Astrochemistry As a Tool to Follow the Protostellar Evolution: the Class I Stage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interferometric Observations of Large Biologically Interesting Interstellar and Cometary Molecules
SPECIAL FEATURE: PERSPECTIVE Interferometric observations of large biologically interesting interstellar and cometary molecules Lewis E. Snyder* Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 Edited by William Klemperer, Harvard University, Cambridge, MA, and approved May 26, 2006 (received for review March 3, 2006) Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have sub- stantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled ‘‘biomolecules.’’ Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated inter- stellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to under- standing hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from obser- vations with the next generation of sensitive, high-resolution arrays. -
Downloaded From
Review HEAVY METAL RULES. I. EXOPLANET INCIDENCE AND METALLICITY Vardan Adibekyan1 ID 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal; [email protected] Academic Editor: name Received: date; Accepted: date; Published: date Abstract: Discovery of only handful of exoplanets required to establish a correlation between giant planet occurrence and metallicity of their host stars. More than 20 years have already passed from that discovery, however, many questions are still under lively debate: What is the origin of that relation? what is the exact functional form of the giant planet – metallicity relation (in the metal-poor regime)?, does such a relation exist for terrestrial planets? All these question are very important for our understanding of the formation and evolution of (exo)planets of different types around different types of stars and are subject of the present manuscript. Besides making a comprehensive literature review about the role of metallicity on the formation of exoplanets, I also revisited most of the planet – metallicity related correlations reported in the literature using a large and homogeneous data provided by the SWEET-Cat catalog. This study lead to several new results and conclusions, two of which I believe deserve to be highlighted in the abstract: i) The hosts of sub-Jupiter mass planets (∼0.6 – 0.9 M ) are systematically less metallic than the hosts of Jupiter-mass planets. This result might be relatedX to the longer disk lifetime and higher amount of planet building materials available at high metallicities, which allow a formation of more massive Jupiter-like planets. -
'Impossible' Cloud on Titan Explained
‘Impossible’ Cloud on Titan Explained Cloud crystals in the super-cold environment of Titan are revealing surprising solid-state chemical processes that illuminate similar chemistry occurring in Earth’s polar stratospheric clouds. Titan’s spring brings polar ice clouds made of dicyanoacetylene (C4N2) molecules. The presence of these polar clouds seemed impossible, because Cassini infrared measurements showed there is not enough C4N2 in the stratosphere to form the observed ice clouds. So where does the C4N2 come from? Cassini found that springtime sunshine kicks off an ‘on-site’ manufacturing process that produces the icy raw material for the C4N2 clouds. Photochemical reactions between hydrogen cyanide (HCN) and cyanoacetylene (HC3N) in Titan’s stratosphere were found to produce C4N2 .This unexpected photochemical effect on icy solids explains how these Titan’s Icy Polar Clouds The cloud at right seemingly ‘impossible’ clouds form in Titan’s springtime polar contains HCN. Some stratosphere! other polar stratospheric clouds are made of Something similar occurs in Earth’s polar stratosphere, where dicyanoacetylene (C4N2) which is produced from solid-state chemistry involving chlorine is at the heart of ozone sunlight-driven processes loss in Earth’s atmosphere. Comparison of the atmospheres of occurring on frozen Earth and Titan informs us on the fundamental processes that organic particles. A similar process is seen in occur throughout nature. Earth’s stratosphere between gases and water Solid-state photochemistry as a formation mechanism for Titan's stratospheric ice particles. C4N2 ice clouds. C. Anderson, R. Samuelson, Y. Yung and J. McLain, Geophysical Research Letters, 43, 3088-3094, 2016. . -
The Angular Size of Objects in the Sky
APPENDIX 1 The Angular Size of Objects in the Sky We measure the size of objects in the sky in terms of degrees. The angular diameter of the Sun or the Moon is close to half a degree. There are 60 minutes (of arc) to one degree (of arc), and 60 seconds (of arc) to one minute (of arc). Instead of including – of arc – we normally just use degrees, minutes and seconds. 1 degree = 60 minutes. 1 minute = 60 seconds. 1 degree = 3,600 seconds. This tells us that the Rosette nebula, which measures 80 minutes by 60 minutes, is a big object, since the diameter of the full Moon is only 30 minutes (or half a degree). It is clearly very useful to know, by looking it up beforehand, what the angular size of the objects you want to image are. If your field of view is too different from the object size, either much bigger, or much smaller, then the final image is not going to look very impressive. For example, if you are using a Sky 90 with SXVF-M25C camera with a 3.33 by 2.22 degree field of view, it would not be a good idea to expect impressive results if you image the Sombrero galaxy. The Sombrero galaxy measures 8.7 by 3.5 minutes and would appear as a bright, but very small patch of light in the centre of your frame. Similarly, if you were imaging at f#6.3 with the Nexstar 11 GPS scope and the SXVF-H9C colour camera, your field of view would be around 17.3 by 13 minutes, NGC7000 would not be the best target. -
Where Are All the Sirius-Like Binary Systems?
