United States Patent Office 3,979,424

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office 3,979,424 United States Patent Office Fazented Feb.3,979,424 26, 1963 2 Table I 3,079,424 Pike CESS FOR THE REPARATSN OF CYAN. Yield (perceit based on ACETYSLENE FRCS ACETYLENE AND HYDER- R T Moe rati E. HCN) GEN CYANOE a- SP SEO E------ Eawrence J. Krebaum, Texas City, Tex., assignor to No. C. CN:CH: A ES Cyano- Acrylo- (CN) Measante Chenaica Company, St. Louis, Mo., a corpo- acetylene nitrile ration of Delaware No. 33awing. Fied Oct. 24, 1960, Ser. No. 64,290 70 4:3, 5 : 0.36 4.3 38. 6 3 (Caimas. (C. 260-455.3) 85 4:1:7 0.38 3.6 3.2 6. The present invention relates to a new method for the 5.3: E. 5.5:5515:19: 835.3 33.6g 33.6: is 37 preparation of cyanoacetylene or propargyl nitrile. III SS 08: 83 : 3: 23 Cyanoacetylene, a chemical compound useful as a cyan ovinylating agent in the production of cyanovinyl mono mers, has heretofore been obtained from propiolic acid 15 It will be seen from the tabulated data that not only by converting the acid to the corresponding amide and is cyanoacetylene formed in good yields but acrylonitrile, then dehydrating the latter with phosphorus penioxide. a valuable chemical of commerce, is also produced as is It has now been discovered that this interesting and re- cyanogen. In view of the fact that it has recently been active compound can be prepared in a relatively simple determined that cyanogen will react with acetylene under manner directly from acetylene. 20 conditions similar to those in this process to yield cyano According to the invention, a mixture of acetylene and acetylene, the cyanogen made can be recycled to the re hydrogen cyanide is reacted at a temperature within the action zone together with an increased amount of acetyl range from about 700 to about 1100° C. In the pre- ene to react therewith and thus produce greater amounts ferred embodiment of the process, a gaseous mixture of of cyanoacetylene by simultaneous occurrence of the acetylene and hydrogen cyanide together with a diluent 25 two reactions. gas is continuously passed through a reaction zone heated Variations in procedure and reaction conditions from to reaction temperature at a rate such that the mixture those given in the example may be made without depart remains therein for the desired reaction period. The ing from the scope of the invention. For example, the gases issuing from the reaction zone are quenched as reaction may be carried out in a tubular reactor of Tapidly as possible and the cyanoacetylene is separated 30 quartz, porcelain, or any other refractory material which from the gases by condensation. The diluent gas is op- is non-catalytic and capable of withstanding the tempera tional and is used mainly to facilitate acetylene handling tures employed as well as in the silica reactor exempli because of the hazards connected therewith although fied. The gases can, if desired, be passed through a series it acts also to reduce any secondary reactions such as of reaction zones heated to reaction temperature, the mix polymerization, cracking, etc. 35 ture being cooled as it issues from each reactor to recover The invention is illustrated in the following example the cyanoacetylene and other reaction products there which, however, is not to be construed as limiting it in from. Unreacted feed materials and cyanogen can then any manner whatsoever. be recycled. While the reaction may be conducted at any tempera EXAMPLE 1. 40 ture in the range from 770° C. to 1100° C., the preferred temperatures for the reaction are those between 900° C. The experimental apparatus was comprised of a reactor and 1000 C, consisting of an empty "Wycor” (96% silica) tube hav- Reaction time, i.e., the time during which the reactant ing an effective length of 20 cm. disposed within a muffle mixture is maintained at reaction temperature in the furnace together with inlet and outlet manifolds, an HCN reaction zone, varies with the particular temperature em. vaporizer and accessory lines, a mixing chamber for the ployed. Generally, any decrease in temperature requires reactant gases, and a product gas receiver. Prior to a run, an increase in reaction time and convesely an increase in the system was warmed up while argon was passed temperature will necessitate a shorter reaction time. Re through it. Acetylene and HCN vapors were fed through 50 action times from about 0.05 second to about 2 seconds rotameters into the mixing chamber and then passed are satisfactory attemperatures in the range from 770c. through the reactor which had been heated