Proceedings of the First International Workshop on Corallium Science, Management, and Trade

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the First International Workshop on Corallium Science, Management, and Trade Proceedings of the First International Workshop on Corallium Science, Management, and Trade March 16-20, 2009 Hong Kong, China Edited by Andrew W. Bruckner Glynnis G. Roberts U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-OPR-43 NOAA Technical Memorandum CRCP-8 September 2009 This publication should be cited as: Bruckner, A.W. and G. G. Roberts (editors). 2009. Proceedings of the First International Workshop on Corallium Science, Management, and Trade. NOAA Technical Memorandum NMFS-OPR-43 and CRCP-8, Silver Spring, MD 153 pp. Significant support for the development of this document was provided by NOAA Fisheries, Office of Habitat Conservation, and NOAA’s Coral Reef Conservation Program. The views expressed in this document are those of the authors and the participants of the workshop, and do not necessarily reflect the official views or policies of the U.S. Government, NOAA or DOC. Additional copies of this publication may be requested from: Nerie Canasa National Oceanic and Atmospheric Administration NOAA Fisheries Office of Habitat Conservation 1315 East West Highway Silver Spring, MD 20910-3282 [email protected] Proceedings of the First International Workshop on Corallium Science, Management, and Trade Edited by Andrew W. Bruckner and Glynnis G. Roberts Office of Habitat Conservation Habitat Protection NOAA Fisheries Coral Reef Conservation Program & I.M. Systems Group, Inc. at NOAA 1315 East-West Highway Silver Spring, MD 20910-3282 NOAA Technical Memorandum NMFS-OPR-43 NOAA Technical Memorandum CRCP-8 U.S. Department of Commerce Gary Locke, Secretary National Oceanic and Atmospheric Administration Jane Lubchenco, Ph.D Under Secretary for Oceans and Atmosphere National Marine Fisheries Service Jim Balsiger, Ph.D Assistant Administrator for Fisheries (acting) Proceedings of the First International Workshop on Corallium Science, Management, and Trade Organizing Committee Andrew Bruckner, NOAA Fisheries, Headquarters Glynnis Roberts, I.M. Systems Group, Inc. at NOAA Fisheries, Headquarters Frank Parrish, NOAA Fisheries, Pacific Islands Fisheries Science Center Laura Noguchi, U.S. Fish and Wildlife Service, Division of Management Authority Ernie Cooper, World Wildlife Fund for Nature-Canada, TRAFFIC Jeremy Linneman, The Ocean Foundation Working Group Leaders Frank Parrish, NOAA Fisheries, Pacific Islands Fisheries Science Center Vin Fleming, UK CITES Scientific Authority, Joint Nature Conservation Committee Sergio Rossi, ICTA, Universitat Autònoma de Barcelona Sponsors NOAA Fisheries Office of Habitat Conservation Habitat Protection Silver Spring, MD NOAA Coral Reef Conservation Program Silver Spring, MD The Ocean Foundation Washington, DC ACKNOWLEDGMENTS Andy Bruckner NOAA Fisheries The International Workshop on Corallium Science, Management, and Trade is the first of two workshops convened to better understand the biological status of precious corals in the family Coralliidae, the adequacy of existing management measures, and the benefits and limitations of a potential CITES Appendix-II listing at enhancing conservation of this taxa. The meeting was convened in response to an Appendix-II listing proposal submitted by the U.S. at the 14th meeting of the CITES Conference of Parties (COP 14), specifically to address questions pertaining to the ability to effectively implement a possible CITES listing. The workshop would not have been possible without the financial support provided by the NOAA Coral Reef Conservation Program (CRCP) and NOAA Fisheries, and supplementary funding from The Ocean Foundation. The meeting was organized and convened under unusual circumstances, with all meeting facilities, travel arrangements and lodging arranged under an extreme time crunch. Our steering committee, including Glynnis Roberts, Frank Parrish, Laura Noguchi, Jeremy Linneman, and Ernie Cooper were instrumental in helping me shape the working group tasks and agenda, and ensure we had the optimal mix of participants. This meeting would not been possible without the dedicated logistical support provided by Jeremy Linneman and Glynnis Roberts. I am extremely grateful to both Jeremy and Glynnis, who managed to shift locations from the Mediterranean, identify a new venue, and secure participation by Pacific experts in just under a month. Jeremy and Glynnis devoted several weeks prior to the workshop to communicate with the Corallium experts from the region, complete their travel arrangements, and assist them in developing presentations, white papers, and other background information. Jeremy and Glynnis also compiled all of the reports and background information into a detailed workshop document that guided discussions and deliberations. During the workshop, they provided invaluable assistance in organizing each session, providing audio-visual assistance, addressing technical issues, and making sure each participants’ needs were promptly and thoroughly addressed. I would like to acknowledge each of the keynote speakers, including Georgio Tsounis, Giovanni Santangelo, Sergio Rossi, Vin Fleming, Laura Noguchi, Ernie Cooper, Frank Parrish, Tony Montgomery, Susan Torntore, Joyce Wu and Soyo Takahashi, Abdelaziz Zoubi, Chi-Shin Chen, Niphon Phongsuwan, Julia Robertson, and Nozomu Iwasaki. Their detailed presentations during the first and second days of the meeting highlighted key issues surrounding these taxa and provided a framework for the working group deliberations. These talks included