Concept Based Notes Maths II B.Sc I Year

Total Page:16

File Type:pdf, Size:1020Kb

Concept Based Notes Maths II B.Sc I Year Biyani's Think Tank Concept based notes Maths II B.Sc I Year Megha Sharma Department of Science Biyani’s Group of Colleges 2 Published by : Think Tanks Biyani Group of Colleges Concept & Copyright : Biyani Shikshan Samiti Sector-3, Vidhyadhar Nagar, Jaipur-302 023 (Rajasthan) Ph : 0141-2338371, 2338591-95 Fax : 0141-2338007 E-mail : [email protected] Website :www.gurukpo.com; www.biyanicolleges.org ISBN: Edition : 2013 While every effort is taken to avoid errors or omissions in this Publication, any mistake or omission that may have crept in is not intentional. It may be taken note of that neither the publisher nor the author will be responsible for any damage or loss of any kind arising to anyone in any manner on account of such errors and omissions. Leaser Type Setted by : Biyani College Printing Department For free study notes log on: www.gurukpo.com Maths 3 Preface am glad to present this book, especially designed to serve the needs of the I students. The book has been written keeping in mind the general weakness in understanding the fundamental concepts of the topics. The book is self-explanatory and adopts the “Teach Yourself” style. It is based on question-answer pattern. The language of book is quite easy and understandable based on scientific approach. Any further improvement in the contents of the book by making corrections, omission and inclusion is keen to be achieved based on suggestions from the readers for which the author shall be obliged. I acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr. Sanjay Biyani, Director (Acad.) Biyani Group of Colleges, who are the backbones and main concept provider and also have been constant source of motivation throughout this endeavour. They played an active role in coordinating the various stages of this endeavour and spearheaded the publishing work. I look forward to receiving valuable suggestions from professors of various educational institutions, other faculty members and students for improvement of the quality of the book. The reader may feel free to send in their comments and suggestions to the under mentioned address. Megha Sharma For free study notes log on: www.gurukpo.com 4 Syllabus For free study notes log on: www.gurukpo.com Maths 5 Unit – I Series Series : Infinite Series and convergent series: Series : Expression of that form in which the successive terms are always according to some definite rule. Here – nth term of series There are two types of series 1) Finite Series 2) Infinite Series Infinite Series: If the no. of term in any series is infinite then the series is called infinite series. Eg. it’s denoted by Convergent Series : An infinite series is said to be convergent if the sequence of its partial sum <Sn> is convergent = S (finite) n – d Test for convergence of series : 1) D’ Alembert’s Ratio test : If be a series of positive terms such that then (i) if l > 1, will be convergent (ii) ifl < l, will be divergent (iii) if l = 1 may either convergent or divergent Cauchy nth root test : If be a series of positive terms such that = (a real number) then (i) if <1, will be convergent (ii) if, >1 will be divergent (iii) if =1, may either converge or diverge For free study notes log on: www.gurukpo.com 6 Raabe’s tests : If be a series of positive terms such that then (i) if > 1, will be convergent (ii) if <1, will be divergent (iii) if =1, may either converge or diverge D’e Morgan and Bertrand’s Test : If be a series of positive terms such that then (i) if >1, will be convergent (ii) if <1, will be divergent Cauchy’s condensation test : If the series is a positive terms such that <f(n) is a decreasing sequence and if a >1 and is a positive integer, then the series and both converge or diverge together. Gauss tests : If be a series of positive terms and Where sequence <Yn> is bounded then (a) if (i) is convergent if (ii) is divergent if (b) if (i) is convergent if (ii) is divergent if < 1 Alternating Series : Any series of the type +… ( ) Where terms are alternatively positive and negative, is known as an alternating series and is denoted by Eg. 1 - - + …. For free study notes log on: www.gurukpo.com Maths 7 A series whose terms are alternatively positive or negative is aid to be absolutely convergent if the series both are convergent. Taylor’s theorem: (i) Taylor’s theorem with L1agrange’s form of Remainder Statement : if in the interval [a, a+h], a function f is defined in