to the desired to 1100° C. In the preferred temperaturer ange, reaction temperature. The effluent gas from the reactor was col- time may vary from about 1 second at 900 C. to about 0.1 second at 1000 C. lected in a heated receiver from which it was exhauste The pressure employed is preferably atmospheric but into a sample bomb. Reaction times in the reactor were 55 operation at either subatmospheric or superatmospheric varied by using tubes of various diameters, by changing pressures is feasil le. feed rates, or by adding argon as an inert diluent to the A wide range of reactant ratios can be employed. Mole reaction mixture. A series of runs was made following ratios of HCN to acetylene varying from 4:1 to 20:1 can this procedure under various conditions of temperature, be used. Preferred, however, for practical operation are reactant feed ratio, reaction time, etc. Gas Samples were 60 those in the highest end of the range, i.e., from 15:1 to obtained and analyzed by means of a mass spectrometer. 20:1. An excess of HCN appears to be desirable since Analyses were expressed on a nole percentage basis. it not only leads to better yields of cyanoacetylene but Conversions and yields calculated from the analytical also tends to reduce the formation of tar, soot and other data under the various conditions are recorded in Table I. degradative by-products. 8,079,424 3 4. Inert gaseous diluents as pointed out previously may be cyanide at a temperature within the range from about present in the reaction mixture and it is frequently de 900 C. to about 1000° C. for a period of time from sirable to eliminate hazards connected with acetylene to about 0.1 second to about 1 second while maintaining the employ diluents such as carbon dioxide, nitrogen, argon mole ratio of hydrogen cyanide to acetylene within the and the like in order to achieve the short reaction times range from about 15:1 to about 20:1, said acetylene being required. HCN is a practical diluent as well as a reactant. diluted in an amount up to about 99 mole percent of the Any amount of diluent can be employed with the mole acetylene charged with a gas which is inert under said fraction added being in the range from 0%-99% of the Teaction conditions. reaction mixture. 3. The process for producing cyanoacetylene which Recovery of the cyanoacetylene can be effected by low 0 consists essentially of passing a mixture of hydrogen cyan temerature condensation of the effluent gas mixture, fol ide and acetylene in a mole ratio within the range from lowed by fractional distillation of the liquid condensate in about 15:1 to about 20:1, said acetylene being diluted a conventional manner. Unreacted acetylene and hydro with an inert gas in an amount up to about 99 mole per gen cyanide can be recycled to the reaction zone if desired. cent of the acetylene charged of a gas which is inert What is claimed is: 5 under the reaction conditions employed, through an 1. The process for producing cyanoacetylene which empty tube maintained at a temperature from about 900 consists essentially of reacting acetylene and hydrogen C. to about 1000 C. at a rate such that the gas mixture cyanide at a temperature within the range from about is maintained at reaction temperature for a period from 770° C. to about 1100° C. for a period of time from about 0.1 second to about 1 second. about 0.05 to about 2 seconds while maintaining the mole ratio of hydrogen cyanide to acetylene within the References Cited in the file of this patent large range from about 4:1 to about 20:1. 2. The process for producing cyanoacetylene which UNITED STATES PATENTS consists essentially of reacting acetylene and hydrogen 2,847,448 Gabbett et al. ---------- Aug. 12, 1958 .
Recommended publications
  • Interferometric Observations of Large Biologically Interesting Interstellar and Cometary Molecules
    SPECIAL FEATURE: PERSPECTIVE Interferometric observations of large biologically interesting interstellar and cometary molecules Lewis E. Snyder* Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 Edited by William Klemperer, Harvard University, Cambridge, MA, and approved May 26, 2006 (received for review March 3, 2006) Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have sub- stantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled ‘‘biomolecules.’’ Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated inter- stellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to under- standing hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from obser- vations with the next generation of sensitive, high-resolution arrays.
