0 Rganisms Have Adapted to Different Environments and Evolved Sense Organs That Respond Selectively to Particular Forms of Energy

Total Page:16

File Type:pdf, Size:1020Kb

0 Rganisms Have Adapted to Different Environments and Evolved Sense Organs That Respond Selectively to Particular Forms of Energy 0 rganisms have adapted to different environments and evolved sense organs that respond selectively to particular forms of energy. Because we lack specialized receptors, we are “blind” to weak forms of electric and nonphotic electromagnetic energy that surround us constantly. The shocking experience with a faulty electric outlet is not mediated through an electric sense but through direct stimulation of the nervous system. Elephantfish, Cnathonemus petersii. At right, elephantfish swimming in a tank. The underwater environment is packed with such a stimulus can affect the sense organs of electric and electromagnetic events. If we were able another organism when the stimulus is no longer to sense this electric environment, a whole new clouded by environmental noise, thus serving in world would reveal itself: weak electric fields social communication and orientation. To assess emanate from many aquatic organisms, especially such a biologically effective range we must look at from fishes and wounded crustaceans, and to a theamount of emitted or available stimulus energy, lesser extent from mollusks, starfish, and sponges. the sensitivity of the receptors involved, the In most cases, we would feel direct current (DC)* spherical spread of the signal, and the attenuating voltage gradients that in the ocean range from as effects of the surrounding medium on the low as one hundred millionth of a volt per transmission of the stimulus. centimeter to as large as one hundred thousandth We have studied .the effective range of of a volt per centimeter. In freshwater, the voltage electric signals in weak-electric fishes (Table I), gradient is about one hundred times greater. We which are characterized by their ability to emit and would also detect alternating current (AC)** voltage perceive weak electric discharges. In contrast to the gradients associated with an organism’s admirable long-distance performance of acoustic movements, breathing, or locomotor behavior. sensory stimuli (up to several hundred kilometers), Soon we would discover that many inanimate the range of the electric sense in mormyrids* is objects produce DC fields, their interface with restricted to a humble 100 centimeters for water acting as a battery. Lightning discharges and electrocommunication and a mere IO centimeters man-made radio waves are sources of electric noise for electrolocation (Figure 1). pollution that certainly would not escape our The effective ranges of the organism’s underwater electric ears or eyes. Blaxter has said electric sense in electrolocation and (see page 28) that sound “has much to recommend electrocommunication were found to vary with it as a form of sensory stimulus.” So, too, does several factors - including species, body shape, electric energy, and nature, not surprisingly, has and electrical resistance d the fish’s skin; physical exploited it. and electrical properties of the object; and, most A number of aquatic organisms have evolved important, conductivity of the surrounding water, specialized receptors with which they are able to that is, the degree of its dissolved ionic material. perceive many aspects of the underwater electrical The optimal ranges of IO and 100 centimeters are world. Another group of electric signals in an associated with low levels of water conductivitythat aquatic environment are supplied by species that conform well with measurements taken in the fish’s have evolved the ability to generate their own natural habitats.** Even over short distances, the electric energy which they use in predatory, organism is supplied with enough electrical orientation, and communication behavior. information to avoid obstacles, maintain proximity to conspecifics, and compromise with extraneous Electric Signals in Water electric noise. Let us for a moment contemplate the fate of an electric signal underwater and compare it with Electroreceptive and Electrogenic Fishes other energy forms. The conduction of electric There are two groups of fish species distinguished signals in water is almost instantaneous and thus here (Table I): those which have evolved comparable with that of visual ones. Acoustic, electroreceptors only (electroreceptive