Checklist of Vascular Plants in the Nature Reserves of Singapore

Total Page:16

File Type:pdf, Size:1020Kb

Checklist of Vascular Plants in the Nature Reserves of Singapore Proceedings of the Nature Reserves Survey Seminm: Gardens' Bulletin Singapore 49 (1997) 161-223. Checklist of Vascular Plants in the Nature Reserves of Singapore P.T. CHEW, SAIFUDDIN SURAN AND ALI IBRAHIM Singapore Botanic Gardens, 1 Ouny Road, Singapore 259569 Abstract This vascular plant checklist of the Nature Reserves of Singapore is a compilation of historical records (herbarium specimens, published and unpublished checklists) as well as recent field observations and studies. A total of 1634 species of vascular plants have been recorded in the Nature Reserves since the last century, of which 443 (or 29% of the indigenous species) have not been seen during the last 10 years. Introduction The current Nature Reserves of Singapore consist of the Bukit Timah Nature Reserve (BTNR) and the Central Catchment Nature Reserve (CCNR). Floristic inventory and research in the past were mostly concentrated at BTNR, the Bukit Timah Reserve as it was formerly known. It was one of the first Forest Reserves to be established in Singapore in 1883. In 1951, the Nature Reserves Ordinance was enacted and the Central Catchment Area, now known as the Central Catchment Nature Reserve, was included as one of the five Forest Reserves. In 1990, the newly gazetted National Parks Act established a National Parks Board, which acts as a trustee for the current Nature Reserves. , The objectives of the Nature Reserves are, as stated in Part II of the National Parks Act 1990: (a) the propagation, protection and preservation of the plants (flora) and animals (fauna) of Singapore; (b) the study, research and preservation of objects and places of aesthetic, historical or scientific interest; (c) the study, research and dissemination of knowledge in botany, · horticulture, biotechnology and natural and local history; 162 Card. Btt/1. Singapore 49(2) (1 997) and the following was added as Part VII in the National Parks Act 1996: (d) recreational and educational use by the public. In 1991, a six-year Nature Reserves Survey (NRS) project was initiated by the National Parks Board (NParks), primarily to inventory the physical and biological components of the Nature Reserves, particularly, that of the lesser known CCNR. Materials The documentation of Singapore's flora started in the late nineteenth century. A literature and herbarium search at the Singapore Botanic Gardens H erbarium (SING) yielded a long list of historical flora records of the Nature Reserves of Singapore. These include Report on the Forests of the Straits Settlements (Cantley, 1884), Flora of Singapore (Ridley, 1900), Freshwater Swamp-forest of South lahore and Singapore (Corner, 1978); and specimen records by H.N. Ridley, I.H. Burkill, R.E. Holttum, E.J.H. Corner, and more recently, J. Sinclair in the 1950s-1960s. After a lapse of about 30 years, interest in biodiversity revived when field collections were carried out at Lower Peirce (within the CCNR) under an independently commissioned survey for a separate project proposal in 1990. This was followed by the NRS project, of which floristic inventory was the primary component during the period 1991 to 1994. Field surveys of the CCNR flora were conducted by NParks staff and consultants (Wong et al., 1994; Ali et at., 1997), and researchers and student assistants from the National University of Singapore (Turner et al., 1994, 1996a, 1996b, 1996c, 1997). Besides these recent compilations of Singapore fl ora, checklists (Turner et al. , 1990, Turner,1993, 1995; Wee & Ng, 1994; Ng & Wee, 1994; Chin et al. , 1995; Tan, 1995) and selected flora inventory research carried out in the Nature Reserves in the last decade (Wong, 1987; Swan, 1988; Corlett, 1990, 1991; Sim et at. , 1992; Tan et al. , 1995; LaFrankie et at., 1996; Chua et al., 1996) are available. In addition, the flora in a two-hectare plot in the BTNR is under a long-term population dynamic study carried out by the National Institute of Education, Nanyang Technological University, in conjunction with the Center for Tropical Forest Science (CTFS). Check/is / of vascular plams 163 Methods The compiled list of indigenous vascular plant species (Appendix 1) that are or were probably fo und growing in the Nature Reserves since the last century is derived from the various publications listed above, herbarium records in the Singapore Botanic Gardens Herbarium, and the unpublished checklists noted below. Naturalised species sampled in the survey are recorded in Appendix 2. The record sources for the four columns, R, H, P and S, in Appendices 1 and 2 are as follows: R - records from field collections, published data from NRS, and published data during the period 1991 - 1997 from the "Additions to the Flora of Singapore" and "The Angiosperm Flora of Singapore" series published