • Existe un celoma independiente del sistema Reno-Gonadal-Pericárdico • Encontramos una repetición de órganos: 1. Branquias 2. Nefridios 3. Músculos retractores del pie 4. Las comisuras nerviosas 3. Todo esto se puede interpretar como que Neopilina (los Monoplacóforos) son unos animales que han empezado el proceso de metamerización, y para LEMCHE y WINGSTRAD (1959), WINGSTRAND (1985) o NIELSEN (2001), esto constituye una prueba evidente del carácter ancestralmente metamérico de los moluscos y de su estrecha relación con anélidos 1. Hoy se interpreta así: • Neopilina no deriva de un animal metamérico • El hecho de que exista un número diferente de cada órgano repetido, implica que en Neopilina existe una metamerización incipiente • Por lo que en la base de los moluscos se desprendieron unos animales que intentaron metamerizarse pero no lo consiguieron 2. Los moluscos nunca han sido metaméricos.. 3. Los moluscos se habrían separado de los Anélidos y Artrópodos antes de conseguir la metamería 1. WILLMER (1990) señala que una auténtica segmentación como la de anélidos y artrópodos no se presenta nunca en moluscos, que esta conlleva: • Una repetición mesodérmica y celómica estricta • Cada par de órganos o músculos se repite del mismo modo en cada segmento corporal 2. Por lo que casos como los de Neopilina deben de ser considerados sólo como de pseudometamerismo 3. YONGE (1957), CLARK (1979) o SALVINI-PLAWEN (1981, 1985), indican respecto a la metamería de Neopilina: • Que dicha pseudometamería estaría ligada a necesidades funcionales • Que es equiparable a lo que ocurre en algunos turbelarios y nemertinos • La repetición de la musculatura habría aparecido como consecuencia del desarrollo progresivo de la concha • La repetición de nefridios y conductos aurículo-branquiales obedecería a necesidades de tipo metabólico y circulatorio • La multiplicación de las branquias hace más funcional que sus conexiones con el circulatorio tiendan a independizarse, lo cual estaría también en relación con la repetición (división) de las aurículas cardíacas • Que los pares de nefridios aparecerían por división de un par original de nefridios alargados, similares a los de poliplacóforos (LAUTERBACH, 1983a) 4. Por otro lado, tal como reconoce NIELSEN (2001) • Los “segmentos” de los moluscos no se originan en una zona de crecimiento teloblástico como ocurre en anélidos • Por el contrario, los rudimentos de todas las estructuras repetidas de forma seriada en moluscos 1. Aparecen, durante la ontogenia, de forma heterogénea en el espacio y en el tiempo 2. Su diferenciación se inicia en diferentes momentos y cursa con diferentes tasas de desarrollo. 5. En definitiva, la evolución de los moluscos a partir de un protoanélido segmentado parece poco probable, desde el punto de vista de la anatomía y embriología comparadas, y desde el punto de vista funcional .
Recommended publications
  • Morphology and Systematic Position of Tryhlidium Canadense Whiteaves
    Morphology and systematic position of Tryblidium canadense Whiteaves, 1884 (Mollusca) from the Silurian of North America JOHNS. PEEL Peel, J. S.: Morphology and systematic position of Tryblidium Canadense Whiteaves, 1884 (Mollusca) from the Silurian of North America. Bull. geol. Soc. Denmark, vol. 38, pp. 43-51. Copenhagen, April 25th, 1990. https://doi.org/10.37570/bgsd-1990-38-04 The nomenclative history of Tryblidium canadense Whiteaves, 1884, a large, oval, univalved mollusc originally described from the Silurian Guelph Formation of Ontario, is reviewed. Following comparison to Archinace/la Ulrich & Scofield, 1897, in which genus it has generally been placed for almost a century, Whiteaves' species is redescribed and assigned to a new gastropod genus, Guelphinace/la. John S. Peel, Geological Survey of Greenland, Oster Voldgade JO, 1350 Copenhagen K, Denmark. February 10th, 1989. Whiteaves (1884) described a single internal the sub-apical wall. He commented that the mould of a large (45 mm), oval, univalved mol­ structure seemed to be a single continuous mus­ lusc from the Guelph Formation (Silurian) of cular impression and not two separate depres­ Hespeler, Ontario, Canada as Tryblidium Cana­ sions, as suggested by Lindstrom (1884), al­ dense (Fig. 1). Uncertainty surrounding its sys­ though he did not refer directly to the latter's tematic position developed immediately when description. He made no reference to the thin Lindstrom (1884) questioned the assignment to dorsal band which Lindstrom (1884) had consid­ the genus Tryblidium
    [Show full text]
  • Keeping a Lid on It: Muscle Scars and the Mystery of the Mobergellidae