    [Show full text]
  • 'Impossible' Cloud on Titan Explained
    ‘Impossible’ Cloud on Titan Explained Cloud crystals in the super-cold environment of Titan are revealing surprising solid-state chemical processes that illuminate similar chemistry occurring in Earth’s polar stratospheric clouds. Titan’s spring brings polar ice clouds made of dicyanoacetylene (C4N2) molecules. The presence of these polar clouds seemed impossible, because Cassini infrared measurements showed there is not enough C4N2 in the stratosphere to form the observed ice clouds. So where does the C4N2 come from? Cassini found that springtime sunshine kicks off an ‘on-site’ manufacturing process that produces the icy raw material for the C4N2 clouds. Photochemical reactions between hydrogen cyanide (HCN) and cyanoacetylene (HC3N) in Titan’s stratosphere were found to produce C4N2 .This unexpected photochemical effect on icy solids explains how these Titan’s Icy Polar Clouds The cloud at right seemingly ‘impossible’ clouds form in Titan’s springtime polar contains HCN. Some stratosphere! other polar stratospheric clouds are made of Something similar occurs in Earth’s polar stratosphere, where dicyanoacetylene (C4N2) which is produced from solid-state chemistry involving chlorine is at the heart of ozone sunlight-driven processes loss in Earth’s atmosphere. Comparison of the atmospheres of occurring on frozen Earth and Titan informs us on the fundamental processes that organic particles. A similar process is seen in occur throughout nature. Earth’s stratosphere between gases and water Solid-state photochemistry as a formation mechanism for Titan's stratospheric ice particles. C4N2 ice clouds. C. Anderson, R. Samuelson, Y. Yung and J. McLain, Geophysical Research Letters, 43, 3088-3094, 2016. .
    [Show full text]
  • Synthesis of Activated Pyrimidine Ribonucleotides in Prebiotically Plausible Conditions
    Vol 459 | 14 May 2009 | doi:10.1038/nature08013 LETTERS Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions Matthew W. Powner1,Be´atrice Gerland1 & John D. Sutherland1 At some stage in the origin of life, an informational polymer must we have discovered a short, highly efficient route to activated pyrimi- have arisen by purely chemical means. According to one version of dine ribonucleotides from these same precursors that proceeds by way the ‘RNA world’ hypothesis1–3 this polymer was RNA, but attempts of alternative intermediates (Fig. 1, green arrows). By contrast with to provide experimental support for this have failed4,5. In parti- previously investigated routes to ribonucleotides, ours bypasses ribose cular, although there has been some success demonstrating that and the free pyrimidine nucleobases. Mixed nitrogenous–oxygenous ‘activated’ ribonucleotides can polymerize to form RNA6,7,itis chemistry first results in the reaction of cyanamide 8 and glycolalde- far from obvious how such ribonucleotides could have formed from hyde 10, giving 2-amino-oxazole 11, and this heterocycle then adds to their constituent parts (ribose and nucleobases). Ribose is difficult glyceraldehyde 9 to give the pentose amino-oxazolines including the to form selectively8,9, and the addition of nucleobases to ribose is arabinose derivative 12. Reaction of 12 with cyanoacetylene 7 then inefficient in the case of purines10 and does not occur at all in the gives the anhydroarabinonucleoside 13, which subsequently under- case of the canonical pyrimidines11. Here we show that activated goes phosphorylation with rearrangement to furnish b-ribocytidine- pyrimidine ribonucleotides can be formed in a short sequence that 29,39-cyclic phosphate 1.