comprehensive background information on various aspects of Corallium biology, population status, fisheries, and trade. I am most grateful for the dedicated efforts of the three working group chairs, Frank Parrish, Vin Fleming and Sergio Rossi, who facilitated discussions on their respective topics and compiled the information into detailed working group reports. I would also like to give special thanks to all of the participants, each of whom contributed their expertise to the development of these reports. Everyone was extremely congenial and respective of various viewpoints, and without these dedicated efforts, the outcomes of this workshop would have been much less comprehensive. The workshop successfully addressed many of the most pressing workshop questions and issues surrounding the effective conservation of Corallium, and it provides a framework for the second workshop, to be held in the Mediterranean in the fall of 2009. We look forward to continued collaborations with all of the participants, and would like to thank everyone for their involvement. Together, we can ensure the conservation, sustainable harvest, and trade of these jewels of the sea. v PREfaCE Andy Bruckner NOAA Fisheries Introduction Corallium has been intensively harvested for centuries, and both landings and population data provide strong evidence that most commercially viable Corallium beds are now depleted. Long term trends in landings from both the Pacific and Mediterranean and available data on population demographics of Mediterranean C. rubrum populations provide considerable evidence that known commercial beds of Corallium have declined to less than 20-30% of their historic baseline, meeting the criteria required for a CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) Appendix-II listing (Bruckner 2009). Nevertheless, questions remain regarding the effective implementation of a potential listing. There are difficulties in identifying Corallium specimens to species, especially processed material (polished and dyed jewelry including powdered and reconstituted Corallium). Identification to family (Coralliidae) or genus (Corallium, Paracorallium) may be possible and may be allowed under CITES, mirroring the approach taken with some of the other listed corals. If a CITES listing were adopted, countries would need to develop procedures for handling stockpiled coral harvested prior to a listing, which would be considered pre-Convention and could be traded under a CITES exemption document. There are also large local markets and trade between neighboring European Union countries, which would not be regulated by CITES. While regulating the international trade in Corallium presents challenges, a CITES listing could reduce illegal trade and promulgate stronger management and enforcement efforts by giving both exporting and importing countries joint responsibility for ensuring that trade is sustainable. A CITES listing requires monitoring and annual reporting of international trade, filling critical gaps in knowledge of harvest and trade levels. A listing would also promote research on the status and trends of Corallium populations and the impacts of fisheries, as well as the adoption of sustainable management approaches. Exporting countries would be required to meet non- detriment requirements of a CITES Appendix-II listing. While new administrative burdens would be associated with a CITES listing for Corallium, these are not insurmountable, having been successfully resolved in other species that presented similar challenges including stony corals, antipatharians, and seahorses. The following information includes a brief summary of what is known about the harvest, trade, and population status of Corallium. This is followed by an overview of recent activities undertaken to conserve these species through CITES, and the rationale for technical workshops on Corallium. Corallium fisheries and trade Precious corals in the family Coralliidae are important deep-water
Recommended publications
  • Precious Corals (Coralliidae) from North-Western Atlantic Seamounts A
    The University of Maine DigitalCommons@UMaine Marine Sciences Faculty Scholarship School of Marine Sciences 3-1-2011 Precious Corals (Coralliidae) from North-Western Atlantic Seamounts A. Simpson Les Watling University of Maine - Main, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/sms_facpub Repository Citation Simpson, A. and Watling, Les, "Precious Corals (Coralliidae) from North-Western Atlantic Seamounts" (2011). Marine Sciences Faculty Scholarship. 97. https://digitalcommons.library.umaine.edu/sms_facpub/97 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Marine Sciences Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Journal of the Marine Biological Association of the United Kingdom, 2011, 91(2), 369–382. # Marine Biological Association of the United Kingdom, 2010 doi:10.1017/S002531541000086X Precious corals (Coralliidae) from north-western Atlantic Seamounts anne simpson1 and les watling1,2 1Darling Marine Center, University of Maine, Walpole, ME 04573, USA, 2Department of Zoology, University of Hawaii at Manoa, Honolulu, HI 96822, USA Two new species belonging to the precious coral genus Corallium were collected during a series of exploratory cruises to the New England and Corner Rise Seamounts in 2003–2005. One red species, Corallium bathyrubrum sp. nov., and one white species, C. bayeri sp. nov., are described. Corallium bathyrubrum is the first red Corallium to be reported from the western Atlantic. An additional species, C. niobe Bayer, 1964 originally described from the Straits of Florida, was also collected and its description augmented.