fishes) and mechanical, and chemical stimuli travel those which, in addition, have evolved specialized considerably slower. Like sound, an electric signal electric organs capable of generating electric does not persist once it is discontinued; both types discharges (electroreceptive and electrogenic of signals, then, differ from chemical stimuli, which fishes). Species in the first category sense electric can linger for quite some time. Turbid water and fields that are not self-genierated, but rather, are darkness do not impede the transmission of produced by other sources in the environment electric, acoustic, chemical, and mechanical signals (passive electrosensory group). Species in the other but do restrict visual ones. Dense vegetation, category also sense electric fields that they actively submerged trees, roots, and even small rocks generate themselves (active electrosensory group). present barriers to visual stimuli, but are not Both groups have representatives among the obstacles to electric currents, which can go around them. As animal behaviorists, we are concerned *A family of African freshwater fish (members of the order with the biologically meaningful range withili which Mormyriformes), many of which are distinguished by their long, tube-like snouts. *An electric current flowing in one direction only and **Less than or equal to 100 micro-Siemens per centimeter substantially constant in value. compared with distilled wateir, which is 0 micro-Siemens **An electric current that reverses its direction at regularly per centimeter, and New York City tap water, which is 70 recurring intervals. micro-Siemens per centimeter. 46 EODs of fish A stimulate electroreceptors in fish 6 (electrocommunication 1 Figure I. Ranges of electrocommunication and electrolocation in mormyrid weak-electric fishes. The “bubble” around the fish indicates \ \ I the extension of the EODs of fish B stimulate electroreceptors in fish A (electrocommunication) electrolocation field to about 10 centimeters. The presence of an object ‘i- [black dot in upper figure) J’ or the fishes themselves (lower figure) will be electrically “‘felt” by the fish emitting the electric discharge. The electrocommunication range is almost IO.*imes larger than the electrolocation range. cartilaginous and bony fishes and can be found in both marine and freshwater environments. A 13 C t Electroreceptors An electroreceptor is a sense organ that responds selectively to natural electric fields. We use both bm. electrophysiological recordings and behavioral tests to determine whether a particular sense organ functions as an electroreceptor. Most known MORMYRIDS electroreceptors are related to the lateral-line f organs (see page 27) (which are water vibration receptors characteristic of all fishes) and are of two fypes - ampullary or tuberous organs (Figure2). The ampullary receptor consists of a b.m. flask-shaped ampulla embedded beneath the surface of the skin. The bottom of the ampulla contains the sensory cells which are in contact with GYMNOTOIDS n the outside through a jelly-filled canal. In sharks, t rays, skates, and marine catfish, in which the - ampullary organs are called ampullae of Lorenzini (after the man who first described them in the 17th century), these canals may be as long as one-third of b.m. the organism’s body (see Figure4, p. 58). In contrast, in all electroreceptive freshwater fishes these canals ‘i are short, often microscopically so. GYMNARCHUS Ampullary organs are the more sensitive electroreceptors. Sharks and sk+ates respond to Figure 2. Typical electroreceptors in weak-electric fishes. stimuli as low as 0.01 microvolts per centimeter, The ampullary organs (A) respondpredominantly to DC which would c&respond to a voltage gradient set electric fields and to low-frequency stimuli emanating from many aquatic organisms, but also to the fish’s own up between the poles of a flashlight cell placed electric discharge. The tuberous mormyromasts (B) serve more than 1,500 kilometers apart. Sharks within in electrolocation and the tuberous knollenorgans (C) in close range of prey are particularly sensitive to the electrocommunication. Shaded areas represent jelly-like electric fields around,aquatic animals. In some material; SC, sensory ce!l; bm, basement membrane; n, electrogenic mormyrid species, the ampullary nerve. Arrow indicates fish’s body surface. (From Szabo, -____*. I I. .I I-*, , I *. “nrr jl_ ~~ n -IT.,_ -I- .I. ~~. __ .L__~ _r.,-.- ” If-_ ,..