such a way that the differentials f’ , f” ,….., upto the order (n-1) are (i) Continuous in the interval [a, a+h], (ii) nth derivative of f exist in the interval (a, a+h) then there exist at least one number Q between O and 1, such that f(a+h) = f(a) + h f’ (a) + f” (a) + … + (iii) Taylor’s theorem with cauchy’s from of Remainder: Statement : if in the interval [a, a+h] a function f(x) is defined in such a way that (i) all derivatives of f (x) up to the order (n-1) are continuous in the interval [a, a+h] (ii) all derivatives of f (x) up to the order n exist in the interval (a, a+h), then there exist atleast one number between o and 1, such that. f(a+h) = f(a) + h f’(a) + f” (a) +…. Maclaurin’s theorem : Statement : if a function f in is Such that (i) f, f` …. is continuous in [ (ii) in (iii) (0,1) such that f = f(o) + x f’(o) + + ….+ (o)+ where Rn = is called maclaurin’s remainder due to schlomitch and Roche. Power Series If is a continuous real variable and ‘a’ any constant then the series is Constant, is called a power series about the point x =a For free study notes log on: www.gurukpo.com 8 is called Standard power series. Q.1 Show that the following series is divergent: Sol. Let = and = = = D ‘Alembert’s ratio test fail Again .n = = again Raabe’s test also fail again = = - = - = Therefore by De’ morgan and Bertrand’s test the series is divergent. Q.2 Discuss the convergence and absolute convergence of the following series Sol. Given series is alternating series Clearly and Un = For free study notes log on: www.gurukpo.com Maths 9 therefore by Leibnitz test the above series is also convergent. again = Let us take auxiliary series Vn = Now (non zero finite quantity) Both will converge or diverge together. But = is divergent, Because p = 1 is conditionally convergent. Q.3 Show that the following series is convergent if x < 1 and divergent if x> 1 + Sol. Un = Un+1 = Now. = . Therefore if convergent. and if Therefore at = = = at For free study notes log on: www.gurukpo.com 10 Q.4 Test for the convergence of the following series. Sol. Un = = = = (1+o) . 1.x = Therefore by Cauchy nth foot test the given series is divergent if > 1 convergent if < 1 if x =1 then Un = = let us take auxiliary series is where Vn = Now = e# 0 Therefore by comparison test will converge or diverse together. But therefore together is also divergent. Q.5 Test for the convergence and absolute convergence of the following series: +…… Case - I = when P > O Sol. Given series is alternating series and <Un-1 And again ∑ is convergent series = 1 If p> 1, series will be convergent If o<p< 1 series will be divergent. Therefore for p>1 the given series will be absolute convergent and o<p< 1, the given series will be conditionally convergent Case - II = When p = o In this case the given series ∑un = 1 – 1 + 1 – 1 + …. is For free study notes log on: www.gurukpo.com Maths 11 ______ oscillates finitely Case - III = When p < o Let p = m, where m > o then ∑un = ∑ = ∑ = 1 - + here Un = or when n simultaneous odd and even. and therefore given series is oscillating series between - Q.6 Test for the convergence of the following series. Sol. For the given series if we neglect first term of given series then convergence of given series not affected therefore we Let Then Un = and Un +1 = Now = = therefore if ∑un is convergent and if x > 1 then < 1 is divergent. If x = 1 then D’Almbert’s ratio test fail. at x = 1 n = ( ) = test given series is convergent. Therefore if < ! the given series will be convergent and the given series will be divergent. Q.7 Find Lagrange’s and Cauchy’s remainder after n terms in the expansion of following functions. For free study notes log on: www.gurukpo.com 12 (i) log (1+x) Sol. Let f ; possesses derivatives of every = ! = Q.8 If f(x) is continuous in [a,b] and possesses finite derivatives for x = C (a,b), then prove that Sol. Since the function is differentiable at x=c, hence f’ (x) and f’ (x) exist in the neighborhood (c-h, c+h) of x =c Now applying second mean value theorem for the intervals (c-h, c) and (c,c+h), we have f f(c-h)=f(c) – hf’(c) + O< <1 F(c+h) = f(c) + h’(c) + f” (c+ ) --------------(2) O< <1 Adding (1) and (2), we obtain F”(c- h) +f(c+h) = 2f(c) + - f(c-h)+ f(c+h) – 2f(c)= [f”(c- [ f”(c- ] Q.9 Test the convergence of following series: +….. Sol. Let first term of this series 0 = then f(n) = = For free study notes log on: www.gurukpo.com Maths 13 Suppose f = then Vn = nd Vn+1 = now = a>1 is convergent therefore by cauchy’s consensation test the given series is convergent.