in the Gardens' Bulletin Singapore, 44- 49. H - herbarium specimens records in SING. P- publication records denoted as follows: C- Corlett (1990, 1991); F ­ Wee (1983, 1984); N - Corner (1978); T - Chua et al. (1996), Tan et al. (1995), Tan (1995, 1997); W- Wong (1987). S - unverified records denoted as follows: 1 - observations from NParks staff and NRS unpublished checklists, 2 - unpublished checklist of BTNR flora (Corlett, late 80s), 3 - collections from the Centre for Natural Product Research (CNPR) project and 4 - collections from the CTFS project. The records reported under S are non-exhaustive. Sources 1, 3 and 4 are complementary to R while source 2 is complementary to H, based on dates of collections. Of the new unverified records discovered from this survey that are not found in the Singapore checklist (Turner, 1993), those that have not been recorded as far south as Johore, the nearest state of Peninsula Malaysia, were left out. Observations The total vascular plant records for the Nature Reserves of Singapore is 1634 species, as listed in Appendices 1 and 2. Of these species, 1525 are indigenous (Appendix 1) and 109 (7%) are exotic (Appendix 2). For the NRS, 916 species (under R) were recorded with an additional 258 species (1 , 3 & 4 under S) noted during the period. 164 Card. Bull. Singapore 49(2) (1997) A total of 1190 vascular plant species are recorded for the Nature Reserves within the last 10 years, of which 341 species or 29% (excluding those listed in recent publications under P) are new records for the Nature Reserves. Of the 1267 old records (those older than 10 years) for the Nature Reserves, 443 (35%) species were not seen during this NRS project period. Some of these species may be extinct as a result of habitat loss (tidal freshwater swamp where the present U pper Seletar Reservoir resides) and forest fragmentation due to clearing and cultivation within the century. Others probably still survive in the Nature Reserves. Out of 1190 species recorded within the last ten years in the Nature Reserves, 90 (7 .5%) are exotic. In comparison, only 11 (0.8%) species out of 1297 species were exotic for records earlier than the last ten years, an eight fold increase in ten years. Discussion From the literature survey, it can be seen that in the last few decades there was an absence of field work in the CCNR. It is noteworthy that prior to the NRS, the Singapore flora checklist comprises mainly records more than 30 years old. Consequently, the NRS inventory sets an important milestone in the documentation of fl ora in Singapore in filling this gap. Records of lianas, herbaceous, climbing and creeping epiphytes, terrestrial ferns, sedges, grasses, and aquatic and semi-aquatic flora are also expected to be not as complete as that of the tree flora in the NRS, as these were randomly sampled rather than sampled intentionally as defined taxonomic groups. As noted above, exotics have been invading the Nature Reserves within the last few decades. The number of exotic species establishing in the Nature Reserves should be monitored in future surveys for management implications in the conservation of indigenous species. Acknowledgements We should like to thank Drs. R.T. Corlett, H.T.W. Tan, I.M. Turner, S.K.Y. Lum, J.V. LaFrankie and their students and assistants, and Mr Y.K. Wong, D .H. Murphy and E.S.K. Tang for providing published and unpublished fl ora checklists and records of the Singapore Nature Reserves. Check/is! of vascular plan Is 165 References Ali Ibrahim, P.T. Chew, Hj Sidek Kiah & J.T.K. Lai. 1997. New records of plant species from Singapore. Gardens' Bulletin Singapore. 49: 49-54. Cantley, N. 1884. Report on the Forests of the Straits Settlements. Singapore Printing Office, Singapore. Chin, S.C., R.T. Corlett, Y.C. Wee & S.Y. Geh (eds.). 1995. Rain forest in the city: Bukit Timah Nature Reserve Singapore. Gardens' Bulletin Singapore. Suppl. 3. Chua, K.S., B.C. Soong & H.T.W. Tan. 1996. The Bamboos of Singapore. International Plant Genetic Resources Institute (IPGRI), Singapore. Corlett, R.T. 1990. Flora and reproductive phenology of the rain forest at Bukit Timah, Singapore. Journal of Tropical Ecology. 6: 55- 63. Corlett, R.T. 1991. Plant succession on degraded land in Singapore. Journal of Tropical Forest Science. 4: 151- 161. Corner, E.J.H. 1978. The freshwater swamp-forest of South Johore and Singapore. Gardens' Bulletin Singapore. Suppl. 1: 59-224. LaFrankie, J.V., S.K. Lee & A. C. Ercelawn. 1996. Tree population structure in a tropical forest fragment in Singapore. Asian Journal of Tropical Biology. 2: 39-48. National Parks Act 1990. Republic of Singapore Government Gazette Acts Supplement 17:No. 10 of 1990. National Parks Act 1996. Republic of Singapore Government Gazette Acts Supplement 20:No. 22 of 1996. Ng, P.K.L. & Y.C. Wee (eds.). 1994. The Singapore Red Data Book: Threatened Plants & Animals of Singapore. The Nature Society (Singapore).