-, ELECTRORECEPTIVE FISHES (without electric organs) - - - ,Str . Astrosco~us y-graacum (Stargazer) j ELASMOBRANCHII (AL) SQUALIFORMES (sharks) (AL) RAJIFORMES (all ordinary rays ’ (AL and skates) Torj HOLOCEPHALI j ‘(ele (AL) Chimoeridae, Hydrolagus colliei (rat fish) I (AL) SILURIFORMES Plotosidae i IN) P/otosus anguillaris (marine catfish) I Ast ~jsta - i (AL) RAJ I FORM ES (Myliobatoidei) :; Potamotrygonidae, Pofomofrygon circuloris 1 (S-American freshwater stingray) (AR) ACIPENSERI FORMES Polyodon tidae a: (chondrostean paddlefish) ,I ‘. ;: (AR) SILURIFORMES /’Mal Gymnotus csrapo Ictaluridae; Siluridae, Kryptopterus 1,Ma. ( Knifefish) (catfish) (Af (AR) DIPTERIFORMES (Dipnoi) !- Profoplerus dolloi (lungfish) (AR) BRACHIOPTERYGI I (reedfish and bichirs) Gnathonemus petersii (Elephantfish) Figure 3. Electric organs have evolved independently in severalgroups of marine
Recommended publications
  • Electrophorus Electricus ERSS
    Electric Eel (Electrophorus electricus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, August 2011 Revised, July 2018 Web Version, 8/21/2018 Photo: Brian Gratwicke. Licensed under CC BY-NC 3.0. Available: http://eol.org/pages/206595/overview. (July 2018). 1 Native Range and Status in the United States Native Range From Eschmeyer et al. (2018): “Distribution: Amazon and Orinoco River basins and other areas in northern Brazil: Brazil, Ecuador, Colombia, Bolivia, French Guiana, Guyana, Peru, Suriname and Venezuela.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. From AquaScapeOnline (2018): “Electric Eel 24” (2 feet) (Electrophorus electricus) […] Our Price: $300.00” 1 The State of Arizona has listed Electrophorus electricus as restricted live wildlife. Restricted live wildlife “means wildlife that cannot be imported, exported, or possessed without a special license or lawful exemption” (Arizona Secretary of State 2006a,b). The Florida Fish and Wildlife Conservation Commission has listed the electric eel Electrophorus electricus as a prohibited species. Prohibited nonnative species, "are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities” (FFWCC 2018). The State of Hawaii Plant Industry Division (2006) includes Electrophorus electricus on its list of prohibited animals. From
    [Show full text]
  • REVIEW Electric Fish: New Insights Into Conserved Processes of Adult Tissue Regeneration
    2478 The Journal of Experimental Biology 216, 2478-2486 © 2013. Published by The Company of Biologists Ltd doi:10.1242/jeb.082396 REVIEW Electric fish: new insights into conserved processes of adult tissue regeneration Graciela A. Unguez Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA [email protected] Summary Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
    [Show full text]
  • Electric Organ Electric Organ Discharge
    1050 Electric Organ return to the opposite pole of the source. This is 9. Zakon HH, Unguez GA (1999) Development and important in freshwater fish with water conductivity far regeneration of the electric organ. J exp Biol – below the conductivity of body fluids (usually below 202:1427 1434 μ μ 10. Westby GWM, Kirschbaum F (1978) Emergence and 100 S/cm for tropical freshwaters vs. 5,000 S/cm for development of the electric organ discharge in the body fluids, or, in resistivity terms, 10 kOhm × cm vs. mormyrid fish, Pollimyrus isidori. II. Replacement of 200 Ohm × cm, respectively) [4]. the larval by the adult discharge. J Comp Physiol A In strongly electric fish, impedance matching to the 127:45–59 surrounding water is especially obvious, both on a gross morphological level and also regarding membrane physiology. In freshwater fish, such as the South American strongly electric eel, there are only about 70 columns arranged in parallel, consisting of about 6,000 electrocytes each. Therefore, in this fish, it is the Electric Organ voltage that is maximized (500 V or more). In a marine environment, this would not be possible; here, it is the current that should be maximized. Accordingly, in Definition the strong electric rays, such as the Torpedo species, So far only electric fishes are known to possess electric there are many relatively short columns arranged in organs. In most cases myogenic organs generate electric parallel, yielding a low-voltage strong-current output. fields. Some fishes, like the electric eel, use strong – The number of columns is 500 1,000, the number fields for prey catching or to ward off predators, while of electrocytes per column about 1,000.