Recommended publications
  • Pedal Equation and Kepler Kinematics
    Canadian Journal of Physics Pedal equation and Kepler kinematics Journal: Canadian Journal of Physics Manuscript ID cjp-2019-0347.R2 Manuscript Type: Tutorial Date Submitted by the For11-Aug-2020 Review Only Author: Complete List of Authors: Nathan, Joseph Amal; Bhabha Atomic Research Centre, Reactor Physics Design Division Pin and string construction of conics, Pedal equation, Central force field, Keyword: Conservation laws, Trajectories and Kepler laws Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : © The Author(s) or their Institution(s) Page 1 of 9 Canadian Journal of Physics Pedal equation and Kepler kinematics Joseph Amal Nathan Reactor Physics Design Division Bhabha Atomic Research Center, Mumbai-400 085, India August 12, 2020 For Review Only Abstract: Kepler's laws is an appropriate topic which brings out the signif- icance of pedal equation in Physics. There are several articles which obtain the Kepler's laws as a consequence of the conservation and gravitation laws. This can be shown more easily and ingeniously if one uses the pedal equation of an Ellipse. In fact the complete kinematics of a particle in a attractive central force field can be derived from one single pedal form. Though many articles use the pedal equation, only in few the classical procedure (without proof) for obtaining the pedal equation is mentioned. The reason being the classical derivations can sometimes be lengthier and also not simple. In this paper using elementary physics we derive the pedal equation for all conic sections in an unique, short and pedagogical way. Later from the dynamics of a particle in the attractive central force field we deduce the single pedal form, which elegantly describes all the possible trajectories.
    [Show full text]
  • Differential Calculus
    A TEX T -B O O K OF DIFFERENTIAL CALCULUS WITH NUMEROU S WORK ED OUT EXAMPLES GANE S B A A A B . NT . (C ) E B ER F E L O ND O N E I C S CIE Y F E D E U SC E M M O TH MATH MAT AL O T , O TH T H MA E IK ER-V EREI IGU G F E CIRC E IC DI P ER E C TH MAT N N , O TH OLO MAT MAT O AL MO , T . FELLOW OF THE U NIVE RSITY OF ALLAHAB AD ’ AND P R FESS R OF E I CS I UEE S C O E G E B E RES O O MATH MAT N Q N LL , NA E N L O N G M A N ! G R E , A N D C O 3 PAT ER TE ND 9 N O S R R OW , L O ON NEW YORK B OMBAY AND AL UTTA , , C C 1 909 A l l r i g h t s r e s e r v e d P E FA E R C . IN thi s work it h as b een my aim to lay before st ud ents a l r orou s and at th e sam e t me s m le ex osit on of stri ct y ig , i , i p p i lculu s nd it c f lic n T th e Differential C a a s hi e app ati o s .
    [Show full text]
  • WA35 188795 11772-1 13.Pdf
    CHAPTER XIII. QUADRATURE (II). TANGENTIAL POLARS, PEDAL EQUATIONS AND PEDAL CURVES, INTRINSIC EQUATIONS, ETC. 416. Other Expressions for an Area Many other expressions may be deduced for the area of a plane curve, or proved independently, specially adapted to the cases when the curve is defined by systems of coordinates other than Cartesians or Polars, or for regions bounded in a particular manner. To avoid continual redefinition of the symbols used we may state that in the subsequent work the letters have the meanings assigned to them throughout the treatment of Curvature in the author’s Differential Calculus. 417. The (p, s) formula. Fig. 61. Let PQ be an element δs of a plane curve and OY the per­ pendicular from the pole upon the chord PQ. Then 438 www.rcin.org.pl TANGENTIAL-POLAR CURVES. 439 and any sectorial area the summation being conducted along the whole bounding arc. In the notation of the Integral Calculus this is 1/2∫pds. This might be deduced from the polar formula at once. For where ϕ is the angle between the tangent and the radius vector. 418. Tangential-Polar Form (p, ψ). Again, since we have Area a form suitable for use when the Tangential-Polar (i.e. p, ψ) form of the equation to the curve is given. This gives the sectorial area bounded by the curve and the initial and final radii vectores. 419. Caution. In using the formula care should be taken not to integrate over a point, between the proposed limits, at which the integrand changes sign.