Recommended publications
  • Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis
    molecules Article Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis Muhanna Mohammed Al-Shaibani 1,2, Radin Maya Saphira Radin Mohamed 1,* , Noraziah Mohamad Zin 2,*, Adel Al-Gheethi 1,*, Mohammed Al-Sahari 1 and Hesham Ali El Enshasy 3,4 1 Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Malaysia; [email protected] (M.M.A.-S.); [email protected] (M.A.-S.) 2 Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia 3 Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Malaysia; [email protected] 4 City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, 21934 Alexandria, Egypt * Correspondence: [email protected] (R.M.S.R.M.); [email protected] (N.M.Z.); [email protected] (A.A.-G.); Tel.: +607-4564236 (R.M.S.R.M.); +603-92897373 (N.M.Z.); +607-4564346 (A.A.-G.); Fax: +607-4536588(R.M.S.R.M.); +601-93924639 (N.M.Z.); +607-4536588 (A.A.-G.) Citation: Al-Shaibani, M.M.; Radin Abstract: The present research aimed to enhance the pharmaceutically active compounds’ (PhACs’) Mohamed, R.M.S.; Zin, N.M.; productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodol- Al-Gheethi, A.; Al-Sahari, M.; El ogy (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against Enshasy, H.A.
    [Show full text]
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Popular Ethnomedicinal Plant Alstonia Scholaris Induces Neurotoxicity-Related Behavioural Changes in Swiss Albino Mice
    Open Access Austin Neurology Research Article Popular Ethnomedicinal Plant Alstonia scholaris Induces Neurotoxicity-Related Behavioural Changes in Swiss Albino Mice Laskar YB, Laskar IH, Gulzar ABM, Vandana UK, Bhattacharjee N, Mazumder PB* and Bawari M Abstract Department of Biotechnology, Natural Product & Plants constituents are a reliable source of the remedial need of humanity Biomedicine Research Laboratory, Assam University, for ages by being the basis of the traditional medicinal system and often serving Silchar, India as the prototype for designing modern medicine. Several plants are used in *Corresponding author: Pranab Behari Mazumder, traditional medicine for ages without proper administration guidelines in terms Department of Biotechnology, Assam University, Silchar, of dosages. Several toxicological analyses revealed side-effects of such India therapies beyond a specific dose. One such plant is Alstonia scholaris, widely used in numerous traditional medicines to treat diseases like ulcers, asthma, Received: April 30, 2021; Accepted: May 27, 2021; diabetes, etc. The present study investigated the neurotoxic effect of the plant Published: June 03, 2021 extract through oxidative stress in Swiss albino mice. The treated mice showed anxiety, neophobic and depression-like properties compared to control mice. The biochemical parameters show an increase in Malondialdehyde (MDA) concentration while decreasing the total protein content in different brain regions of treated mice. The Glutathione Reductase (GR) activity shows an increase in treated mice compared to the control one. The study indicates that Alstonia scholaris may cause severe damage to the central nervous system when administered without a proper guideline. Keywords: Alstonia scholaris; Neurotoxicity; In vivo; Malondialdehyde; Glutathione Reductase Introduction Apocynaceae is a tropical tree commonly found in tropical South- East Asia, including India, China, Bangladesh up to the African and Traditional medicines that primarily include plant-based Australian continent [19].
    [Show full text]
  • Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food.