    [Show full text]
  • Raman Investigations to Identify Corallium Rubrum in Iron Age Jewelry and Ornaments
    minerals Article Raman Investigations to Identify Corallium rubrum in Iron Age Jewelry and Ornaments Sebastian Fürst 1,†, Katharina Müller 2,†, Liliana Gianni 2,†, Céline Paris 3,†, Ludovic Bellot-Gurlet 3,†, Christopher F.E. Pare 1,† and Ina Reiche 2,4,†,* 1 Vor- und Frühgeschichtliche Archäologie, Institut für Altertumswissenschaften, Johannes Gutenberg-Universität Mainz, Schillerstraße 11, Mainz 55116, Germany; [email protected] (S.F.); [email protected] (C.F.E.P.) 2 Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 8220, Laboratoire d‘archéologie moléculaire et structurale (LAMS), 4 Place Jussieu, 75005 Paris, France; [email protected] (K.M.); [email protected] (L.G.) 3 Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 8233, De la molécule au nano-objets: réactivité, interactions et spectroscopies (MONARIS), 4 Place Jussieu, 75005 Paris, France; [email protected] (C.P.); [email protected] (L.B.-G.) 4 Rathgen-Forschungslabor, Staatliche Museen zu Berlin-Preußischer Kulturbesitz, Schloßstraße 1 a, Berlin 14059, Germany * Correspondence: [email protected] or [email protected]; Tel.: +49-30-2664-27101 † These authors contributed equally to this work. Academic Editor: Steve Weiner Received: 31 December 2015; Accepted: 1 June 2016; Published: 15 June 2016 Abstract: During the Central European Iron Age, more specifically between 600 and 100 BC, red precious corals (Corallium rubrum) became very popular in many regions, often associated with the so-called (early) Celts. Red corals are ideally suited to investigate several key questions of Iron Age research, like trade patterns or social and economic structures. While it is fairly easy to distinguish modern C.
    [Show full text]
  • Octocoral Diversity of Balıkçı Island, the Marmara Sea
    J. Black Sea/Mediterranean Environment Vol. 19, No. 1: 46-57 (2013) RESEARCH ARTICLE Octocoral diversity of Balıkçı Island, the Marmara Sea Eda Nur Topçu1,2*, Bayram Öztürk1,2 1Faculty of Fisheries, Istanbul University, Ordu St., No. 200, 34470, Laleli, Istanbul, TURKEY 2Turkish Marine Research Foundation (TUDAV), P.O. Box: 10, Beykoz, Istanbul, TURKEY *Corresponding author: [email protected] Abstract We investigated the octocoral diversity of Balıkçı Island in the Marmara Sea. Three sites were sampled by diving, from 20 to 45 m deep. Nine species were found, two of which are first records for Turkish fauna: Alcyonium coralloides and Paralcyonium spinulosum. Scientific identification of Alcyonium acaule in the Turkish seas was also done for the first time in this study. Key words: Octocoral, soft coral, gorgonian, diversity, Marmara Sea. Introduction The Marmara Sea is a semi-enclosed sea connecting the Black Sea to the Aegean Sea via the Turkish Straits System, with peculiar oceanographic, ecological and geomorphologic characteristics (Öztürk and Öztürk 1996). The benthic fauna consists of Black Sea species until approximately 20 meters around the Prince Islands area, where Mediterranean species take over due to the two layer stratification in the Marmara Sea. The Sea of Marmara, together with the straits of Istanbul and Çanakkale, serves as an ecological barrier, a biological corridor and an acclimatization zone for the biota of Mediterranean and Black Seas (Öztürk and Öztürk 1996). The Islands in the Sea of Marmara constitute habitats particularly for hard bottom communities of Mediterranean origin. Ten Octocoral species were reported by Demir (1954) from the Marmara Sea but amongst them, Gorgonia flabellum was probably reported by mistake and 46 should not be considered as a valid record from the Sea of Marmara.
