Springer Handbook of Auditory Research

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Springer Handbook of Auditory Research

Series Editors: Richard R. Fay and Arthur N. Popper

For other titles published in this series, go to www.springer.com/series/2506

wwww

Mary Florentine • Arthur N. Popper

Richard R. Fay

Editors

Loudness

with 75 Illustrations

Editors

  • Mary Florentine
  • Richard R. Fay

Department of Psychology Loyola University Chicago Chicago, IL
Department of Speech-Language Pathology and Audiology with joint appointment in Department of Electrical and Computer

  • Engineering
  • USA

Northeastern University Boston, MA 02115 [email protected]
USA [email protected]

Arthur N. Popper Department of Biology University of Maryland College Park, MD USA [email protected]

  • ISBN 978-1-4419-6711-4
  • e-ISBN 978-1-4419-6712-1

DOI 10.1007/978-1-4419-6712-1 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010938801 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Cover Art: Estimate of loudness as a function of level derived from chirp-evoked otoacoustic emissions by Luke Shaheen and Michael Epstein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

In Memoriam and Honor
Søren Buus
(January 29, 1951–April 29, 2004)

(Søren Buus’s obituary was published by Scharf, B. and Florentine, M. in the Journal of the Acoustical Society of America, 2005, 117, p. 1685.)

wwww

Series Preface

Springer Handbook of Auditory Research

The Springer Handbook of Auditory Research presents a series of comprehensive and

synthetic reviews of the fundamental topics in modern auditory research. The volumes are aimed at all individuals with interests in hearing research including advanced graduate students, postdoctoral researchers, and clinical investigators. The volumes are intended to introduce new investigators to important aspects of hearing science and to help established investigators to better understand the fundamental theories and data in fields of hearing that they may not normally follow closely.
Each volume presents a particular topic comprehensively, and each serves as a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in peerreviewed journals. The volumes focus on topics that have developed a solid data and conceptual foundation, rather than on those for which a literature is only beginning to develop. New research areas will be covered on a timely basis in the series as they begin to mature.
Each volume in the series consists of a few substantial chapters on a particular topic. In some cases, the topics will be ones of traditional interest for which there is a substantial body of data and theory, such as auditory neuroanatomy (Vol. 1) and neurophysiology (Vol. 2). Other volumes in the series deal with topics that have begun to mature more recently, such as development, plasticity, and computational models of neural processing. In many cases, the series editors are joined by a coeditor having special expertise in the topic of the volume.

Richard R. Fay, Chicago, IL
Arthur N. Popper, College Park, MD

vii

wwww

Volume Preface

The topic of loudness is of considerable concern, both in and outside of research laboratories. Most people have developed an opinion about some aspect of loudness, and many complain about the loudness of background sounds in their daily environments and their impacts on quality of life. Moreover, such sounds interfere with the ability to hear useful sounds, and such masking can be especially problematic for people with hearing losses, children, older adults, and nonnative speakers of a language.
At the same time, not all loud sounds are undesirable. Some loud sounds are important for human well-being, such as warning signals, whereas other loud sounds, such as music, can be pleasurable. In fact, loudness is essential for enjoying the dynamics of music. Thus, loudness is a pervasive and complex issue, and one that needs to be examined from a wide range of perspectives, and that is the purpose of this volume.
Research in loudness has been performed in many countries, and this volume is an international endeavor with authors from Europe, Japan, and the United States, making the volume an attempt to provide a global network of information about loudness. The editors are very pleased to be able to bring together information on many aspects of loudness in this one volume, as well as to highlight approaches from many different perspectives.
The overall stage for understanding the issues of loudness is set up in Chapter 1 by Florentine, who defines loudness and provides an overview of the many factors that influence loudness, Chapter 1 also addresses how language and culture may influence loudness, and concludes with a summary of current knowledge of the physiological mechanisms involved in loudness. Chapters 2 and 3 cover issues related to the measurement of loudness. Marks and Florentine, in Chapter 2, discuss the theoretical, empirical, and practical constraints on loudness measurement. The chapter starts with a brief history of loudness measurement in the nineteenth and twentieth centuries, and ends with contemporary methods of measurements. Of course, measures of loudness are also influenced by the context in which sounds are heard. In Chapter 3, Arieh and Marks discuss the ways in which context affects loudness and loudness judgments. In Chapter 4, Epstein reviews two issues related to responses to loudness: physiological effects of loud sounds, and perceptual and physiological data that correlate with loudness. Loudness in the laboratory is