    [Show full text]
  • An Annotated Checklist of the Angiospermic Flora of Rajkandi Reserve Forest of Moulvibazar, Bangladesh
    Bangladesh J. Plant Taxon. 25(2): 187-207, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF THE ANGIOSPERMIC FLORA OF RAJKANDI RESERVE FOREST OF MOULVIBAZAR, BANGLADESH 1 2 A.K.M. KAMRUL HAQUE , SALEH AHAMMAD KHAN, SARDER NASIR UDDIN AND SHAYLA SHARMIN SHETU Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh Keywords: Checklist; Angiosperms; Rajkandi Reserve Forest; Moulvibazar. Abstract This study was carried out to provide the baseline data on the composition and distribution of the angiosperms and to assess their current status in Rajkandi Reserve Forest of Moulvibazar, Bangladesh. The study reports a total of 549 angiosperm species belonging to 123 families, 98 (79.67%) of which consisting of 418 species under 316 genera belong to Magnoliopsida (dicotyledons), and the remaining 25 (20.33%) comprising 132 species of 96 genera to Liliopsida (monocotyledons). Rubiaceae with 30 species is recognized as the largest family in Magnoliopsida followed by Euphorbiaceae with 24 and Fabaceae with 22 species; whereas, in Lilliopsida Poaceae with 32 species is found to be the largest family followed by Cyperaceae and Araceae with 17 and 15 species, respectively. Ficus is found to be the largest genus with 12 species followed by Ipomoea, Cyperus and Dioscorea with five species each. Rajkandi Reserve Forest is dominated by the herbs (284 species) followed by trees (130 species), shrubs (125 species), and lianas (10 species). Woodlands are found to be the most common habitat of angiosperms. A total of 387 species growing in this area are found to be economically useful. 25 species listed in Red Data Book of Bangladesh under different threatened categories are found under Lower Risk (LR) category in this study area.
    [Show full text]
  • AMYDRIUM ZIPPELIANUM Araceae Peter Boyce the Genus Amydrium Schott Contains Five Species of Creeping and Climbing Aroids Occurring from Myanmar to Papua New Guinea
    McVean, D.N. (1974). The mountain climates of SW Pacific. In Flenley, J.R. Allitudinal Zonation in Malesia. Transactions of the third Aberdeen-Hull Symposium on Malesian Ecology. Hull University, Dept. of Geography. Miscellaneous Series No. 16. Mueller, F. van (1889). Records ofobservations on Sir William MacGregor’s highland plants from New Guinea. Transactions of the RoyalSocieQ of Victoria new series I(2): 1-45. Royen, P. van (1982). The Alpine Flora ofNew Guinea 3: 1690, pl. 140. Crarner, Vaduz. Schlechter, R. (1918). Die Ericaceen von Deutsch-Neu-Guinea. Botanische Jahrbiicher 55: 137- 194. Sinclair, I. (1984). A new compost for Vireya rhododendrons. The Planlsman 6(2): 102-104. Sleumer, H. (1949). Ein System der Gattung Rhododendron L. Botanische Jahrbiicher 74(4): 5 12-5 I 3. Sleumer, H. (1960). Flora Malesiana Precursores XXIII The genus Rhododendron in Malaysia. Reinwardtia 5(2):45-231. Sleumer, H. (1961). Flora Malesiana Precursores XXIX Supplementary notes towards the knowledge of the genus Rhododendron in Malaysia. Blumea 11(I): 113-131, Sleumer, H. (1963). Flora Malesianae Precursores XXXV. Supplementary notes towards the knowledge ofthe Ericaceae in Malaysia. Blumea 12: 89-144. Sleumer, H. (1966). Ericaceae. Flora Malesiana Series I. G(4-5): 469-914. Sleumer, H. (1973). New species and noteworthy records ofRhododendron in Malesia. Blumea 21: 357-376. Smith,J..J. (1914). Ericaceae. Nova Guinea 12(2): 132. t. 30a, b. Brill, Leiden. Smith,J.J. (1917). Ericaceae. Noua Guinea 12(5):506. Brill, Leiden. Stevens, P.F. (1974). The hybridization and geographical variation of Rhododendron atropurpureum and R. woniersleyi. Proceedings ofthe Papua New Guinea ScientificSociety.