Mon. Not. R. Astron. Soc. 000, 1-22 (2013) Printed 20/08/2013 (MAB WORD template V1.0) Where are all the Sirius-Like Binary Systems? 1* 2 3 4 4 J. B. Holberg , T. D. Oswalt , E. M. Sion , M. A. Barstow and M. R. Burleigh ¹ Lunar and Planetary Laboratory, Sonnett Space Sciences Bld., University of Arizona, Tucson, AZ 85721, USA 2 Florida Institute of Technology, Melbourne, FL. 32091, USA 3 Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Ave. Villanova University, Villanova, PA, 19085, USA 4 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 1st September 2011 ABSTRACT Approximately 70% of the nearby white dwarfs appear to be single stars, with the remainder being members of binary or multiple star systems. The most numerous and most easily identifiable systems are those in which the main sequence companion is an M star, since even if the systems are unresolved the white dwarf either dominates or is at least competitive with the luminosity of the companion at optical wavelengths. Harder to identify are systems where the non-degenerate component has a spectral type earlier than M0 and the white dwarf becomes the less luminous component. Taking Sirius as the prototype, these latter systems are referred to here as ‘Sirius-Like’. There are currently 98 known Sirius-Like systems. Studies of the local white dwarf population within 20 pc indicate that approximately 8 per cent of all white dwarfs are members of Sirius-Like systems, yet beyond 20 pc the frequency of known Sirius-Like systems declines to between 1 and 2 per cent, indicating that many more of these systems remain to be found. -
Synthesis of Activated Pyrimidine Ribonucleotides in Prebiotically Plausible Conditions
Vol 459 | 14 May 2009 | doi:10.1038/nature08013 LETTERS Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions Matthew W. Powner1,Be´atrice Gerland1 & John D. Sutherland1 At some stage in the origin of life, an informational polymer must we have discovered a short, highly efficient route to activated pyrimi- have arisen by purely chemical means. According to one version of dine ribonucleotides from these same precursors that proceeds by way the ‘RNA world’ hypothesis1–3 this polymer was RNA, but attempts of alternative intermediates (Fig. 1, green arrows). By contrast with to provide experimental support for this have failed4,5. In parti- previously investigated routes to ribonucleotides, ours bypasses ribose cular, although there has been some success demonstrating that and the free pyrimidine nucleobases. Mixed nitrogenous–oxygenous ‘activated’ ribonucleotides can polymerize to form RNA6,7,itis chemistry first results in the reaction of cyanamide 8 and glycolalde- far from obvious how such ribonucleotides could have formed from hyde 10, giving 2-amino-oxazole 11, and this heterocycle then adds to their constituent parts (ribose and nucleobases). Ribose is difficult glyceraldehyde 9 to give the pentose amino-oxazolines including the to form selectively8,9, and the addition of nucleobases to ribose is arabinose derivative 12. Reaction of 12 with cyanoacetylene 7 then inefficient in the case of purines10 and does not occur at all in the gives the anhydroarabinonucleoside 13, which subsequently under- case of the canonical pyrimidines11. Here we show that activated goes phosphorylation with rearrangement to furnish b-ribocytidine- pyrimidine ribonucleotides can be formed in a short sequence that 29,39-cyclic phosphate 1. -
Numerical Simulations of Jets from Active Galactic Nuclei
galaxies Review Numerical Simulations of Jets from Active Galactic Nuclei José-María Martí Departament d’Astronomia i Astrofísica and Observatori Astronòmic, Universitat de València, 46100 Burjassot (València), Spain; [email protected] Received: 12 November 2018; Accepted: 14 January 2019; Published: 22 January 2019 Abstract: Numerical simulations have been playing a crucial role in the understanding of jets from active galactic nuclei (AGN) since the advent of the first theoretical models for the inflation of giant double radio galaxies by continuous injection in the late 1970s. In the almost four decades of numerical jet research, the complexity and physical detail of simulations, based mainly on a hydrodynamical/magneto-hydrodynamical description of the jet plasma, have been increasing with the pace of the advance in theoretical models, computational