    [Show full text]
  • Life As a Guide to Prebiotic Nucleotide Synthesis
    COMMENT DOI: 10.1038/s41467-018-07220-y OPEN Life as a guide to prebiotic nucleotide synthesis Stuart A. Harrison1 & Nick Lane 1 Synthesis of activated nucleotides has been accomplished under ‘prebiotically plausible’ conditions, but bears little resemblance to the chemistry of life as we know it. Here we argue that life is an indispensable guide to its own origins. 1234567890():,; “The justification of prebiotic syntheses by appealing to their similarity to enzymatic mechanisms has been routine in the literature of prebiotic chemistry. Acceptance of the RNA World hypothesis invalidates this type of argument. If the RNA World originated de novo on the primitive Earth, it erects an almost opaque barrier between biochemistry and prebiotic chemistry.” Leslie Orgel 2004. There is little doubt that RNA is central to the origins of genetic information and protein synthesis, but that is a far cry from the stronger statement, articulated by Orgel, that if metabolism arose from an RNA world, then life can give no insights into its own origin1. Yet this view resonates with much prebiotic chemistry over the last decade. Activated pyrimidine and oxopurine nucleotides have been synthesised at good yield from purportedly prebiotically plausible precursors such as cyanide and cyanoacetylene, driven by UV radiation2. Wet-dry cycles in the presence of laminated clay minerals and lipids can polymerise nucleotides to RNA3. Accordingly, some claim that the problem has already been solved, at least conceptually. Has it? Not in everybody’s view. Perhaps the biggest problem is that the chemistry involved in these clever syntheses does not narrow the gap between prebiotic chemistry and biochemistry—it does not resemble extant biochemistry in terms of substrates, reaction pathways, catalysts or energy coupling4.
    [Show full text]
  • The Dissipative Photochemical Origin of Life: UVC Abiogenesis of Adenine
    entropy Article The Dissipative Photochemical Origin of Life: UVC Abiogenesis of Adenine Karo Michaelian Department of Nuclear Physics and Applications of Radiation, Instituto de Física, Universidad Nacional Autónoma de México, Circuito Interior de la Investigación Científica, Cuidad Universitaria, Mexico City, C.P. 04510, Mexico; karo@fisica.unam.mx Abstract: The non-equilibrium thermodynamics and the photochemical reaction mechanisms are described which may have been involved in the dissipative structuring, proliferation and complex- ation of the fundamental molecules of life from simpler and more common precursors under the UVC photon flux prevalent at the Earth’s surface at the origin of life. Dissipative structuring of the fundamental molecules is evidenced by their strong and broad wavelength absorption bands in the UVC and rapid radiationless deexcitation. Proliferation arises from the auto- and cross-catalytic nature of the intermediate products. Inherent non-linearity gives rise to numerous stationary states permitting the system to evolve, on amplification of a fluctuation, towards concentration profiles providing generally greater photon dissipation through a thermodynamic selection of dissipative efficacy. An example is given of photochemical dissipative abiogenesis of adenine from the precursor HCN in water solvent within a fatty acid vesicle floating on a hot ocean surface and driven far from equilibrium by the incident UVC light. The kinetic equations for the photochemical reactions with diffusion are resolved under different environmental conditions and the results analyzed within the framework of non-linear Classical Irreversible Thermodynamic theory. Keywords: origin of life; dissipative structuring; prebiotic chemistry; abiogenesis; adenine; organic molecules; non-equilibrium thermodynamics; photochemical reactions Citation: Michaelian, K. The Dissipative Photochemical Origin of MSC: 92-10; 92C05; 92C15; 92C40; 92C45; 80Axx; 82Cxx Life: UVC Abiogenesis of Adenine.