    [Show full text]
  • A History of Fruits on the Southeast Asian Mainland
    OFFPRINT A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm Occasional Paper 4 Linguistics, Archaeology and the Human Past Edited by Toshiki OSADA and Akinori UESUGI Indus Project Research Institute for Humanity and Nature, Kyoto, Japan 2008 ISBN 978-4-902325-33-1 A history of Fruits on the Southeast Asian mainland A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm ABSTRACT The paper presents an overview of the history of the principal tree fruits grown on the Southeast Asian mainland, making use of data from biogeography, archaeobotany, iconography and linguistics. Many assertions in the literature about the origins of particular species are found to be without empirical basis. In the absence of other data, comparative linguistics is an important source for tracing the spread of some fruits. Contrary to the Pacific, it seems that many of the fruits we now consider characteristic of the region may well have spread in recent times. INTRODUCTION empirical base for Pacific languages is not matched for mainland phyla such as Austroasiatic, Daic, Sino- This study 1) is intended to complement a previous Tibetan or Hmong-Mien, so accounts based purely paper on the history of tree-fruits in island Southeast on Austronesian tend to give a one-sided picture. Asia and the Pacific (Blench 2005). Arboriculture Although occasional detailed accounts of individual is very neglected in comparison to other types of languages exist (e.g.
    [Show full text]
  • The Monophyly of Bursera and Its Impact for Divergence Times of Burseraceae
    TAXON 61 (2) • April 2012: 333–343 Becerra & al. • Monophyly of Bursera The monophyly of Bursera and its impact for divergence times of Burseraceae Judith X. Becerra,1 Kogi Noge,2 Sarai Olivier1 & D. Lawrence Venable3 1 Department of Biosphere 2, University of Arizona, Tucson, Arizona 85721, U.S.A. 2 Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan 3 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, U.S.A. Author for correspondence: Judith X. Becerra, [email protected] Abstract Bursera is one of the most diverse and abundant groups of trees and shrubs of the Mexican tropical dry forests. Its interaction with its specialist herbivores in the chrysomelid genus Blepharida, is one of the best-studied coevolutionary systems. Prior studies based on molecular phylogenies concluded that Bursera is a monophyletic genus. Recently, however, other molecular analyses have suggested that the genus might be paraphyletic, with the closely related Commiphora, nested within Bursera. If this is correct, then interpretations of coevolution results would have to be revised. Whether Bursera is or is not monophyletic also has implications for the age of Burseraceae, since previous dates were based on calibrations using Bursera fossils assuming that Bursera was paraphyletic. We performed a phylogenetic analysis of 76 species and varieties of Bursera, 51 species of Commiphora, and 13 outgroups using nuclear DNA data. We also reconstructed a phylogeny of the Burseraceae using 59 members of the family, 9 outgroups and nuclear and chloroplast sequence data. These analyses strongly confirm previous conclusions that this genus is monophyletic.
    [Show full text]
  • Mangrove Guidebook for Southeast Asia
    RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat.
    [Show full text]
  • Tropical Peat Swamp Forest Silviculture in Central Kalimantan a Series of Five Research Papers
    TECHNICAL PAPERS Tropical Peat Swamp Forest Silviculture in Central Kalimantan A series of five research papers Banjarbaru Forestry Research Unit, FORDA and Laura L. B. Graham Kalimantan Forests and Climate Partnership TECHNICAL REPORTS Tropical peat swamp forest silviculture in Central Kalimantan A series of five research papers Banjarbaru Forestry Research Unit, FORDA and Laura L. B. Graham January 2014 ACKNOWLEDGEMENTS This report was prepared for the Kalimantan Forests and Climate Partnership (KFCP) by researchers at the Banjarbaru Forestry Research Unit (Litbang Banjarbaru), a regional research unit under the Forestry Research and Development Agency (FORDA) within the Indonesian Ministry of Forestry. Researchers included Rusmana, Dony Rachmanadi, Purwanto Budi Santosa, Tri Wira Yuwati, Pranatasari Dyah Susanti under the supervision of Laura L. B. Graham, Abdi Mahyudi and Grahame Applegate. We wish to thank all team members for their inputs into this report and KFCP for funding the activities. We would like to thank Rachael Diprose for editing this work and KFCP’s communications team (James Maiden and Nanda Aprilia) for their publishing assistance. This research was carried out in collaboration with the Governments of Australia and Indonesia, but the analysis and findings presented in this paper represent the views of the authors and do not necessarily represent the views of those Governments. Any errors are the authors’ own. The papers in this compendium constitute technical scientific working papers and as such, there is potential for future refinements to accommodate feedback, emerging evidence and new experiences. Tropical Peat Swamp Forest Silviculture in Central Kalimantan Page i EXECUTIVE SUMMARY The Kalimantan Forests and Climate Partnership (KFCP) undertook a program of silviculture research for reforestation trials in the KFCP site in Central Kalimantan province.