tools and numerical methods. The present review summarizes the status of the numerical simulations of jets from AGNs, from the formation region in the neighborhood of the supermassive central black hole up to the impact point well beyond the galactic scales. Special attention is paid to discuss the achievements of present simulations in interpreting the phenomenology of jets as well as their current limitations and challenges. Keywords: active galactic nuclei; relativistic jets; magneto-hydrodynamics; plasma physics; numerical methods 1. Introduction Theoretical models of jets from active galactic nuclei (AGN) motivated by observations have been the subject of thorough testing by numerical simulations for almost forty years, since the simulations of supersonic jets performed in the early 1980s by Norman and collaborators [1] confirmed the viability of the beam model proposed by Scheuer [2], and Blandford and Rees [3] one decade before to explain the powering of lobes of extended radio sources and quasars (classic doubles or symmetric doubles, as these sources were known at those dates). -
Life As a Guide to Prebiotic Nucleotide Synthesis
COMMENT DOI: 10.1038/s41467-018-07220-y OPEN Life as a guide to prebiotic nucleotide synthesis Stuart A. Harrison1 & Nick Lane 1 Synthesis of activated nucleotides has been accomplished under ‘prebiotically plausible’ conditions, but bears little resemblance to the chemistry of life as we know it. Here we argue that life is an indispensable guide to its own origins. 1234567890():,; “The justification of prebiotic syntheses by appealing to their similarity to enzymatic mechanisms has been routine in the literature of prebiotic chemistry. Acceptance of the RNA World hypothesis invalidates this type of argument. If the RNA World originated de novo on the primitive Earth, it erects an almost opaque barrier between biochemistry and prebiotic chemistry.” Leslie Orgel 2004. There is little doubt that RNA is central to the origins of genetic information and protein synthesis, but that is a far cry from the stronger statement, articulated by Orgel, that if metabolism arose from an RNA world, then life can give no insights into its own origin1. Yet this view resonates with much prebiotic chemistry over the last decade. Activated pyrimidine and oxopurine nucleotides have been synthesised at good yield from purportedly prebiotically plausible precursors such as cyanide and cyanoacetylene, driven by UV radiation2. Wet-dry cycles in the presence of laminated clay minerals and lipids can polymerise nucleotides to RNA3. Accordingly, some claim that the problem has already been solved, at least conceptually. Has it? Not in everybody’s view. Perhaps the biggest problem is that the chemistry involved in these clever syntheses does not narrow the gap between prebiotic chemistry and biochemistry—it does not resemble extant biochemistry in terms of substrates, reaction pathways, catalysts or energy coupling4. -
The Dissipative Photochemical Origin of Life: UVC Abiogenesis of Adenine
entropy Article The Dissipative Photochemical Origin of Life: UVC Abiogenesis of Adenine Karo Michaelian Department of Nuclear Physics and Applications of Radiation, Instituto de Física, Universidad Nacional Autónoma de México, Circuito Interior de la Investigación Científica, Cuidad Universitaria, Mexico City, C.P. 04510, Mexico; karo@fisica.unam.mx Abstract: The non-equilibrium thermodynamics and the photochemical reaction mechanisms are described which may have been involved in the dissipative structuring, proliferation and complex- ation of the fundamental molecules of life from simpler and more common precursors under the UVC photon flux prevalent at the Earth’s surface at the origin of life. Dissipative structuring of the fundamental molecules is evidenced by their strong and broad wavelength absorption bands in the UVC and rapid radiationless deexcitation. Proliferation arises from the auto- and cross-catalytic nature of the intermediate products. Inherent non-linearity gives rise to numerous stationary states permitting the system to evolve, on amplification of a fluctuation, towards concentration profiles providing generally greater photon dissipation through a thermodynamic selection of dissipative efficacy. An example is given of photochemical dissipative abiogenesis of adenine from the precursor HCN