    [Show full text]
  • Pearls and Organic Gemstones
    Pearls and Organic Gemstones INTRODUCTION Pearls were probably the first discovered gems of significance. Because they need no cutting or treatment to enhance their beauty and are rare natural occurrences, they have most likely always been highly esteemed. Organic gemstones are anything created by living processes. We have looked at amber in the past, but bone, teeth (such as ivory), and shells all have some value and are used today as gemstones. Pearls in General A pearl is grown by a mollusk (a bivalve such as a clam, oyster, or mussel or snail [single shell = valve]) in response to an irritant. Bivalves (two shelled mollusks) that secrete pearls live in both fresh‐ and saltwater. The irritant in most cases is a parasite (though it could be a grain of sand or other object). The parasite, a worm or other creature, is walled off by a secretion of calcium carbonate and protein. The calcium carbonate is the same as the inorganic material that makes stalactites in caves, and the protein is called conchiolin. The combination of these two substances (calcium carbonate and protein) makes the pearl's nacre (Nacre is also called mother of pearl). The nacre is a lustrous deposit around the irritant and forms concentric layers (overlapping circles). Many concentric layers of nacre build up over a period of a few years creating a pearl. The internal pattern is much like that seen in a jawbreaker. The layers create a sheen or luster that has iridescence and is described as both pearly luster and if colors of the rainbow are present, the pearl's orient.
    [Show full text]
  • Coelenterata: Anthozoa), with Diagnoses of New Taxa
    PROC. BIOL. SOC. WASH. 94(3), 1981, pp. 902-947 KEY TO THE GENERA OF OCTOCORALLIA EXCLUSIVE OF PENNATULACEA (COELENTERATA: ANTHOZOA), WITH DIAGNOSES OF NEW TAXA Frederick M. Bayer Abstract.—A serial key to the genera of Octocorallia exclusive of the Pennatulacea is presented. New taxa introduced are Olindagorgia, new genus for Pseudopterogorgia marcgravii Bayer; Nicaule, new genus for N. crucifera, new species; and Lytreia, new genus for Thesea plana Deich- mann. Ideogorgia is proposed as a replacement ñame for Dendrogorgia Simpson, 1910, not Duchassaing, 1870, and Helicogorgia for Hicksonella Simpson, December 1910, not Nutting, May 1910. A revised classification is provided. Introduction The key presented here was an essential outgrowth of work on a general revisión of the octocoral fauna of the western part of the Atlantic Ocean. The far-reaching zoogeographical affinities of this fauna made it impossible in the course of this study to ignore genera from any part of the world, and it soon became clear that many of them require redefinition according to modern taxonomic standards. Therefore, the type-species of as many genera as possible have been examined, often on the basis of original type material, and a fully illustrated generic revisión is in course of preparation as an essential first stage in the redescription of western Atlantic species. The key prepared to accompany this generic review has now reached a stage that would benefit from a broader and more objective testing under practical conditions than is possible in one laboratory. For this reason, and in order to make the results of this long-term study available, even in provisional form, not only to specialists but also to the growing number of ecologists, biochemists, and physiologists interested in octocorals, the key is now pre- sented in condensed form with minimal illustration.
    [Show full text]
  • Corallium Rubrum
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM Marine Ecology. ISSN 0173-9565 SHORT COMMUNICATION Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation Federica Costantini1, Marco Taviani2, Alessandro Remia2, Eleonora Pintus1, Patrick J. Schembri3 & Marco Abbiati1 1 Centro Interdipartimentale di Ricerca per le Scienze Ambientali, C.I.R.S.A. - University of Bologna, Via S. Alberto, Ravenna, Italy 2 Consiglio Nazionale delle Ricerche ISMAR – Istituto di Scienze Marine, Sede di Bologna, Via Gobetti, Bologna, Italy 3 Department of Biology, University of Malta, Msida MSDO6, Malta Keywords Abstract Corallium rubrum; deep-water populations; genetic diversity; Mediterranean Sea. The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Correspondence Corallium rubrum is a long-lived gorgonian coral that has been commercially Federica Costantini, Via Sant’Alberto, 163, harvested since ancient times for its red axial calcitic skeleton and which, at 48100 Ravenna, Italy. present, is thought to be in decline because of overexploitation. The depth dis- E-mail: [email protected] tribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live Accepted: 7 August 2009 red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeo- doi:10.1111/j.1439-0485.2009.00333.x graphy and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations.