    [Show full text]
  • Systematic Conservation Planning in Thailand
    SYSTEMATIC CONSERVATION PLANNING IN THAILAND DARAPORN CHAIRAT Thesis submitted in total fulfilment for the degree of Doctor of Philosophy BOURNEMOUTH UNIVERSITY 2015 This copy of the thesis has been supplied on condition that, anyone who consults it, is understood to recognize that its copyright rests with its author. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i ii Systematic Conservation Planning in Thailand Daraporn Chairat Abstract Thailand supports a variety of tropical ecosystems and biodiversity. The country has approximately 12,050 species of plants, which account for 8% of estimated plant species found globally. However, the forest cover of Thailand is under threats: habitat degradation, illegal logging, shifting cultivation and human settlement are the main causes of the reduction in forest area. As a result, rates of biodiversity loss have been high for some decades. The most effective tool to conserve biodiversity is the designation of protected areas (PA). The effective and most scientifically robust approach for designing networks of reserve systems is systematic conservation planning, which is designed to identify conservation priorities on the basis of analysing spatial patterns in species distributions and associated threats. The designation of PAs of Thailand were initially based on expert consultations selecting the areas that are suitable for conserving forest resources, not systematically selected. Consequently, the PA management was based on individual management plans for each PA. The previous work has also identified that no previous attempt has been made to apply the principles and methods of systematic conservation planning. Additionally, tree species have been neglected in previous analyses of the coverage of PAs in Thailand.
    [Show full text]
  • NH NG CÂY THU C CHÂU Á THÁI BÌNH DƯƠNG 218 17. Tiwawech
    PHAN TẤT HOÀ --- NHỮNG CÂY THUỐC CHÂU Á THÁI BÌNH DƯƠNG 218 17. Tiwawech, D., Hirose, M., Futakuchi, M., Lin, C., Thamavit, W., Ito, N., and Shirai, T. 2000. Enhancing effects of Thai edible plants on 2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline- hepatocarcinogenesis in a rat medium-term bioassay, Cancer Lett ., 158, 195. 18. Sunthitikawinsakul, A., Kongkathip, N., Kongkathip, B., Phonnakhu, S., Daly, J. W., Spande, T. F., Nimit, Y., Napaswat, C., Kasisit, J., and Yoosook, C. 2003. Anti-HIV-1 limonoid: first isolation from Clausena excavata . Phytother. Res. , 17, 1101. 19. Sunthitikawinsakul, A., Kongkathip, N., Kongkathip, B., Phonnakhu, S., Daly, J. W., Spande, T. F., Nimit, Y., and Rochanaruangrai, S. 2003. Coumarins and carbazoles from Clausena excavata exhibited antimycobacterial and antifungal activities. Planta Med. , 69, 155. 20. Sunthitikawinsakul, A., Kongkathip, N., Kongkathip, B., Phonnakhu, S., Daly, J. W., Spande, T. F., Nimit, Y., and Rochanaruangrai, S. 2003. Coumarins and carbazoles from Clausena excavata exhibited antimycobacterial and antifungal activities. Planta Med. , 69, 155. 21. Hirata, K., Ito, C., Furukawa, H., Itoigawa, M., Cosentino, L. M., and Lee, K. H. 1999. Substituted 7H-pyrido[4,3-c]carbazoles with potent anti-HIV activity. Biorg. Med. Chem. Lett. , 9, 119. 22. Li, W. S., McChesney, J. D., and El-Feraly, F. S. 1991. Carbazole alkaloids from Clausena lansium . Phytochemistry , 30, 343. 23. Kumar, V., Vallipuram, K., Adebajo, A. C., and Reisch, J. 1995. 2,7-Dihydroxy-3-formyl-1- (3′-methyl2′-butenyl)carbazole from Clausena lansium . Phytochemistry , 40, 1563. 24. Yang, M. H., Chen, Y. Y., and Huang, L.
    [Show full text]