ix

  • x
  • Volume Preface

discussed in Chapters 5 and 6 using a traditional, but artificial, classification to divide the subject matter. Jesteadt and Leibold address the loudness of steady-state sounds in Chapter 5. Kuwano and Namba examine the loudness of nonsteady-state (time-varying) sounds in Chapter 6.
The bridge between loudness in the laboratory and daily environments begins in
Chapter 7 and is expanded upon in Chapter 8. In Chapter 7, Sivonen and Ellermeir review studies on binaural loudness that have used different modes of stimulus presentation: headphones and free, diffuse, and directional sound fields. They show how mode of presentation affects the measurement of binaural loudness. In Chapter 8, Fastl and Florentine cover how loudness is related to annoyance, music, multisensory (audio-visual and audio-tactile) interactions, and the environmental context in which sounds are heard. They also discuss issues related to setting sound levels to optimal loudness for large groups of people. The topic of loudness is especially important for the one out of ten people who have a hearing loss and for those doing work with some aspect of aural rehabilitation. Knowledge of loudness in hearing loss is also important for anyone trying to understand normal hearing, because it puts constraints on theories of loudness. In Chapter 9, Smeds and Leijon summarize current thinking on the formation of loudness as it relates to different types of hearing loss and they describe strategies used to compensate for altered loudness. The volume ends in Chapter 10 with an introduction to models of loudness by Marozeau.

As with most volumes in the Springer Handbook of Auditory Research, chapters

often build upon material discussed in earlier volumes. In particular, generally related material can be found in Volumes 3 (Human Psychophysics), 6 (Auditory

Computation), 18 (Speech Processing in the Auditory System), and 29 (Auditory Perception of Sound Sources).

The editors express their appreciation to a number of colleagues and friends, including the authors of the chapters, who assisted in review of one or more of the chapters. We are grateful to William J. Cavanaugh, Leo Beranek, Brian Fligor, Julia B. Florentine, Michael G. Heinz, Sharon Kujawa, Andrzej Miśkiewicz, Brian C. J. Moore, Andrew Oxenham, Torben Poulsen, Bertram Scharf, and the students of the 2009 Loudness Seminar at Northeastern University.

Mary Florentine, Boston, MA

Arthur N. Popper, College Park, MD

Richard R. Fay, Chicago, IL

Contents

12

Loudness .................................................................................................... Mary Florentine
1

Measurement of Loudness, Part I:

Methods, Problems, and Pitfalls.............................................................. 17 Lawrence E. Marks and Mary Florentine

  • 3
  • Measurement of Loudness, Part II:

Context Effects .......................................................................................... 57 Yoav Arieh and Lawrence E. Marks

45

Correlates of Loudness............................................................................. 89 Michael J. Epstein

Loudness in the Laboratory, Part I:

Steady-State Sounds.................................................................................. 109 Walt Jesteadt and Lori J. Leibold

  • 6
  • Loudness in the Laboratory, Part II:

Non-Steady-State Sounds......................................................................... 145 Sonoko Kuwano and Seiichiro Namba

78

Binaural Loudness .................................................................................... 169 Ville Pekka Sivonen and Wolfgang Ellermeier

Loudness in Daily Environments............................................................. 199 Hugo Fastl and Mary Florentine

xi

  • xii
  • Contents

9

Loudness and Hearing Loss..................................................................... 223 Karolina Smeds and Arne Leijon

10 Models of Loudness................................................................................... 261
Jeremy Marozeau

Index................................................................................................................. 285

Contributors

Yoav Arieh

Department of Psychology, Montclair State University, Montclair, NJ 07043, USA [email protected]

Wolfgang Ellermeier

Department of Psychology, Technische Universität Darmstadt, D-64283, Darmstadt, Germany [email protected]

Michael J. Epstein

Auditory Modeling and Processing Laboratory, Department of Speech-Language Pathology and Audiology, The Communications and Digital Signal Processing Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA [email protected]

Hugo Fastl

Department of Technical Acoustics, AG Technische Akustik, MMK, Technische Universität München, 80333 München, Germany [email protected]

Mary Florentine

Department of Speech-Language Pathology and Audiology with joint appointment in Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA [email protected]