    [Show full text]
  • Chirping and Asymmetric Jamming Avoidance Responses in the Electric Fish Distocyclus Conirostris Jacquelyn M
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb178913. doi:10.1242/jeb.178913 SHORT COMMUNICATION Chirping and asymmetric jamming avoidance responses in the electric fish Distocyclus conirostris Jacquelyn M. Petzold1,2, JoséA. Alves-Gomes3 and G. Troy Smith1,2,* ABSTRACT of two of more EODs creates a periodic amplitude modulation Electrosensory systems of weakly electric fish must accommodate (beat). Beat frequency is equal to the difference between the EOD competing demands of sensing the environment (electrolocation) frequencies (EODfs) of the two interacting fish. Fish use the beat and receiving social information (electrocommunication). The and the relative geometry of the interacting signals to estimate jamming avoidance response (JAR) is a behavioral strategy thought conspecific EODfs, which convey important social information to reduce electrosensory interference from conspecific signals close (Smith, 2013; Dunlap, et al., 2017). However, slow beats (<10 Hz) in frequency. We used playback experiments to characterize electric created by interactions between fish with similar EODfs can impair organ discharge frequency (EODf), chirping behavior and the JAR of the electrolocation function of the EOD by masking localized EOD Distocyclus conirostris, a gregarious electric fish species. EODs of D. distortions (Heiligenberg, 1973; Matsubara and Heiligenberg, conirostris had low frequencies (∼80–200 Hz) that shifted in response 1978). The JAR is a stereotyped response in which an electric to playback stimuli. Fish consistently lowered EODf in response to fish increases or decreases its EODf to increase beat frequency and higher-frequency stimuli but inconsistently raised or lowered EODf in thereby reduce or eliminate the interference caused by slow beats response to lower-frequency stimuli.
    [Show full text]
  • Hormones and Sexual Behavior of Teleost Fishes
    Chapter 7 Hormones and Sexual Behavior of Teleost Fishes y David M. Gonc¸alves*, and Rui F. Oliveira*,** y * Instituto Superior de Psicologia Aplicada, Lisboa, Portugal, Universidade do Algarve, Faro, Portugal, ** Instituto Gulbenkian de Cieˆncia, Oeiras, Portugal more variable during the initial stages of the sequence and SUMMARY more stereotyped towards its end. To account for this Fishes are an excellent group for studying the mechanisms through which hormones modulate the expression of sexual variation, these researchers suggested that an initial appe- behaviors in vertebrates. First, they have radiated virtually titive phase, defined as the phase of searching towards the throughout all aquatic environments and this is reflected in an goal, can be distinguished from a final consummatory extraordinary diversity of mating systems and reproductive phase, defined as the stage when the goal is reached behaviors. Second, many species present a remarkable plasticity (Sherrington, 1906; Craig, 1917). Although this distinction in their sexual displays, as exemplified by fishes that change sex or is still widely applied in studies investigating the mecha- that adopt more than one reproductive tactic during their lifetime, nisms of behavior, there is an ongoing debate on the and this plasticity seems to be mediated by hormones. Third, the usefulness of these terms. In a recent review, Sachs (2007) fish neuroendocrine system is well conserved among vertebrates identified some problems in the current use of the and the mechanisms of hormonal action in behavior are likely to appetitive/consummatory dichotomy. These include the share similarities with those of other vertebrates. We review the difficulties in defining the boundary between the two pha- role of hormones and neuropeptides in the modulation of fish sexual displays.
