The Chemistry of Phyletic Dominance*

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of Phyletic Dominance* Proc. Natl. Acad. Sci. USA Vol. 92, pp. 14-18, January 1995 Colloquium Paper This paper was presented at a coUoquium entitled "Chemical Ecology: The Chemistry ofBiotic Interaction," organized by a committee chaired by Jerrold Meinwald and Thomas Eisner, held March 25 and 26, 1994, at the National Academy of Sciences, Washington, DC. The chemistry of phyletic dominance* (chemical defenses/arthropod venoms/neurotoxins/steroidal pyrones/nucleoside glycoside) JERROLD MEINWALDt AND THOMAS EISNERt t582 Baker Laboratory and *W347 Mudd Hall, Cornell Institute for Research in Chemical Ecology, Cornell University, Ithaca, NY 14853 ABSTRACT Studies of arthropod defensive chemistry derived by specialization of localized regions of the epidermis. continue to bring to light novel structures and unanticipated In insects, as in arthropods generally, the epidermis is funda- biosynthetic capabilities. Insect alkaloids, such as the hepta- mentally glandular, being responsible for secretion of the cyclic acetogenin chilocorine and the azamacrolides, exem- exoskeleton. In their acquisition of special glands, arthropods plify both of these aspects of arthropod chemistry. Spider appear to have capitalized upon the ease with which epidermal venoms are proving to be rich sources of neuroactive compo- cells can be reprogrammed evolutionarily for performance of nents of potential medical interest. The venom of a fishing novel secretory tasks. The glandular capacities of arthropods spider, Dolomedes okefinokensis, has yielded a polyamine which are known to anyone who has collected these animals in the reversibly blocks L- and R-type voltage-sensitive calcium wild. Arthropods commonly have distinct odors and are often channels. Most recently, we have characterized, from the the source of visible effluents that they emit when disturbed funnel-web spider Hololena curta, a sulfated nucleoside glyco- (Fig. 1). Much has been learned in recent years about the side which serves as a reversible blocker of glutamate- function and chemistry of arthropod secretions. The insights sensitive calcium channels. The ability to synthesize or acquire gained have been fundamental to the emergence of the field an extremely diverse array of compounds for defense, offense, of chemical ecology. Our purpose here is to focus on some and communication appears to have contributed significantly aspects of the secretory chemistry of these animals, with to the dominant position that insects and other arthropods emphasis on a few recent discoveries. have attained. Arthropod Chemical Defenses Whether we chose as our criterion Erwin's generous estimate of 30 million species of insects (1) or the somewhat more In our earliest collaborative publication, we described the modest number favored by Wilson (2), it is clear that insects dramatic chemical defense mechanism of the whip scorpion, have achieved formidable diversity on Earth. On dry land they Mastigoproctus giganteus (6). This ancient arachnid is able to literally reign supreme. It has been estimated that there are spray a well-aimed stream of -85% acetic acid [CH3CO2H] some 200 million insects for each human alive (3). The containing 5% caprylic acid [CH3(CH2)6CO2H] at an assail- eminence of the phylum Arthropoda among animals is very ant. The role of the caprylic acid proved to be especially much a reflection of the success of the insects alone. interesting: it facilitates transport of the acetic acid through the A number of factors have contributed to the achievement of waxed epicuticle of an enemy arthropod. It is likely that this dominance by insects. They were the first small animals to simple strategy of using a lipophilic agent to enable a more colonize the land with full success, thereby gaining an advan- potent compound to penetrate a predator's cuticle has helped tage over latecomers. Their exoskeleton shielded them from this species to survive for as long as 400 million years. Many desiccation and set the stage for the evolution of limbs, other independently evolved arthropod defensive secretions tracheal tubes, and elaborate mouthparts, adaptations that make use of the same strategy (9). The whip scorpion defense were to enable insects to become agile, energetically efficient, mechanism helped us to appreciate the fact that chemistry and extraordinarily diverse in their feeding habits. Metamor- need not be complex to be effective. The virtue of simplicity phosis opened the option for insects to exploit different niches is further illustrated by the defensive use of mandelonitrile and during their immature and adult stages. The evolution ofwings benzoyl cyanide, easily decomposed precursors of hydrogen facilitated their dispersal as adults, as well as their search