Walt Jesteadt

Boys Town National Research Hospital, Omaha, NE 68131, USA [email protected]

Sonoko Kuwano

Osaka University, Toyonaka, Osaka 560-0083, Japan [email protected]

xiii

  • xiv
  • Contributors

Lori J. Leibold

Division of Speech and Hearing Sciences, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA [email protected]

Arne Leijon

KTH – School of Electrical Engineering, 100 44 Stockholm, Sweden [email protected]

Lawrence E. Marks

John B. Pierce Laboratory, Department of Epidemiology and Public Health, Yale University, School of Medicine, and Department of Psychology, Yale University New Haven, CT 06519, USA [email protected]

Jeremy Marozeau

The Bionic Ear Institute, East Melbourne, VIC 3002, Australia [email protected]

Seiichiro Namba

Osaka University, 14-8-513, Aomadani-Higashi 1 chome, Minoo, Osaka, Japan [email protected]

Ville Pekka Sivonen

Department of Signal Processing and Acoustics, Aalto University School of Science and Technology, Otakaari 5 A, 02150 Espoo, Finland ville.sivonen@tkk.fi

Karolina Smeds

ORCA Europe, Widex A/S, Maria Bangata 4, 118 63 Stockholm, Sweden [email protected]

Chapter 1

Loudness

Mary Florentine

1.1 Why Learn About Loudness?

The topic of loudness is no longer something esoteric, discussed only in research laboratories and psychoacoustics lectures. It is mainstream in social conversation, and most people have developed an opinion about some aspect of loudness. Our daily environments are too loud and people are taking notice. In their book, One Square Inch of Silence, Hempton and Grossmann (2009) document the lack of quiet places. The fact that a book about this topic can be published by Free Press, a division of Simon and Schuster, and appear on bookshelves – from Barnes and Noble to WalMart and Sam’s Club – indicates that problems associated with loud sounds strike a resonant chord with a large segment of the population. Loud sounds intrude on our enjoyment of life and affect our performance; loud background sounds interfere with our ability to hear sounds we want to hear and can create communication problems for everyone, especially those with hearing losses (Chap. 9), children (Nelson et al. 2002), older adults (Kim et al. 2006), and non-native speakers of a language (e.g., Mayo et al. 1997; Lecumberri and Cooke 2006; Van Engen and Bradlow 2007). These combined groups add up to be a significant portion of the overall population.
News reports and media broadcasts in many countries have alerted the general population to the potential risk of hearing loss caused by exposure to high levels of sound, especially music. Many parents are especially concerned about the musiclistening behaviors of their children. In fact, recommendations to prevent noiseinduced hearing loss are often not heeded, although they are simple to understand (Florentine 1990). Research compiled during the past two decades is not unambiguous regarding the limits of toxic exposure levels. For example, sound exposures for musicians in symphony orchestras show that in many cases the sound exposure exceeds an 8-h limit of 85 dBA (Royster et al. 1991), but measurements of hearing

M. Florentine(*) Department of Speech-Language Pathology and Audiology with joint appointment in Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA e-mail: [email protected]

  • M. Florentine et al. (eds.), Loudness, Springer Handbook of Auditory Research 37,
  • 1