    [Show full text]
  • Pyrolysis and Combustion of Acetonitrile (Ch3cn)
    OAK RIDGE ORNL/TM-2002/113 NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Pyrolysis and Combustion of Acetonitrile (CH3CN) Phillip F. Britt DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Investigating the Chemical Composition of the CIRS-Observed 160 Cm-1 Ice Cloud in Titan’S Stratosphere
    EPSC Abstracts Vol. 14, EPSC2020-423, 2020 https://doi.org/10.5194/epsc2020-423 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Investigating the Chemical Composition of the CIRS-Observed 160 cm-1 Ice Cloud in Titan’s Stratosphere Melissa Ugelow1,2 and Carrie Anderson1 1NASA Goddard Space Flight Center, Astrochemistry Laboratory, Greenbelt, MD, United States of America 2Universities Space Research Association, Columbia, MD, United States of America Remote sensing observations from Voyager 1’s InfraRed Interferometer Spectrometer (IRIS) and Cassini’s Composite InfraRed Spectrometer (CIRS) confirmed the presence of nitrile ice clouds in Titan’s stratosphere (Samuelson 1985, 1992; Khanna, R.K. et al., 1987; Samuelson et al., 1997, 2007; Coustenis, A. et al., 1999; Mayo and Samuelson, 2005; Anderson, C.M. et al., 2010, 2018a,b; Anderson and Samuelson, 2011). While individual gases in Titan’s stratosphere are expected to condense to form pure ices, some of these gases will enter altitude regions where they undergo simultaneous saturation, or co-condensation, and form a mixed ice. The infrared spectral features resulting from a mixed ice have their own unique spectral signatures that notably diverge from the weighted sum of the individual species, and must therefore be experimentally determined as functions of temperature and mixing ratio (Anderson and Samuelson, 2011; Anderson et al. 2018a,b). The first observation of a co-condensate in Titan’s stratosphere was acquired by CIRS, which revealed a spectrally broad quasi-continuum ice emission feature with a spectral peak near 160 cm-1.
    [Show full text]
  • Soups & SELEX for the Origin of Life
    Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Soups & SELEX for the origin of life RENÉE SCHROEDER Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria The theory of evolution quickly brought up the most fasci- grounds on which chemists could develop experimental nating question in biology: the origin of life. How did life set ups. Combinatorial events of simple chemical reactions emerge? The biggest challenge in this endeavor to understand could lead to stably replicating populations of increasing how life could have emerged without a controller is to unravel complexity. the chemical processes that made the synthesis of complex molecules containing information possible. Primordial Soups: prebiotic chemistry needs Already at high school I was totally caught by Oparin’s hy- to deliver activated ribonucleotides pothesis that simple unicellular organisms evolved from sim- ple organic molecules, which in turn originated from simple One prerequisite for the emergence of Life is the condensa- inorganic molecules present in the early atmosphere of our tion of informational polymers by purely chemical means. planet. Oparin and Haldane coined the idea of “primordial Indeed, the Orgel lab has been successful in obtaining nucle- soup” experiments. For my “Matura” (that is the name of otide polymers as long as 55 monomers in the presence of the exam you do in Austria, when you finally leave high mineral surfaces like montmorillonite. For this to happen school) I got Stanley Miller’s famous primordial soup exper- activated ribonucleotide building blocks must have been iments as question. I just now realize that ever since SOUP & available in sufficient amounts.
    [Show full text]
  • Photodissociation Dynamics in Titan's Atmosphere Welvidanalage Ruchira Silva Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2010 Photodissociation Dynamics In Titan's Atmosphere Welvidanalage Ruchira Silva Wayne State University Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Silva, Welvidanalage Ruchira, "Photodissociation Dynamics In Titan's Atmosphere" (2010). Wayne State University Dissertations. Paper 63. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. PHOTODISSOCIATION DYNAMICS IN TITAN’S ATMOSPHERE by W. RUCHIRA SILVA DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2010 MAJOR: CHEMISTRY (Physical) Approved by: Advisor Date © COPYRIGHT BY WELVIDANALAGE RUCHIRA ROHAN SILVA 2010 All Rights Reserved DEDICATION ~ To my Parents, Madu and Netuli… ii ACKNOWLEDGMENTS First and foremost, I owe my deepest gratitude to my advisor, Professor Arthur G. Suits, whose guidance, encouragement and support enabled me to complete my graduate studies through Wayne State University. This dissertation would not have been possible without his forgiveness, kind considerations, great efforts and continuous support. I am very fortunate to have an advisor like Prof. Suits who not only guided me to understand the subject but also helped me to overcome every major difficulty I faced in my life over the last five years. If it was not his support my dreams would not have become a reality. His passion towards research is inspiring and motivating. I’m grateful for him for everything I learnt throughout my graduate career.