    [Show full text]
  • The Air-Breathing Behaviour of Brevimyrus Niger (Osteoglossomorpha, Mormyridae)
    Journal of Fish Biology (2007) 71, 279–283 doi:10.1111/j.1095-8649.2007.01473.x, available onlineathttp://www.blackwell-synergy.com The air-breathing behaviour of Brevimyrus niger (Osteoglossomorpha, Mormyridae) T. MORITZ* AND K. E. LINSENMAIR Lehrstuhl fur¨ Tiero¨kologie und Tropenbiologie, Theodor-Boveri-Institut, Universita¨t Wurzburg,¨ Am Hubland, 97074 Wurzburg,¨ Germany (Received 2 May 2006, Accepted 6 February 2007) Brevimyrus niger is reported to breathe atmospheric air, confirming previous documenta- tion of air breathing in this species. Air is taken up by rising to the water surface and gulping, or permanently resting just below the surface, depending on the environmental conditions. # 2007 The Authors Journal compilation # 2007 The Fisheries Society of the British Isles Key words: elephantfishes; Osteoglossomorpha; weakly electric fish. The Mormyridae consists of 201 weakly electric fishes endemic to Africa (Nelson, 2006). They belong to the Osteoglossomorpha among which air-breathing behaviour is known from several families. All genera of the Osteoglossidae are able to breathe atmospheric air utilizing their swimbladder as a respiratory organ, i.e. Heterotis niloticus (Cuvier) (Luling,¨ 1977), Arapaima gigas (Schinz) (Luling,¨ 1964, 1977). Similarly, Pantodon buchholzi Peters (Schwarz, 1969), which is the only member of the Pantodontidae, and the members of the Notopteridae (Graham, 1997) are air-breathers. A close relative to the mormyrids, Gymnarchus niloticus Cuvier, the only member of the Gymnarchidae, is also well known to breathe air (Hyrtl, 1856; Bertyl, 1958). In the remaining two families within the Osteoglossomorpha air breathing has never been reported from the Hiodontidae (Graham, 1997) and only for a single species, Brevimyrus niger (Gunther),¨ within the Mormyridae (Benech & Lek, 1981; Bigorne, 2003).
    [Show full text]
  • The Biology and Genetics of Electric Organ of Electric Fishes
    International Journal of Zoology and Animal Biology ISSN: 2639-216X The Biology and Genetics of Electric Organ of Electric Fishes Khandaker AM* Editorial Department of Zoology, University of Dhaka, Bangladesh Volume 1 Issue 5 *Corresponding author: Ashfaqul Muid Khandaker, Faculty of Biological Sciences, Received Date: November 19, 2018 Department of Zoology, Branch of Genetics and Molecular Biology, University of Published Date: November 29, 2018 DOI: 10.23880/izab-16000131 Dhaka, Bangladesh, Email: [email protected] Editorial The electric fish comprises an interesting feature electric organs and sense feedback signals from their called electric organ (EO) which can generate electricity. EODs by electroreceptors in the skin. These weak signals In fact, they have an electrogenic system that generates an can also serve in communication within and between electric field. This field is used by the fish as a carrier of species. But the strongly electric fishes produce electric signals for active sensing and communicating with remarkably powerful pulses. A large electric eel generates other electric fish [1]. The electric discharge from this in excess of 500 V. A large Torpedo generates a smaller organ is used for navigation, communication, and defense voltage, about 50 V in air, but the current is larger and the and also for capturing prey [2]. The power of electric pulse power in each case can exceed I kW [5]. organ varies from species to species. Some electric fish species can produce strong current (100 to 800 volts), The generating elements of the electric organs are especially electric eel and some torpedo electric rays are specialized cells termed electrocytes.