for cyanide (HCN), by certain millipedes and centipedes (10, 11). mates and oviposition sites. And there were subtle factors such While arthropod defensive secretions often rely for their as the acquisition of a penis (the aedeagus), which enabled effect on well-known aliphatic acids, aldehydes, phenols, and insects to effect direct sperm transfer from male to female, quinones, there are many cases in which compounds capable without recourse to an outer aquatic environment for fertili- of whetting the appetite of any natural products chemist are zation (3). utilized. For example, steroids play a dominant role in the A factor not often appreciated that also contributed to insect defensive chemistry of dytiscid beetles, and of the large water success is the extraordinary chemical versatility of these ani- bug, Abedus herberti. This bug discharges a mixture of preg- mals. Insects produce chemicals for the most diverse purpos- nanes in which desoxycorticosterone is the main component es-venoms to kill prey, repellents and irritants to fend off (12). A family of much more highly functionalized steroids, the enemies, and pheromones for sexual and other forms of lucibufagins, serves to render some species of firefly (lampyrid communication. The glands responsible for production of beetles) unpalatable to predatory spiders and birds (13-15). these substances are most often integumental, having been These cardiotonic steroids are closely related to the bufadi- enolides, whose only known occurrence among animals is in The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in *This paper is no. 128 in the series Defense Mechanisms ofArthropods; accordance with 18 U.S.C. §1734 solely to indicate this fact. no. 127 is ref. 28. 14 Downloaded by guest on September 30, 2021 Colloquium Paper: Meinwald and Eisner Proc Natl Acad Sci USA 92 (1995) 15 I I I I I FIG. 1. Arthropod chemical defenses. (A) Blister beetle (Lyttapolita) reflex-bleeding from the knee joints; the blood contains cantharidin, one of the first insect toxins characterized (4). (B) Chrysomelid beetle larva (Plagiodera versicolora) emitting droplets of defensive secretion from its segmental glands; the fluid contains methylcyclopentanoid terpenes (chrysomelidial, plagiolactone) (5). (C) Whip scorpion (Mastigoproctus giganteus) discharging an aimed jet of spray in response to pinching of an appendage with forceps; the spray contains 84% acetic acid (6). (D) Millipede (Narceusgordanus) discharging its benzoquinone-containing defensive secretion from segmental glands (7). (E) Ctenuchid moth (Cisseps fulvicollis) discharging defensive droplets (chemistry unknown) from the cervical region. (F) Caterpillar of swallowtail butterfly (Battuspolydamas) with everted (two-pronged) osmeterial gland; the secretion contains sesquiterpenes (,3-selinene; selin-11-en-4a-ol) (8). (G) Stalked eggs of green lacewing (Nodita floridana), showing droplets of defensive fluid (chemistry unknown) on stalks. nucleus to a steroidal framework, since up to now there has been no general, convenient synthetic route to these steroidal pyrones. Our search has recently met with success (18), using the Pd°-promoted coupling of 5-trimethylstannyl-2-pyrone with an enol triflate (Eq. 1). o OSO2CF3 ,+ [1] t_ Desoxycorticosterone Lucibufagin C Sn(CH3)3 the poison glands of certain toads (16). The discovery that the lucibufagins also show antiviral properties (17) has prompted This direct synthesis of steroidal pyrones should make a us to seek a technique for joining a preformed a-pyrone variety of structures related to the lucibufagins (as well as to Downloaded by guest on September 30, 2021 16 Colloquium Paper: Meinwald and Eisner Proc. Natl. Acad ScL USA 92 (1995) the toad-derived bufadienolides) readily available for biolog- varivestis to determine the possible sources of both the 14-carbon ical investigation for the first time. How the insects themselves straight chain and the ethanolamine moieties ofepilachnene (28). manage to obtain their defensive pregnanes and steroidal Our results are summarized below: pyrones remains a mystery, since insects are generally consid- ered to lack the enzymatic machinery essential for steroid HCO2H o biosynthesis (19). In fact, we do not yet know whether these insect defensive steroids are produced de novo or whether they are derived directly or indirectly from a dietary source; this is N t N H 2 a subject which merits further study. Perhaps the most interesting arthropodan defensive com- Oleic acid > Epilachnene L-Serine pounds from the point of view of structural diversity are the alkaloids. While alkaloids had been believed to arise long only was to as a of it has 9,10-Dideuteriooleic acid shown to be converted di- consequence
Recommended publications
  • Lehman Caves Management Plan