    [Show full text]
  • Gonian Eunicella Singularis (Esper, 1791) (Anthozoa Gorgoni - Idae) of Paloma Island, Algeria
    Biodiversity Journal , 2019, 10 (3): 185–194 https://doi.org/ 10.31396/Biodiv.Jour.2019.10.3.185.194 Morphometric data and allometric relationships of the gor - gonian Eunicella singularis (Esper, 1791) (Anthozoa Gorgoni - idae) of Paloma Island, Algeria Mouloud Benabdi 1, Lalla A. T. Cherif-Louazani 1, Alae Eddine Belmahi 1, Samir Grimes 2, Yassine G.E. Khames 3, Billel Boufekane 3, Salim Mouffok 1 & Mohamed Bouderbala 1 1Laboratoire Réseau de Surveillance Environnementale, Faculté SNV, Université Oran1, Algeria 2École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral Alger, Algeria 3Faculté des Sciences Biologiques, USTHB, Alger, Algeria *Corresponding author, email: [email protected] ABSTRACT The gorgonian Eunicella singularis (Esper, 1791) (Anthozoa Gorgoniidae) is abundant on rocky bottoms at Paloma Island (Algeria) in the south-western of the Mediterranean basin. In this study area, 150 gorgonian colonies of E. singularis were collected randomly using SCUBA diving and the following morphometric macro-features were measured (maximum height, maximum width, total branch length, rectangular surface area, height to width ratio and dry weight). Allometric growth was examined using the relationships between the dry weight and the five morphometric macro-features. The power equation of the simple allometry applied was y=ax b and the parameters of the linear regression a and b were estimated after the logarithmic transformation log (y)=log( a)+ b*log(x). The allometric relationships between the dry weight and the morphometric macro-features studied show that the growth of the gor - gonian E. singularis in the study area is correlated positively and significantly with the five macro-features and that both the macro-features total branch length and the maximum width are the most appropriate parameter applied to the gorgonian E.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • A Time-Calibrated Molecular Phylogeny of the Precious Corals: Reconciling Discrepancies in the Taxonomic Classification and Insights Into Their Evolutionary History
    A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ardila, Néstor E, Gonzalo Giribet, and Juan A Sánchez. 2012. A time- calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history. BMC Evolutionary Biology 12: 246. Published Version doi:10.1186/1471-2148-12-246 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11802886 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history Ardila et al. Ardila et al. BMC Evolutionary Biology 2012, 12:246 http://www.biomedcentral.com/1471-2148/12/246 Ardila et al. BMC Evolutionary Biology 2012, 12:246 http://www.biomedcentral.com/1471-2148/12/246 RESEARCH ARTICLE Open Access A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history Néstor E Ardila1,3, Gonzalo Giribet2 and Juan A Sánchez1* Abstract Background: Seamount-associated faunas are often considered highly endemic but isolation and diversification processes leading to such endemism have been poorly documented at those depths.
    [Show full text]
  • Ecosystem Approach to Fisheries Management (EAFM) Country Position Paper—Malaysia
    CORAL TRIANGLE INITIATIVE: EcOSYSTEM APPROACH TO FISHERIES MANAGEMENT (EAFM) Country Position Paper—Malaysia May 2013 This publication was prepared for Malaysia’s National Coordinating Committee with funding from the United States Agency for International Development’s Coral Triangle Support Partnership (CTSP). Coral Triangle Initiative: Ecosystem Approach to Fisheries Management (EAFM): Country Position Paper – Malaysia AUTHOR: Kevin Hiew EDITOR: Jasmin Saad, OceanResearch KEY CONTRIBUTORS: Gopinath Nagarai, Fanli Marine Consultancy USAID PROJecT NUMBER: GCP LWA Award # LAG-A-00-99-00048-00 CITATION: Hiew, K., J. Saad, and N. Gopinath. Coral Triangle Initiative: Ecosystem Approach to Fisheries Management (EAFM): Country Position Paper—Malaysia. Publication. Honolulu, Hawaii: The USAID Coral Triangle Support Partnership, 2012. Print. PRINTED IN: Honolulu, Hawaii, May 2013 This is a publication of the Coral Triangle Initiative on Corals, Fisheries and Food Security (CTI-CFF). Funding for the preparation of this document was provided by the USAID-funded Coral Triangle Support Partnership (CTSP). CTSP is a consortium led by the World Wildlife Fund, The Nature Conservancy and Conservation International with funding support from the United States Agency for International Development’s Regional Asia Program. For more information on the Coral Triangle Initiative, please contact: Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security Interim-Regional Secretariat Ministry of Marine Affairs and Fisheries of the Republic of Indonesia Mina Bahari Building II, 17th Floor Jalan Medan Merdeka Timur No. 16 Jakarta Pusat 10110, Indonesia www.coraltriangleinitiative.org CTI-CFF National Coordinating Committee Professor Nor Aeni Haji Mokhtar Under Secretary National Oceanography Directorate, Ministry of Science, Technology and Innovation, Level 6, Block C4, Complex C, Federal Government Administrative Centre, 62662 Putrajaya, Malaysia.