    [Show full text]
  • 1. a Binary Operation * Is Defined on the Set Z of Integers by A*B = 1 + Ab, ∀ A, B ∈ Z
    QUESTION BANK FOR II SEMESTER UNIT- I GROUP THEORY I. TWO MARKS QUESTIONS: 1. A binary operation * is defined on the set Z of integers by a*b = 1 + ab, ∀ a, b ∈ Z. Show that * is commutative but not associative. 2. A binary operation * is defined on the set Z of integers by a*b = a + b – 1. Show that 1 is an identity element and inverse of 2 is 0. 3. In the set R0 of non zero real numbers the binary operations * is defined by a*b = 푎푏 ,∀ 푎, 푏 ∈ R0. Find the identity element and the inverse of the element 4. 2 4. Define semi group , group and abelian group . 5. Prove that the identity element of a group is unique. 6. Prove that the inverse of an element of a group is unique. 7. If a is an element of a group (G, *) then prove that (a-1)-1 = a 8. Show that (N, x), where N is the set of natural numbers is a semi group with identity element. 9. Show that the set N is not a group under multiplication. 10. In the set G of all rational numbers except -1, the binary operation * defined by a*b = a + b + ab. Solve 3 * 4 * x = 0. 11. If every element of a group G is its own inverse, show that G is abelian. 12. If in a group (G, *), a*a = a ,∀ 푎 ∈ G, show that a = e, where e is the identity element. 13. Show that the groups of order 1, 2, 3 are abelian.
    [Show full text]
  • ICT and HISTORY of MATHEMATICS: the Case of the Pedal Curves from 17Th-Century to 19Th-Century Olivier Bruneau
    ICT AND HISTORY OF MATHEMATICS: the case of the pedal curves from 17th-century to 19th-century Olivier Bruneau To cite this version: Olivier Bruneau. ICT AND HISTORY OF MATHEMATICS: the case of the pedal curves from 17th-century to 19th-century. 6th European Summer University on the History and Epistemology in Mathematics Education, Jul 2010, Vienna, Austria. pp.363-370. hal-01179909 HAL Id: hal-01179909 https://hal.archives-ouvertes.fr/hal-01179909 Submitted on 23 Jul 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ICT AND HISTORY OF MATHEMATICS: the case of the pedal curves from 17th-century to 19th-century Olivier BRUNEAU Laboratoire Histoire des sciences et Philosophie, Archives Poincar´e 91 avenue de la Lib´eration 54000 NANCY FRANCE e-mail: [email protected] ABSTRACT Dynamic geometry softwares renew the teaching of geometry: geometrical construction be- comes dynamic and it is possible to "visualize" the generation of curves. Historically this aspect of the movement (continuous or not) is natural and was well known to 17th-century mathematicians. Thus, during the 17th-century, the mechanical or organic description of curves was re-evaluated by scholars like Descartes or Newton.
    [Show full text]
  • Arxiv:1704.00897V1 [Math-Ph]
    PEDAL COORDINATES, DARK KEPLER AND OTHER FORCE PROBLEMS PETR BLASCHKE Abstract. We will make the case that pedal coordinates (instead of polar or Cartesian coordinates) are more natural settings in which to study force problems of classical mechanics in the plane. We will show that the trajectory of a test particle under the influence of central and Lorentz-like forces can be translated into pedal coordinates at once without the need of solving any differential equation. This will allow us to generalize Newton theorem of revolving orbits to include nonlocal transforms of curves. Finally, we apply developed methods to solve the “dark Kepler problem”, i.e. central force problem where in addition to the central body, gravitational influences of dark matter and dark energy are assumed. 1. Introduction Since the time of Isaac Newton it is known that conic sections offers full description of trajectories for the so-called Kepler problem – i.e. central force problem, where the force varies inversely as a square of 1 the distance: F r2 . There is also∝ another force problem for which the trajectories are fully described, Hook’s law, where the force varies in proportion with the distance: F r. (This law is usually used in the context of material science but can be also interpreted as a problem∝ of celestial mechanics since such a force would produce gravity in a spherically symmetric, homogeneous bulk of dark matter by Newton shell theorem.) Solutions of Hook’s law are also conic sections but with the distinction that the origin is now in the center (instead of the focus) of the conic section.