    National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 111 1960 Number 3429 A REVISION OF THE GENUS OGCODES LATREILLE WITH PARTICULAR REFERENCE TO SPECIES OF THE WESTERN HEMISPHERE By Evert I. Schlinger^ Introduction The cosmopolitan Ogcodes is the largest genus of the acrocerid or spider-parasite family. As the most highly evolved member of the subfamily Acrocerinae, I place it in the same general line of develop- ment as Holops Philippi, Villalus Cole, Thersitomyia Hunter, and a new South African genus.^ Ogcodes is most closely associated with the latter two genera . The Ogcodes species have never been treated from a world point of view, and this probably accounts for the considerable confusion that exists in the literature. However, several large regional works have been published that were found useful: Cole (1919, Nearctic), Brunetti (192G, miscellaneous species of the world, mostly from Africa and Australia), Pleske (1930, Palaearctic), Sack (1936. Palaearctic), and Sabrosky (1944, 1948, Nearctic). Up to this time 97 specific names have been applied to species and subspecies of this genus. Of these, 19 were considered synonyms, hence 78 species were assumed valid. With the description of 14 new species and the addition of one new name while finding onl}^ five new synonyms, 1 Department of Biological Control, University of California, Riverside, Calif. • This new genus, along with other new species and genera, is being described in forthcoming papers by the author. 227 228 PROCEEDINGS OF THE NATIONAL MUSEUM vol. m we find there are now 88 world species and subspecies. Thus, the total number of known forms is increased by 16 percent.
    [Show full text]
  • 1 It's All Geek to Me: Translating Names Of
    IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Isolation of a Pericentromeric Satellite DNA Family in Chnootriba Argus (Henosepilachna Argus) with an Unusual Short Repeat Unit (TTAAAA) for Beetles
    insects Article Isolation of a Pericentromeric Satellite DNA Family in Chnootriba argus (Henosepilachna argus) with an Unusual Short Repeat Unit (TTAAAA) for Beetles Pablo Mora, Jesús Vela, Areli Ruiz-Mena, Teresa Palomeque and Pedro Lorite * Department of Experimental Biology, Genetic Area, University of Jaén, 23071 Jaén, Spain; [email protected] (P.M.); [email protected] (J.V.); [email protected] (A.R.-M.); [email protected] (T.P.) * Correspondence: [email protected]; Tel.: +34-953-212769 Received: 24 July 2019; Accepted: 17 September 2019; Published: 19 September 2019 Abstract: Ladybird beetles (Coccinellidae) are one of the largest groups of beetles. Among them, some species are of economic interest since they can act as a biological control for some agricultural pests whereas other species are phytophagous and can damage crops. Chnootriba argus (Coccinellidae, Epilachnini) has large heterochromatic pericentromeric blocks on all chromosomes, including both sexual chromosomes. Classical digestion of total genomic DNA using restriction endonucleases failed to find the satellite DNA located on these heterochromatic regions. Cloning of C0t-1 DNA resulted in the isolation of a repetitive DNA with a repeat unit of six base pairs, TTAAAA. The amount of TTAAAA repeat in the C. argus genome was about 20%. Fluorescence in situ hybridization (FISH) analysis and digestion of chromosomes with the endonuclease Tru9I revealed that this repetitive DNA could be considered as the putative pericentromeric satellite DNA (satDNA) in this species. The presence of this satellite DNA was tested in other species of the tribe Epilachnini and it is also present in Epilachna paenulata. In both species, the TTAAAA repeat seems to be the main satellite DNA and it is located on the pericentromeric region on all chromosomes.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS in a MONTANE DESERT STREAM Eric K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 2016 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody Arizona State University Jessica R. Corman University of Nebraska - Lincoln, [email protected] Michael T. Bogan University of California - Berkeley Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons Moody, Eric K.; Corman, Jessica R.; and Bogan, Michael T., "CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM" (2016). Papers in Natural Resources. 796. http://digitalcommons.unl.edu/natrespapers/796 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Western North American Naturalist 76(2), © 2016, pp. 172–179 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody1, Jessica R. Corman1,2, and Michael T. Bogan3 ABSTRACT.—Aquatic ecosystems overlying regions of limestone bedrock can feature active deposition of calcium carbonate in the form of travertine or tufa. Although most travertine deposits form a cement-like layer on stream sub- strates, mineral deposits can also form on benthic invertebrates.