    1 Keeping a lid on it: muscle scars and the mystery of the 2 Mobergellidae 3 4 TIMOTHY P. TOPPER1,2* and CHRISTIAN B. SKOVSTED1 5 6 1Department of Palaeobiology, Swedish Museum of Natural History, P.O. Box 50007, 7 SE-104 05, Stockholm, Sweden. 8 2Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham 9 DH1 3LE, UK. 10 11 Mobergellans were one of the first Cambrian skeletal groups to be recognized yet have 12 long remained one of the most problematic in terms of biological function and affinity. 13 Typified by a disc-shaped, phosphatic sclerite the most distinctive character of the 14 group is a prominent set of internal scars, interpreted as representing sites of former 15 muscle attachment. Predominantly based on muscle scar distribution, mobergellans 16 have been compared to brachiopods, bivalves and monoplacophorans, however a 17 recurring theory that the sclerites acted as operculum remains untested. Rather than 18 correlate the number of muscle scars between taxa, here we focus on the percentage of 19 the inner surface shell area that the scars constitute. We investigate two mobergellan 20 species, Mobergella holsti and Discinella micans comparing the Cambrian taxa with the 21 muscle scars of a variety of extant and fossil marine invertebrate taxa to test if the 22 mobergellan muscle attachment area is compatible with an interpretation as operculum. 23 The only skeletal elements in our study with a comparable muscle attachment 24 percentage are gastropod opercula. Complemented with additional morphological 25 information, our analysis supports the theory that mobergellan sclerites acted as an 26 operculum presumably from a tube-living organism.
    [Show full text]
  • Diversity of Animals 355 15 | DIVERSITY of ANIMALS
    Concepts of Biology Chapter 15 | Diversity of Animals 355 15 | DIVERSITY OF ANIMALS Figure 15.1 The leaf chameleon (Brookesia micra) was discovered in northern Madagascar in 2012. At just over one inch long, it is the smallest known chameleon. (credit: modification of work by Frank Glaw, et al., PLOS) Chapter Outline 15.1: Features of the Animal Kingdom 15.2: Sponges and Cnidarians 15.3: Flatworms, Nematodes, and Arthropods 15.4: Mollusks and Annelids 15.5: Echinoderms and Chordates 15.6: Vertebrates Introduction While we can easily identify dogs, lizards, fish, spiders, and worms as animals, other animals, such as corals and sponges, might be easily mistaken as plants or some other form of life. Yet scientists have recognized a set of common characteristics shared by all animals, including sponges, jellyfish, sea urchins, and humans. The kingdom Animalia is a group of multicellular Eukarya. Animal evolution began in the ocean over 600 million years ago, with tiny creatures that probably do not resemble any living organism today. Since then, animals have evolved into a highly diverse kingdom. Although over one million currently living species of animals have been identified, scientists are [1] continually discovering more species. The number of described living animal species is estimated to be about 1.4 million, and there may be as many as 6.8 million. Understanding and classifying the variety of living species helps us to better understand how to conserve and benefit from this diversity. The animal classification system characterizes animals based on their anatomy, features of embryological development, and genetic makeup.
    [Show full text]
  • Deep-Sea Video Technology Tracks a Monoplacophoran to the End of Its Trail (Mollusca, Tryblidia)
    Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia) Sigwart, J. D., Wicksten, M. K., Jackson, M. G., & Herrera, S. (2018). Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia). Marine Biodiversity, 1-8. https://doi.org/10.1007/s12526-018-0860-2 Published in: Marine Biodiversity Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2018 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06. Oct. 2021 Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia) Sigwart, J.
    [Show full text]
  • Fish Bulletin 131. the Structure, Development, Food Relations, Reproduction, and Life History of the Squid Loligo Opalescens Berry
    UC San Diego Fish Bulletin Title Fish Bulletin 131. The Structure, Development, Food Relations, Reproduction, and Life History of the Squid Loligo opalescens Berry Permalink https://escholarship.org/uc/item/4q30b714 Author Fields, W Gordon Publication Date 1964-05-01 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 131 The Structure, Development, Food Relations, Reproduction, and Life History of the Squid Loligo opalescens Berry By W. GORDON FIELDS 1965 1 2 3 4 ACKNOWLEDGMENTS This study ("a dissertation submitted to the Department of Biological Sciences and the Committee on the Graduate Division of Stanford University in partial fulfillment of the requirements for the degree of Doctor of Philosophy") was undertaken at the suggestion, and under the direction, of Tage Skogsberg, Hopkins Marine Station, to whom I am greatly indebted for inspiration and guidance until his untimely death. Thereafter, Rolf L. Bolin was my advisor, and I wish to express my appreciation to him for the help he gave me. In the final part of this investigation and in bringing its results together, Donald P. Abbott, through his enthusiasm, his wide scientific knowledge, his ability and his wisdom, has given encouragement and immeasurable help in many ways: to him I express my deepest appre- ciation. Lawrence R. Blinks, Director of the Hopkins Marine Station, throughout my work there, arranged suitable laboratory space and conditions for my use and, deftly and to my advantage, resolved all administrative matters re- ferred to him; I am very grateful to him.