    [Show full text]
  • The Fate of Hamilton's Hodograph in Special and General Relativity
    The fate of Hamilton's Hodograph in Special and General Relativity Gary Gibbons1;2;3;4 September 23, 2015 1 DAMTP, Centre for Mathematical Sciences University of Cambridge , Wilberforce Road, Cambridge CB3 OWA, UK 2 Laboratoire de Math´ematiqueset Physique Th´eoriqueCNRS-UMR 7350 F´ed´eration Denis Poisson, Universit´eFran¸cois-Rabelais Tours, Parc de Grandmont, 37200 Tours, France 3 LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans, France 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA Abstract The hodograph of a non-relativistic particle motion in Euclidean space is the curve described by its momentum vector. For a general central orbit problem the hodograph is the inverse of the pedal curve of the orbit, (i.e. its polar reciprocal), rotated through a right angle. Hamilton showed that for the Kepler/Coulomb problem, the hodograph is a circle whose centre is in the direction of a conserved eccentricity vector. The addition of an inverse cube law force induces the eccentricity vector to precess and with it the hodograph. The same effect is produced by a cosmic string. If arXiv:1509.01286v2 [gr-qc] 22 Sep 2015 one takes the relativistic momentum to define the hodograph, then for the Sommerfeld (i.e. the special relativistic Kepler/Coulomb problem) there is an effective inverse cube force which causes the hodograph to precess. If one uses Schwarzschild coordinates one may also define a a hodograph for timelike or null geodesics moving around a black hole. Their pedal equations are given. In special cases the hodograph may be found explicitly.
    [Show full text]
  • A Handbook on Curves and Their Properties
    SEELEY G. 1 1UDD LIBRARY LAWRENCE UNIVERSITY Appleton, Wisconsin «__ CURVES AND THEIR PROPERTIES A HANDBOOK ON CURVES AND THEIR PROPERTIES ROBERT C. YATES United States Military Academy J. W. EDWARDS — ANN ARBOR — 1947 97226 NOTATION octangular C olar Coordin =r.t^r ini Tangent and the Rad ,- ^lem a Copyright 1947 by R m Origin to Tangent. i i = /I. f(s ) = C well Intrinsic Egua 9 ;(f «r,p) = C 1- Lithoprinted by E rlll CONTENTS PREFACE nephroid and teacher lume proposes to supply to student curves. Rather ,n properties of plane Pedal Curves e Pedal Equations U vhi C h might be found ^ Yc 31 r , 'f Lr!-ormation and in engine useful in the classroom 3 aid in the s Radial Curves alphabetical arrangement is Roulettes Semi-Cubic Parabola Sketching Evolutes, Curve Sketching, and Spirals Strophoid If 1 :s readily understandable. Trigonometric Functions .... Trochoids Witch of Agnesi bfi Stropho: i including the Astroid, HISTORY: The Cycloidal curves, discovered by Roemer (1674) In his search for the Space Is provided occasionally for the reader to ir ;,„ r e for gear teeth. Double generation was first sert notes, proofs, and references of his own and thus be st form noticed by Daniel Bernoulli in 1725- It is with pleasure that the author acknowledges a hypo loid o f f ur valuable assistance in the composition of this work. 1. DESCRIPTION: The d is y Mr. H. T. Guard criticized the manuscript and offered Le roll helpful suggestions; Mr. Charles Roth and Mr. William radius four Lmes as la ge- -oiling upon the ins fixed circle (See Epicycloids) ASTROID EQUATIONS: = cos 1 1 1 (f)(3 x + - a y sin [::::::: = (f)(3 :ion: (Fig.