    [Show full text]
  • Multi-National Conservation of Alligator Lizards
    MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science.
    [Show full text]
  • 2009 Vermilion, Alberta
    September 2010 ISSN 0071‐0709 PROCEEDINGS OF THE 57th ANNUAL MEETING OF THE Entomological Society of Alberta November 5‐7, 2009 Vermilion, Alberta Content Entomological Society of Alberta Board of Directors for 2009 .............................................................. 3 Annual Meeting Committees for 2009 ................................................................................................. 3 President’s Address ............................................................................................................................. 4 Program of the 57th Annual Meeting.................................................................................................... 6 Oral Presentation Abstracts ................................................................................................................10 Poster Presentation Abstracts.............................................................................................................21 Index to Authors.................................................................................................................................24 Minutes of the Entomology Society of Alberta Executive/Board of Directors Meeting ........................26 Minutes of the Entomological Society of Alberta 57th Annual General Meeting...................................29 2009 Regional Director to the Entomological Society of Canada Report ..............................................32 2009 Northern Director’s Reports .......................................................................................................33
    [Show full text]
  • Bionomics of Chilocorus Infernalis Mulsant, 1853 (Coleoptera
    doi:10.14720/aas.2019.113.1.07 Original research article / izvirni znanstveni članek Bionomics of Chilocorus infernalis Mulsant, 1853 (Coleoptera: Coccinellidae), a predator of San Jose scale, Diaspidiotus perniciosus (Comstock, 1881) under laboratory conditions Razia RASHEED1*, A.A. BUHROO1 and Shaziya GULL1 Received July 23, 2018; accepted January 03, 2019. Delo je prispelo 23. julija 2018, sprejeto 03. januarja 2019. ABSTRACT IZVLEČEK The bionomics of Chilocorus infernalis Mulsant, 1853, a BIONOMIJA VRSTE Chilocorus infernalis Mulsant, 1853 natural enemy of San Jose scale, was studied under laboratory (Coleoptera: Coccinellidae), PLENILCA AMERIŠKEGA conditions (26 ± 2˚C, and 65 ± 5% relative humidity). The KAPARJA (Diaspidiotus perniciosus (Comstock, 1881)) V eggs were deposited in groups and on average 45.68 ± 24.70 LABORATORIJSKIH RAZMERAH eggs were laid by female. Mean observed incubation period was 6.33 ± 1.52 days. Four instar grubs were observed, and Bionomija vrste Chilocorus infernalis Mulsant, 1853, mean duration of all four grubs was found to be 19.98 days. naravnega sovražnika ameriškega kaparja, je bila preučevana The pupal stage lasted for 8.00 ± 0.50 days and after adults v laboratorijskih razmerah (26 ± 2˚C in 65 ± 5 % relativne emerged out. zračne vlažnosti). Samice plenilca so jajčeca odlagale v skupinah, v poprečju 45,68 ± 24,70 jajčec na samico. V Key words: bionomics; natural enemies; San Jose scale; povprečju so se ličinke razvile iz jajčec v 6,33 ± 1,52 dneh. incubation period; larval instars Ugotovljene so bile štiri larvalne stopnje, katerih povprečna življenska doba je bila 19,98 dni. Razvojni štadij bube je trajal 8,00 ± 0,50 dni, nakar so se izlegli imagi.