in water solvent within a fatty acid vesicle floating on a hot ocean surface and driven far from equilibrium by the incident UVC light. The kinetic equations for the photochemical reactions with diffusion are resolved under different environmental conditions and the results analyzed within the framework of non-linear Classical Irreversible Thermodynamic theory. Keywords: origin of life; dissipative structuring; prebiotic chemistry; abiogenesis; adenine; organic molecules; non-equilibrium thermodynamics; photochemical reactions Citation: Michaelian, K. The Dissipative Photochemical Origin of MSC: 92-10; 92C05; 92C15; 92C40; 92C45; 80Axx; 82Cxx Life: UVC Abiogenesis of Adenine. -
Pyrolysis and Combustion of Acetonitrile (Ch3cn)
OAK RIDGE ORNL/TM-2002/113 NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Pyrolysis and Combustion of Acetonitrile (CH3CN) Phillip F. Britt DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. -
Investigating the Chemical Composition of the CIRS-Observed 160 Cm-1 Ice Cloud in Titan’S Stratosphere
EPSC Abstracts Vol. 14, EPSC2020-423, 2020 https://doi.org/10.5194/epsc2020-423 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Investigating the Chemical Composition of the CIRS-Observed 160 cm-1 Ice Cloud in Titan’s Stratosphere Melissa Ugelow1,2 and Carrie Anderson1 1NASA Goddard Space Flight Center, Astrochemistry Laboratory, Greenbelt, MD, United States of America 2Universities Space Research Association, Columbia, MD, United States of America Remote sensing observations from Voyager 1’s InfraRed Interferometer Spectrometer (IRIS) and Cassini’s Composite InfraRed Spectrometer (CIRS) confirmed the presence of nitrile ice clouds in Titan’s stratosphere (Samuelson 1985, 1992; Khanna, R.K. et al., 1987; Samuelson et al., 1997, 2007; Coustenis, A. et al., 1999; Mayo and Samuelson, 2005; Anderson, C.M. et al., 2010, 2018a,b; Anderson and Samuelson, 2011). While individual gases in Titan’s stratosphere are expected to condense to form pure ices, some of these gases will enter altitude regions where they undergo simultaneous saturation, or co-condensation, and form a mixed ice. The infrared spectral features resulting from a mixed ice have their own unique spectral signatures that notably diverge from the weighted sum of the individual species, and must therefore be experimentally determined as functions of temperature and mixing ratio (Anderson and Samuelson, 2011; Anderson et al. 2018a,b). The first observation of a co-condensate in Titan’s stratosphere was acquired by CIRS, which revealed a spectrally broad quasi-continuum ice emission feature with a spectral peak near 160 cm-1. -
Soups & SELEX for the Origin of Life
Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Soups & SELEX for the origin of life RENÉE SCHROEDER Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria The theory of evolution quickly brought up the most fasci- grounds on which chemists could develop experimental nating question in biology: the origin of life. How did life set ups. Combinatorial events of simple chemical reactions emerge? The biggest challenge in this endeavor to understand could lead to stably replicating populations of increasing how life could have emerged without a controller is to unravel complexity. the chemical processes that made the synthesis of complex molecules containing information possible. Primordial Soups: prebiotic chemistry needs Already at high school I was totally caught by Oparin’s hy- to deliver activated ribonucleotides pothesis that simple unicellular organisms evolved from sim- ple organic molecules, which in turn originated from simple One prerequisite for the emergence of Life is the condensa- inorganic molecules present in the early atmosphere of our tion of informational polymers by purely chemical means. planet. Oparin and Haldane coined the idea of “primordial Indeed, the Orgel lab has been successful in obtaining nucle- soup” experiments. For my “Matura” (that is the name of otide polymers as long as 55 monomers in the presence of the exam you do in Austria, when you finally leave high mineral surfaces like montmorillonite. For this to happen school) I got Stanley Miller’s famous primordial soup exper- activated ribonucleotide building blocks must have been iments as question. I just now realize that ever since SOUP & available in sufficient amounts.