    [Show full text]
  • JAGE-691 Fish Cognition and Consciousness Colin Allen [email protected] Phone
    JAGE-691 Fish Cognition and Consciousness Colin Allen [email protected] phone: +1-812-606-0881 fax: +1-812-855-3631 Program in Cognitive Science and Department of History and Philosophy of Science Indiana University, Bloomington, IN 47405 USA ABSTRACT. Questions about fish consciousness and cognition are receiving increasing attention. In this paper, I explain why one must be careful to avoid drawing conclusions too hastily about this hugely di- verse set of species. Keywords. Fish, learning, cognition, consciousness 1. Introduction to the controversy The cognitive and mental capacities of fish are a current topic of scientific controversy, and consciousness is the most contentious of topics. In a recent review article, Michel Cabanac and coauthors (Cabanac et al. 2009) argue that consciousness did not emerge until the early Amniota, the group of species that includes mammals, birds, and "reptiles.” The latter term is in scare quotes because biologists consider it a paraphy- letic group (i.e., a group that contains just a subset of the descendants of its common ancestor) that is im- proper for classification purposes due to its exclusion of the birds, which descended from the saurians. Amniotes are characterized by an embryonic membrane that makes terrestrial reproduction feasible. The amphibians, lacking this adaptation, are constrained to place their eggs in an aqueous environment for proper development. These biological details are important because of the nature of some of the evidence that Cabanac et al. bring to bear on the question of consciousness in fish – evidence that I shall maintain seems skewed towards other adaptations that have to do with terrestrial life.
    [Show full text]
  • Effect of Electric Fish Barriers on Corrosion and Cathodic Protection
    Effect of Electric Fish Barriers on Corrosion and Cathodic Protection Research and Development Office Science and Technology Program ST-2015-9757-1 U.S. Department of the Interior Bureau of Reclamation Research and Development Office January 2016 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 T1. REPORT DATE T2. REPORT TYPE T3. DATES COVERED December 2015 Scoping Study Dec 2014-Sep 2015 T4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Effect of Electric Fish Barriers on Corrosion and Cathodic Protection 15XR0680A1-RY1541EN201529757 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 1541 (S&T) 6. AUTHOR(S) 5d. PROJECT NUMBER Daryl Little 9757 Bureau of Reclamation 5e. TASK NUMBER Denver Federal Center PO Box 25007 Denver, CO 80225-0007 5f. WORK UNIT NUMBER 86-68540 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Bureau of Reclamation REPORT NUMBER Materials & Corrosion Laboratory MERL-2015-070 PO Box 25007 (86-68540) Denver, Colorado 80225 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S Research and Development Office ACRONYM(S) U.S. Department of the Interior, Bureau of Reclamation, R&D: Research and Development PO Box 25007, Denver CO 80225-0007 Office BOR/USBR: Bureau of Reclamation DOI: Department of the Interior 11.
    [Show full text]
  • Sensory Hyperacuity in the Jamming Avoidance Response of Weakly Electric Fish Masashi Kawasaki
    473 Sensory hyperacuity in the jamming avoidance response of weakly electric fish Masashi Kawasaki Sensory systems often show remarkable sensitivities to The jamming avoidance response small stimulus parameters. Weakly electric; fish are able to The South American weakly electric fish Eigenmannia resolve intensity differences of the order of 0.1% and timing and the African weakly electric fish Cymnanhus perform differences of the order of nanoseconds during an electrical electrolocation by generating constant wave-type electric behavior, the jamming avoidance response. The neuronal organ discharges (EODs) at individually fixed frequencies origin of this extraordinary sensitivity is being studied within (250-600Hz) using the electric organ in their tails. Each the exceptionally well understood central mechanisms of this cycle of an EOD is triggered by coherent action potentials behavior. originating from a coupled oscillator, the pacemaker nucleus in the medulla. An alternating current (AC) electric field is thus established around the body, and its Addresses distortion by objects is detected by electroreceptors on the Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, Virginia 22903, USA; e-mail: [email protected] body surface [5,6] (Figure 1). Current Opinion in Neurobiology 1997, 7:473-479 When two fish with similar EOD frequencies meet, http://biomednet.com/elelecref~0959438800700473 their electrolocation systems jam each other, impairing 0 Current Biology Ltd ISSN 0959-4388 their ability to electrolocate. To avoid this jamming, they shift their EOD frequencies away from each other in Abbreviations a jamming avoidance response in order to increase the ELL electrosensory lateral line lobe difference in their frequencies [7-91.