    [Show full text]
  • Taxonomic Redescription of the Species of Sub- Family Chilocorinae
    International Journal of Chemical Studies 2018; 6(6): 1465-1469 P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(6): 1465-1469 Taxonomic redescription of the species of sub- © 2018 IJCS Received: 26-09-2018 family Chilocorinae (Coleoptera: Coccinellidae) Accepted: 30-10-2018 from Jammu and Kashmir, India Ajaz Ahmad Kundoo Division of Entomology, Sher-e-Kashmir University of Ajaz Ahmad Kundoo, Akhtar Ali Khan, Ishtiyaq Ahad, NA Bhat, MA Agricultural Sciences and Chatoo and Khalid Rasool Technology of Kashmir, Wadura Campus, Baramullah, Jammu and Kashmir, India Abstract Ladybugs are diverse group of living organisms. They belong to family Coccinellidae of order Akhtar Ali Khan Coleoptera. The family has been subdivided into six subfamilies: Sticholotidinae, Chilochorinae, Division of Entomology, Scymninae, Coccidulinae, Coccinellinae and Epilachninae. These are universal predators and occupy Sher-e-Kashmir University of important place in biological control. In this paper four species of the subfamily Chilocorinae have been Agricultural Sciences and collected and rediscribed as no taxonomic work has been done on this group in Kashmir, India. This Technology of Kashmir, paper provides a detailed taxonomy of Chilocorus infernalis, Chilocorus rubidus, Pricibrumus Shalimar Campus, Jammu and uropygialis and Platynaspidius saundersi on the basis of advanced taxonomic character that is male Kashmir, India genitalia. Detailed description of adults, male genitalia and taxonomic keys are provided for each species Ishtiyaq Ahad along with color plates. Division of Entomology, Sher-e-Kashmir University of Keywords: Chilocorinae, Kashmir, male genitalia, taxonomy, taxonomic keys. Agricultural Sciences and Technology of Kashmir, Wadura Introduction Campus, Baramullah, Jammu Coccinellids are commonly known as ladybird beetles.
    [Show full text]
  • Barcoding Chrysomelidae: a Resource for Taxonomy and Biodiversity Conservation in the Mediterranean Region
    A peer-reviewed open-access journal ZooKeys 597:Barcoding 27–38 (2016) Chrysomelidae: a resource for taxonomy and biodiversity conservation... 27 doi: 10.3897/zookeys.597.7241 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region Giulia Magoga1,*, Davide Sassi2, Mauro Daccordi3, Carlo Leonardi4, Mostafa Mirzaei5, Renato Regalin6, Giuseppe Lozzia7, Matteo Montagna7,* 1 Via Ronche di Sopra 21, 31046 Oderzo, Italy 2 Centro di Entomologia Alpina–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 3 Museo Civico di Storia Naturale di Verona, lungadige Porta Vittoria 9, 37129 Verona, Italy 4 Museo di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano, Italy 5 Department of Plant Protection, College of Agriculture and Natural Resources–University of Tehran, Karaj, Iran 6 Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 7 Dipartimento di Scienze Agrarie e Ambientali–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy Corresponding authors: Matteo Montagna ([email protected]) Academic editor: J. Santiago-Blay | Received 20 November 2015 | Accepted 30 January 2016 | Published 9 June 2016 http://zoobank.org/4D7CCA18-26C4-47B0-9239-42C5F75E5F42 Citation: Magoga G, Sassi D, Daccordi M, Leonardi C, Mirzaei M, Regalin R, Lozzia G, Montagna M (2016) Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 27–38. doi: 10.3897/ zookeys.597.7241 Abstract The Mediterranean Region is one of the world’s biodiversity hot-spots, which is also characterized by high level of endemism.
    [Show full text]