    [Show full text]
  • Foraging Tactics in Mollusca: a Review of the Feeding Behavior of Their Most Obscure Classes (Aplacophora, Polyplacophora, Monoplacophora, Scaphopoda and Cephalopoda)
    Oecologia Australis 17(3): 358-373, Setembro 2013 http://dx.doi.org/10.4257/oeco.2013.1703.04 FORAGING TACTICS IN MOLLUSCA: A REVIEW OF THE FEEDING BEHAVIOR OF THEIR MOST OBSCURE CLASSES (APLACOPHORA, POLYPLACOPHORA, MONOPLACOPHORA, SCAPHOPODA AND CEPHALOPODA) Vanessa Fontoura-da-Silva¹, ², *, Renato Junqueira de Souza Dantas¹ and Carlos Henrique Soares Caetano¹ ¹Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, Departamento de Zoologia, Laboratório de Zoologia de Invertebrados Marinhos, Av. Pasteur, 458, 309, Urca, Rio de Janeiro, RJ, Brasil, 22290-240. ²Programa de Pós Graduação em Ciência Biológicas (Biodiversidade Neotropical), Universidade Federal do Estado do Rio de Janeiro E-mails: [email protected], [email protected], [email protected] ABSTRACT Mollusca is regarded as the second most diverse phylum of invertebrate animals. It presents a wide range of geographic distribution patterns, feeding habits and life standards. Despite the impressive fossil record, its evolutionary history is still uncertain. Ancestors adopted a simple way of acquiring food, being called deposit-feeders. Amongst its current representatives, Gastropoda and Bivalvia are two most diversely distributed and scientifically well-known classes. The other classes are restricted to the marine environment and show other limitations that hamper possible researches and make them less frequent. The upcoming article aims at examining the feeding habits of the most obscure classes of Mollusca (Aplacophora, Polyplacophora, Monoplacophora, Scaphoda and Cephalopoda), based on an extense literary research in books, journals of malacology and digital data bases. The review will also discuss the gaps concerning the study of these classes and the perspectives for future analysis.
    [Show full text]
  • Smithsonian Miscellaneous Collections Volume 117, Number 13
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 117, NUMBER 13 Cljarles; ©. anb JWarp T^aux OTaltott l^esfeatcl) Jfunb PRIMITIVE FOSSIL GASTROPODS AND THEIR BEARING ON GASTROPOD CLASSIFICATION (With Two Plates) BY J. BROOKES KNIGHT Research Associate in Paleontology, U. S. National Museum (Publication 4092) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION OCTOBER 29, 1952 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 117, NUMBER 13 Cijarles; B. anb itlatp "^aux OTalcott Eesiearcf) Jf unb PRIMITIVE FOSSIL GASTROPODS AND THEIR BEARING ON GASTROPOD CLASSIFICATION (With Two Plates) BY J. BROOKES KNIGHT Research Associate in Paleontology, U. S. National Museum (Publication 4092) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION OCTOBER 29, 1952 ^5« &oxi> (^attimovt (pxcee BALTIUORE, MD., 7. 8. A. 1 CONTENTS Page Introduction i General considerations i Proposed classification 5 Explanatory notes 7 Acknowledgments 10 Argument 10 Neontological considerations 10 Morphology of living Polyplacophora 10 Morphology of living pleurotomarians 1 Anisopleuran ontogeny 14 Preliminary inferences from neontological considerations 16 Recapitulation 21 Paleontological considerations 22 Climbing down the family tree 24 The pleurotomarian-bellerophont branch to the isopleuran Monoplacophora 24 The polyplacophoran branch 31 Reclimbing the tree 33 Exploration of other early branches 34 The Patellacea 34 Maclurites and its allies 36 Pelagiella and its allies 40 Taxonomic conclusions 44 Appendix : Interpretation of the bellerophonts 48 References 55 Cfjarlejf ©. anb iUlarp "^aux ffllalcott H^egeacfj jFunb PRIMITIVE FOSSIL GASTROPODS AND THEIR BEARING ON GASTROPOD CLASSIFICATION By J. BROOKES KNIGHT Research Associate in Paleontology, U. S. National Museum (With Two Plates) INTRODUCTION GENERAL CONSIDERATIONS With only one exception that comes readily to mind, the various classifications of the class Gastropoda in current use are the work of neontologists.