    [Show full text]
  • The Hydrodynamics of Ribbon-Fin Propulsion During Impulsive Motion
    3490 The Journal of Experimental Biology 211, 3490-3503 Published by The Company of Biologists 2008 doi:10.1242/jeb.019224 The hydrodynamics of ribbon-fin propulsion during impulsive motion Anup A. Shirgaonkar1, Oscar M. Curet1, Neelesh A. Patankar1,* and Malcolm A. MacIver1,2,* 1Department of Mechanical Engineering and 2Department of Biomedical Engineering, R. R. McCormick School of Engineering and Applied Science and Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA *Authors for correspondence (e-mail: [email protected], [email protected]) Accepted 14 August 2008 SUMMARY Weakly electric fish are extraordinarily maneuverable swimmers, able to swim as easily forward as backward and rapidly switch swim direction, among other maneuvers. The primary propulsor of gymnotid electric fish is an elongated ribbon-like anal fin. To understand the mechanical basis of their maneuverability, we examine the hydrodynamics of a non-translating ribbon fin in stationary water using computational fluid dynamics and digital particle image velocimetry (DPIV) of the flow fields around a robotic ribbon fin. Computed forces are compared with drag measurements from towing a cast of the fish and with thrust estimates for measured swim-direction reversals. We idealize the movement of the fin as a traveling sinusoidal wave, and derive scaling relationships for how thrust varies with the wavelength, frequency, amplitude of the traveling wave and fin height. We compare these scaling relationships with prior theoretical work. The primary mechanism of thrust production is the generation of a streamwise central jet and the associated attached vortex rings. Under certain traveling wave regimes, the ribbon fin also generates a heave force, which pushes the body up in the body-fixed frame.
    [Show full text]
  • Effects of Restraint and Immobilization on Electrosensory Behaviors of Weakly Electric Fish
    Effects of Restraint and Immobilization on Electrosensory Behaviors of Weakly Electric Fish Éva M. Hitschfeld, Sarah A. Stamper, Katrin Vonderschen, Eric S. Fortune, and Maurice J. Chacron Abstract Introduction Weakly electric fi shes have been an important model system eakly electric fi sh emit an electric organ dis- in behavioral neuroscience for more than 40 years. These charge (EOD1) using a specialized electric or- fi shes use a specialized electric organ to produce an electric W gan located in the tail. EOD properties such as fi eld that is typically below 1 volt/cm and serves in many be- fundamental frequency are highly regulated by central ner- haviors including social communication and prey detection. vous system (CNS) circuits (Heiligenberg 1991). Electrore- Electrical behaviors are easy to study because inexpensive ceptors in the animal’s skin detect perturbations of the EOD and widely available tools enable continuous monitoring of caused by nearby objects, prey, and the electric fi elds of con- the electric fi eld of individual or groups of interacting fi sh. specifi cs (Nelson and MacIver 1999; Turner et al. 1999; Weakly electric fi sh have been routinely used in tightly con- Zakon et al. 2002). For many species of electric fi sh, simple trolled neurophysiological experiments in which the animal is sine wave electric signals at species-appropriate frequencies immobilized using neuromuscular blockers (e.g., curare). Al- and amplitudes can elicit behavioral responses from conspe- though experiments that involve immobilization are generally cifi cs (Heiligenberg 1991). discouraged because it eliminates movement-based behav- Most species of weakly electric fi shes actively modulate ioral signs of pain and distress, many observable electrosen- their EODs depending on the behavioral context.
    [Show full text]