    [Show full text]
  • Symbionts and Environmental Factors Related to Deep-Sea Coral Size and Health
    Symbionts and environmental factors related to deep-sea coral size and health Erin Malsbury, University of Georgia Mentor: Linda Kuhnz Summer 2018 Keywords: deep-sea coral, epibionts, symbionts, ecology, Sur Ridge, white polyps ABSTRACT We analyzed video footage from a remotely operated vehicle to estimate the size, environmental variation, and epibiont community of three types of deep-sea corals (class Anthozoa) at Sur Ridge off the coast of central California. For all three of the corals, Keratoisis, Isidella tentaculum, and Paragorgia arborea, species type was correlated with the number of epibionts on the coral. Paragorgia arborea had the highest average number of symbionts, followed by Keratoisis. Epibionts were identified to the lowest possible taxonomic level and categorized as predators or commensalists. Around twice as many Keratoisis were found with predators as Isidella tentaculum, while no predators were found on Paragorgia arborea. Corals were also measured from photos and divided into size classes for each type based on natural breaks. The northern sites of the mound supported larger Keratoisis and Isidella tentaculum than the southern portion, but there was no relationship between size and location for Paragorgia arborea. The northern sites of Sur Ridge were also the only place white polyps were found. These polyps were seen mostly on Keratoisis, but were occasionally found on the skeletons of Isidella tentaculum and even Lillipathes, an entirely separate subclass of corals from Keratoisis. Overall, although coral size appears to be impacted by 1 environmental variables and location for Keratoisis and Isidella tentaculum, the presence of symbionts did not appear to correlate with coral size for any of the coral types.
    [Show full text]
  • EXTENDED COST BENEFIT ANALYSIS of PRESENT and FUTURE USE of INDONESIAN CORAL REEFS an Empirical Approach to Sustainable Management of Tropical Marine Resources
    Aus dem Institut für Agrarökonomie der Christian-Albrechts-Universität zu Kiel EXTENDED COST BENEFIT ANALYSIS OF PRESENT AND FUTURE USE OF INDONESIAN CORAL REEFS An Empirical Approach to Sustainable Management of Tropical Marine Resources Dissertation zur Erlangung des Doktorgrades der Agrar-und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Magister of Science Achmad Fahrudin aus Jakarta (Indonesien) Kiel, November 2003 Dekan : Prof. Dr. Friedhelm Taube Erster Berichterstatter : Prof. Dr. Christian Noell Zweiter Berichterstatter : Prof. Dr. Franciscus Colijn Tag der mündlichen Prüfung: 06.11.2003 i Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel ii Zusammenfassung Korallen stellen einen wichtigen Faktor der indonesischen Wirtschaft dar. Im Vergleich zu anderen Ländern weisen die Korallenriffe Indonesiens die höchsten Schädigungen auf. Das zerstörende Fischen ist ein Hauptgrund für die Degradation der Korallenriffe in Indonesien, so dass das Gesamtsystem dieser Fangpraxis analysiert werden muss. Dazu wurden im Rahmen dieser Studie die Standortbedingungen der Korallen erfasst, die Hauptnutzungen mit ihren jeweiligen Auswirkungen und typischen Merkmale der Nutzungen bestimmt sowie die politische Haltung der gegenwärtigen Regierung gegenüber diesem Problemfeld untersucht. Die Feldarbeit wurde in der Zeit von März 2001 bis März 2002 an den Korallenstandorten Seribu Islands (Jakarta), Menjangan Island (Bali) und Gili Islands
    [Show full text]