Using Analogy to Learn About Phenomena at Scales Outside Human Perception Ilyse Resnick1*, Alexandra Davatzes2, Nora S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Resnick et al. Cognitive Research: Principles and Implications (2017) 2:21 Cognitive Research: Principles DOI 10.1186/s41235-017-0054-7 and Implications ORIGINAL ARTICLE Open Access Using analogy to learn about phenomena at scales outside human perception Ilyse Resnick1*, Alexandra Davatzes2, Nora S. Newcombe3 and Thomas F. Shipley3 Abstract Understanding and reasoning about phenomena at scales outside human perception (for example, geologic time) is critical across science, technology, engineering, and mathematics. Thus, devising strong methods to support acquisition of reasoning at such scales is an important goal in science, technology, engineering, and mathematics education. In two experiments, we examine the use of analogical principles in learning about geologic time. Across both experiments we find that using a spatial analogy (for example, a time line) to make multiple alignments, and keeping all unrelated components of the analogy held constant (for example, keep the time line the same length), leads to better understanding of the magnitude of geologic time. Effective approaches also include hierarchically and progressively aligning scale information (Experiment 1) and active prediction in making alignments paired with immediate feedback (Experiments 1 and 2). Keywords: Analogy, Magnitude, Progressive alignment, Corrective feedback, STEM education Significance statement alignment and having multiple opportunities to make Many fundamental science, technology, engineering, and alignments are critical in supporting reasoning about mathematic (STEM) phenomena occur at extreme scales scale, and that the progressive and hierarchical that cannot be directly perceived. For example, the Geo- organization of scale information may provide salient logic Time Scale, discovery of the atom, size of the landmarks for estimation.
[Show full text]