    [Show full text]
  • The Cissoid of Diocles
    Playing With Dynamic Geometry by Donald A. Cole Copyright © 2010 by Donald A. Cole All rights reserved. Cover Design: A three-dimensional image of the curve known as the Lemniscate of Bernoulli and its graph (see Chapter 15). TABLE OF CONTENTS Preface.................................................................................................................. xix Chapter 1 – Background ............................................................ 1-1 1.1 Introduction ............................................................................................................ 1-1 1.2 Equations and Graph .............................................................................................. 1-1 1.3 Analytical and Physical Properties ........................................................................ 1-4 1.3.1 Derivatives of the Curve ................................................................................. 1-4 1.3.2 Metric Properties of the Curve ........................................................................ 1-4 1.3.3 Curvature......................................................................................................... 1-6 1.3.4 Angles ............................................................................................................. 1-6 1.4 Geometric Properties ............................................................................................. 1-7 1.5 Types of Derived Curves ....................................................................................... 1-7 1.5.1 Evolute
    [Show full text]
  • ASTROID - NEPHROID DELTOID - CARDIOID ORTHOCYCLOIDALS - Part XVIII
    ASTROID - NEPHROID DELTOID - CARDIOID ORTHOCYCLOIDALS - Part XVIII - C. Masurel 08/01/2017 Abstract Astroid and Nephroid are close curves with many relations. They are special examples of hypercycles proposed by Laguerre to generalize polarity in the plane for curves of class four by analogy with polarity for conics of class two. We present a transformation that links couples of orthocycloidals and curves transformed by central inversion and apply it to astroid/nephroid and deltoid/cardioid. We also give a proof of an old central polar equation of the Nephroid. 1 Epicycloids, hypocycloids and orthocycloidals We have seen in part XIV that couples of ortho cycloidals can move inside a couple of epi- and hypo-cycloids in such a way that all cusps stay on epi- and hypo-cycloids and the curves pass through their common cusps and keep orthogonal crossing. F. Morley in [6] indicates that "the only points at infinity of cycloidals of degree 2p are the cyclic points I and J counted each p times. In the epicy- cloid the singular tangents at I and J are directed to the origin, where all the foci are collected. The center being the mean of the foci, the origin is also the center of the curve. Inthe epicycloid the line IJ is the singular tangent at both I and J, and there are no finite foci." This is an incitement to study cycloidals in polar coordinates with O at the center of the fixed circle of the cycloidal. So we examine some special cases of orthocycloidals using central polar equa- tion of cycloidals of F.
    [Show full text]
  • Geometrical Applications of Integration
    200 Engineering Mathematics through Applications 3 Geometrical Applications of Integration aaaaa 3.1 INTRODUCTION In general, we consider the integration as the inverse of differentiation. In the expression of b the sum, ∑fx()∆ x , f is considered continuous on a ≤ x ≤ b and we find that limit of S as ∆x a b approaches to zero is the number ∫fxdx()=− Fb () Fa (), where F is any anti-derivative of f. We a apply this contention in finding the area between the x-axis and the curve y = f(x), a ≤ x ≤ b. We extend the application to compute distances, volumes and volumes of revolution, length of curves, area of surface of revolution, average value of function, centre of mass, centroid, etc. 3.2 AREA OF BOUNDED REGIONS (QUADRATURE) I. Areas of Cartesian Curves y The area bounded by the curve y = f (x), X-axis and the B b ∫ ydx x) ordinates x = a, x = b is , when f(x) is continuous single y = f( a valued and finite function of x, and y does not change sign in the P´ Q δx, y +δy) interval [a, b]. (,xyP ) (x + Q´ If AB is the curve y = f(x) between the ordinates A LA(x = a) and MB(x = b) with a condition that y is strictly yy + δ y increasing (or strictly decreasing) function of x in the interval [a, b ]. Let P(x, y) and Q(x + δx, y + δy) be two neighbouring O L N N´ M x-axis points on this continously increasing curve y = f (x) and x δ x NP, N’Q be their respective ordinates.
    [Show full text]
  • Geometrical Applications of Differentiation Aaaaa
    2 Geometrical Applications of Differentiation aaaaa 2.1 INTRODUCTION Though we have some algebraic results which give useful information about the graph of function and the function rate of change over most if not all of the functions. But to know the complete insight and details about the graph of the curve in space, we need to know first about certain other things like Maxima-Minima problems, Estimating approximation Errors, Intermediate forms, Role’s Theorem, mean value theorem, Taylor’s theorem, concavity, points of inflexion, sign of first derivatives, Asymptotes, etc. and which in turn can be known only with the differential co-efficient/derivative of the function at a point or over a certain change. Derivatives are interpreted as slope of curves and as instantaneous rate of change. We know that the first and second derivatives together tell how the graph of the function is shaped. Second derivative helps in estimating the linear approximation of the function. Collectively all above inference help in sketching the trace of the curve. 2.2 TANGENTS AND NORMALS I. Tangent and its Equation Let P(x, y) and Q(x + δx, y + δy) be neighbouring points on the curve y = f(x) with a supposition that the curve is continuous near P. Equation of any line through P(x, y) is Y – y = m(X – x) …(1) Y where X, Y are the current coordinates of any point on this B line (Fig. 2.1). y = f( x ) T´ Now, as Q → P, the straight line PQ tends in general to a (xxyy + δ, + δ) Q definite straight line TPT', which is called the tangent to the curve at P(x, y).
    [Show full text]