    [Show full text]
  • Mollusca, Tergomya) from Bohemia (Czech Republic
    Acta Musei Nationalis Pragae, Series B, Natural History, 60 (3–4): 143–148 issued December 2004 Sborník Národního muzea, Serie B, Přírodní vědy, 60 (3–4): 143–148 KOSOVINA, A NEW SILURIAN TRYBLIDIID GENUS (MOLLUSCA, TERGOMYA) FROM BOHEMIA (CZECH REPUBLIC) RADVAN J. HORNÝ Department of Palaeontology, National Museum, Prague, Czech Republic; [email protected] Horný, R. J. (2004): Kosovina, a new Silurian tryblidiid genus (Mollusca, Tergomya) from Bohemia (Czech Republic). – Ac- ta Mus. Nat. Pragae, Ser. B, Hist. Nat., 60 (3-4): 143-148. Praha. ISSN 0036-5343. Abstract. A new genus and species of tryblidiid tergomyans (monoplacophorans of previous usage), Kosovina peeli gen. et sp. n., is described from the Silurian (Přídolí) of the Barrandian Area, Bohemia, Czech Republic. It is related to Pilina KOKEN et PERNER, 1925, but it has seven or eight sets of paired dorsal muscle scars of different shape and configuration and a rather thick, widely ovoid and deep shell. Besides Retipilina HORNÝ, 1956, it is the second representative of the Subfami- ly Tryblidiinae so far discovered in the Silurian of Bohemia. I Mollusca, Tergomya, Tryblidiidae, Kosovina peeli gen. et sp. n., internal shell morphology, muscle scars, Silurian, Barran- dian Area, Bohemia, Czech Republic Received October 11, 2004 Introduction localities). D. barrandei (PERNER, 1903) from the Požáry Tryblidiid tergomyans constitute an inconspicuous ele- Formation is based on one specimen. Similarly, the genus ment of Lower Palaeozoic epifaunal marine communities in Pragamira (one species, P. perlonga HORNÝ, 1995) was the Barrandian Area. Nevertheless, if compared with pub- described from one specimen from the Požáry Formation.
    [Show full text]
  • THE ANATOMY of NEOPILINA GALATHEAE LEMCHE. 1957 (Molluscs Tryblidiacea)
    THE ANATOMY OF NEOPILINA GALATHEAE LEMCHE. 1957 (Molluscs Tryblidiacea) By HENNING LEMCHE and KARL GEORG WINGSTRAND Zoological Museum. Institute for Comparative Anatomy and Zoological University of Copenhagen Technique. University of Copenhagen CONTENTS Introduction ......................... 10 The Lateral Nerve Cords ................ 47 Material and Methods .................... 10 The Pedal Nerve Cords .................. 48 General Description ..................... 12 The Nerves to the Postoral Tentacles and to The Outer Epithelia ..................... 13 the Statocysts ....................... 49 Slightly Specialized Epithelia .............. 13 Comparative Remarks .................. 50 Specialized Ciliated Epithelia .............. 13 Senseorgans ........................ 50 Glandular Epithelia .................... 14 Connective Tissue and Blood Cells ............ 51 Cuticle-Carrying Epithelia ................ 14 The Vascular System .................... 52 The Shell and the Pallial Fold .............. 15 General Morphology .................. 52 The Gills ........................... 19 The Efferent Gill Vessels and the Arterial Mantle TheFoot ........................... 21 Sinuses .......................... 52 The Mouth Region ...................... 22 The Atria .......................... 52 The Preoral Tentacles .................. 22 The Ventricles ....................... 53 The Velum ......................... 23 The Atrio-Ventricular Ostia ............... 53 The Postoral Tentacle Tufts ............... 23 The Aorta ........................
