bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429572; this version posted May 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Electrocommunication signals indicate motivation to compete during dyadic interactions of an electric fish Till Raaba;b†, Sercan Bayezita, Saskia Erdle a, Jan Bendaa;b;c a Institute for Neurobiology, Eberhard Karls Universitat,¨ Tubingen,¨ Germany b Centre for Integrative Neuroscience, Eberhard Karls Universitat,¨ Tubingen,¨ Germany c Bernstein Centre for Computational Neuroscience, Eberhard Karls Universitat,¨ Tubingen,¨ Germany † corresponding author:
[email protected] Abstract Animals across species compete for limited resources. While in some species competition behavior is solely based on own abilities, others assess their opponents to facilitate these interactions. Using cues and communi- cation signals, contestants gather information about their opponent, adjust their behavior accordingly, and can thereby avoid high costs of escalating fights. We tracked electrocommunication signals, in particular “rises”, and agonistic behaviors of the gymnotiform electric fish Apteronotus leptorhynchus in staged competition ex- periments. A larger body size relative to the opponent was the sole significant predictor for winners. Sex and the frequency of the continuously emitted electric field were only mildly influencing competition outcome. In males, correlations of body-size and winning were stronger than in females and, especially when losing against females, communication and agonistic interactions were enhanced, hinting towards males being more motivated to compete.