    [Show full text]
  • Organic Synthesis Applied to Space Sciences J.-C
    EPJ Web of Conferences 18, 06004 (2011) DOI: 10.1051/epjconf/20111806004 C Owned by the authors, published by EDP Sciences, 2011 Organic synthesis applied to space sciences J.-C. Guillemina École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France Abstract. About 160 molecules have been detected in the interstellar medium, the comae and the atmospheres of planets. The presence of these compounds leads to imagine a chemistry of these media to explain the formation of these species and to predict the possible presence of other ones. Many of them have never been synthesized or isolated in labs and their preparation can be challenging, up to necessitate news reactions or special equipments. INTRODUCTION The recording of the Infrared (IR), Ultraviolet (UV) and Microwave (MW) spectra of many places of the Universe shows signals corresponding to complex mixtures of molecules. The identification of about 150 molecules in the interstellar medium (ISM) [1], of dozens in comae and in the planetary atmospheres (Jupiter, Saturn, Neptune, Venus, Titan (the largest moon of Saturn), ...)hasgenerated many attempts to know how they are formed and eventually decomposed, and to predict which other compounds could be observed in these media. The understanding of the chemistry of the ISM, of planetary atmospheres including the Earth is probably one of the most intriguing research subjects. For a long time, the region between the stars was considered to be too hostile to contain quantities of molecules, but at the end of the 1960s, ammonia [2], water [3, 4] and formaldehyde [5] were observed.
    [Show full text]
  • Ionization Photophysics and Spectroscopy of Cyanoacetylene Sydney Leach, Gustavo A
    Ionization photophysics and spectroscopy of cyanoacetylene Sydney Leach, Gustavo A. Garcia, Ahmed Mahjoub, Yves Bénilan, Nicolas Fray, Marie-Claire Gazeau, François Gaie-Levrel, Norbert Champion, and Martin Schwell Citation: The Journal of Chemical Physics 140, 174305 (2014); doi: 10.1063/1.4871298 View online: http://dx.doi.org/10.1063/1.4871298 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/140/17?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Ionization photophysics and spectroscopy of dicyanoacetylene J. Chem. Phys. 139, 184304 (2013); 10.1063/1.4826467 A femtosecond velocity map imaging study on B-band predissociation in CH3I. II. The 2 0 1 and 3 0 1 vibronic levels J. Chem. Phys. 136, 074303 (2012); 10.1063/1.3683252 Resonantly enhanced multiphoton ionization and zero kinetic energy photoelectron spectroscopy of 2-indanol conformers J. Chem. Phys. 124, 204306 (2006); 10.1063/1.2201747 Resonantly enhanced two photon ionization and zero kinetic energy spectroscopy of jet-cooled 4-aminopyridine J. Chem. Phys. 120, 7497 (2004); 10.1063/1.1687673 Multiphoton ionization and photoelectron spectroscopy of formaldehyde via its 3p Rydberg states J. Chem. Phys. 114, 9797 (2001); 10.1063/1.1370943 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 193.51.99.1 On: Fri, 20 Jun 2014 12:55:42 THE JOURNAL OF CHEMICAL PHYSICS 140, 174305 (2014) Ionization photophysics and spectroscopy of cyanoacetylene Sydney Leach,1,a) Gustavo A. Garcia,2 Ahmed Mahjoub,3 Yves Bénilan,3 Nicolas Fray,2 Marie-Claire Gazeau,3 François Gaie-Levrel,2,b) Norbert Champion,1 and Martin Schwell3,a) 1LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon, France 2Synchrotron SOLEIL, L’Orme des Merisiers, St.
    [Show full text]
  • Irradiation of Mixtures of Gases That Simulate Titan's Atmosphere
    Icarus 177 (2005) 106–115 www.elsevier.com/locate/icarus Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan’s atmosphere Buu N. Tran a,JeffreyC.Josepha, Michael Force b, Robert G. Briggs b, Veronique Vuitton a, JamesP.Ferrisa,∗ a Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA b Wadsworth Center for Laboratories and Research, NY State Department of Health, Albany, NY 12201, USA Received 3 November 2004; revised 14 January 2005 Available online 17 May 2005 Abstract Photochemical reaction pathways in Titan’s atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures.
    [Show full text]