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 11 June 2018 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Topper, Timothy P. and Skovsted, Christian B. (2017) 'Keeping a lid on it : muscle scars and the mystery of the Mobergellidae.', Zoological journal of the Linnean Society., 180 (4). pp. 717-731. Further information on publisher's website: https://doi.org/10.1093/zoolinnean/zlw011 Publisher's copyright statement: This is a pre-copyedited, author-produced PDF of an article accepted for publication inZoological Journal of the Linnean Societyfollowing peer review. The version of recordTopper, Timothy P. Skovsted, Christian B. (2017). Keeping a lid on it: muscle scars and the mystery of the Mobergellidae. Zoological Journal of the Linnean Society 180(4): 717-731is available online at: https://doi.org/10.1093/zoolinnean/zlw011. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk 1 Mobergellans were one of the first Cambrian skeletal groups to be recognized yet have 2 long remained one of the most problematic in terms of biological function and affinity.
    [Show full text]
  • Matrice Organique De La Coquille Et Position Phylétique De Neopilina Galatheae (Mollusques, Monoplacophores)
    Annls Soc. r. zool. Belg. — T. I l l (1981) — fase. 1-4 — pp. 143-150 — Bruxelles 1981 (Communication reçue le 10 février 1981) MATRICE ORGANIQUE DE LA COQUILLE ET POSITION PHYLÉTIQUE DE NEOPILINA GALATHEAE (MOLLUSQUES, MONOPLACOPHORES) par M. POULICEK et Ch . JE U N IA U X Laboratoires de Morphologie, Systématique et Écologie animales Université de Liège 22, Quai Van Beneden B-4020 Liège (Belgique) RÉSUMÉ L ’intérêt de la connaissance de la composition chimique de la coquille des Mollusques dans le cadre de discussions d’ordre phylogénétique est illustré par le cas de Neopilina et des Monoplacophores. L ’analyse chimique de la matrice organique des différentes strates de la coquille de Neopilina galatheae montre la présence de chitine au niveau des couches calcifiées de nacre et de prismes. La chitine est absente au niveau du périostracum. La teneur en chitine est faible (0,3 % du poids sec décalcifié de la coquille totale). La microstructure et la composition chimique de la coquille sont en faveur d’un rapprochement des Monoplacophores et des Conchifères primitifs. Organic matrix of the shell and systematic position of Neopilina galatheae (Mollusca, Monoplacophora) SUMMARY The interest of the chemical composition of molluscan shells in phylogenetical considerations is illustrated by the case of Neopilina. Chemical analyses of organic matrix of the different shell layers of Neopilina gala­ theae revealed the presence of chitin in nacrous and prism layers. Chitin is lacking in periostracum. The proportion of chitin is low (about 0.3 % of shell decalcified weight). Both microstructural and chemical caracteristics are in favor of a closest relation­ ship of Monoplacophora with primitive Conchifera rather than with Amphineura.
    [Show full text]
  • 11 Mollusca Mollusca
    11 MOLLUSCA Horacio H. Camacho MOLLUSCA INTRODUCCIÓN podos, pelecípodos) hasta 30 m de largo (cefa- lópodos). Los moluscos constituyen un phylum nume- No obstante su diversidad (Figura 11. 1), com- roso y variado, habitantes de los ambientes parten características morfológicas, fisiológi- marinos, salobres, dulceacuícolas y terrestres; cas y embriológicas, además de relaciones filo- se los halla desde las grandes profundidades genéticas, que justifican el rango taxonómico oceánicas hasta en las zonas montañosas, a que se les ha adjudicado, si bien no es posible varios miles de metros sobre el nivel del mar. señalar un carácter que sea exhibido por la to- Después de los insectos son los invertebrados talidad de sus miembros. más numerosos, estimándose que en la actua- Los moluscos son metazoarios de simetría lidad, viven por lo menos 50000 especies pero, bilateral, disimulada en los gastrópodos por si se consideran los fósiles, podría esta canti- un fenómeno de torsión; el celoma es pequeño dad elevarse aproximadamente a 80000. y a diferencia de los anélidos carecen de seg- Los moluscos vivientes incluyen a organis- mentación, aunque en algunos se observa una mos bien reconocidos por el público en gene- repetición de órganos que determina una ral, como los caracoles, las almejas, las ostras, seudosegmentación o seudometamerismo. los pulpos y los calamares, cuyas dimensiones varían desde unos pocos milímetros (gastró- ANATOMÍA Característico del grupo es la posesión del manto o tejido epitelial, una extensión de la pared del cuerpo, que limita a la cavidad del manto o paleal donde se alojan las branquias. Dicha cavidad se halla en comunicación con el medio exterior permitiendo el oxigenamiento del aparato branquial (respiratorio), la llegada de partículas alimenticias y la descarga de los productos del metabolismo y la reproducción.
    [Show full text]