DOI 10.1007/978-1-4419-6712-1_1, © Springer Science+Business Media, LLC 2011

  • 2
  • M. Florentine

thresholds in sound-exposed musicians do not indicate much change – although they often have tinnitus and may have more difficulty with complex auditory processing. Likewise, Axelsson et al. (1995) found surprisingly little change in the hearing thresholds of rock musicians tested in the beginning of their careers and tested after 20 years of performing. Hearing thresholds, however, may be a poor way to assess damage to hearing because they are quite insensitive to neural degeneration (Kujawa and Liberman 2009). Effective hearing in daily life, such as the ability to hear speech in background noise, requires more physiological processing than is needed to simply detect the presence of a sound.
It is noteworthy that the sound exposure limit of 85 dBA is based primarily on data collected from white adult males, who were exposed to industrial noise (ISO 1999 1990); recommendations for children exposed to music are estimations. Some data suggest that previous exposure to high-level noise has a deleterious effect on the progression of age-related hearing loss (Gates et al. 2000; Kujawa and Liberman 2006). In other words, ears with noise damage may age differently from those without noise damage. Although there is evidence that some people may be more susceptible to noise-induced hearing loss than others, there are currently no standardized tests that can identify those who may be at greater risk. Therefore, it is best to use caution around loud sounds (for iPod recommendations and other information, see Chap. 8).
Although there is some debate on the limits of toxic noise exposure, there is clear consensus among scientists that very high-level sounds can cause hearing loss and impact our general physical and psychological wellness (see Chap. 4). Some loud sounds have more physical and psychological impact than others, and the magnitude of noxious sounds in our daily environments are too loud in many locations. The background sounds of our daily lives – the soundscapes – have changed (Schafer 1977). Although there have always been loud sounds in nature such as waterfalls and thunder, people could choose not to live close to waterfalls; thunder was not a daily experience. Humans designed bullhorns for use as warning signals and long-distance communication devices. Although people experienced loud sounds, most people agree that the soundscapes of our daily environments are much louder and more intrusive today than in the past. Soundscapes in entire areas of countries can change rather quickly. For example, soundscapes took on a dramatic change in loudness in early twentieth century America with the onset of modern technology (Thompson 2002).
Loudness correlates highly with the degree of annoyance of community noises
(Berglund et al. 1976). The problem of intrusively loud soundscapes is not confined to any one country; it is a global issue. It is not confined to spaces outside dwelling places. Sounds inside homes are often too loud. In fact, at the time of this writing the Commercial Advertisement Loudness Mitigation (CALM) Act is being discussed in the U.S. House of Representatives. The CALM Act addresses widespread consumer complaints regarding the abrupt loudness of television advertisements. The Act would enable the Federal Communications Commission (FCC) to monitor the levels of advertisements in television programming to ensure that the loudness levels of commercial breaks are consistent with those of the programming that it brackets. National standards on the loudness of commercials have already been adopted in Australia, Brazil, France, Israel, Russia, and the United Kingdom.

  • 1
  • Loudness
  • 3

Most loud sounds are unnecessary and avoidable. Modern technology exists that can reduce the level of sounds. There are a number of ways to quiet loud sounds that are not difficult to implement, but they require awareness, effort, some financial resources, and in some cases political action. Even when regulations to control unreasonably loud sounds are enforced, technological knowledge has been used to get around the regulations. For example, a loudness maximizer has been developed to increase loudness of media broadcasts and commercials to grab the attention of potential customers, while staying within legal sound-level limits (see Chap. 8). This device was developed with knowledge of how we perceive loudness; this same knowledge can be used to set more effective sound-emission limits and is found within the chapters of this book.
Although many loud sounds should be eliminated, some loud sounds are important, useful, and even desirable. Warning signals are essential for our safety. Some loud sounds allow us to experience the dynamics of music and speech. To eliminate loud, unwanted sounds and keep desired sounds optimally loud requires an understanding of the many factors that influence the perception of loudness.
Another important reason to learn about loudness is to aid in the rehabilitation of people with hearing losses. According to the National Institutes of Deafness and Communication Disorders, one out of ten people have a hearing loss, and many people will develop a hearing loss as they age. The most common treatment for hearing loss is hearing aids. Kochkin’s survey (2005) of 1,500 hearing-aid users indicates that only 60% of them reported being satisfied when asked about comfort with loud sounds.
This chapter provides an overview of the many factors that influence loudness and they are described in greater detail in subsequent chapters. It also includes topics that have not been covered elsewhere in this book. Section 1.2 includes the definition and the meaning of loudness, and gives an overview of the complex nature of loudness. It also specifies correct terminology and cautions about the use of incorrect and misleading terminology. The third section addresses how language and culture influence judgments of loudness. It describes how the connotative meaning of a percept, such as loudness, can be obtained and how it can differ among languages, even though the dictionary definitions indicate the same meaning. It also describes some early international collaboration undertaken to understand loudness and other aspects of perception that are related to it. The fourth section describes the current state of knowledge regarding loudness and points toward new areas of investigation.

Recommended publications
  • Measures of the Ecological Loudness of Speech

    Measures of the Ecological Loudness of Speech

    1 8 Tobias Neher et al. REFERENCES Measures of the ecological loudness of speech Akeroyd, M.A. (2008). “Are individual differences in speech reception related to 1,3,4 2,3,4 individual differences in cognitive ability? A survey of twenty experimental MARY FLORENTINE AND MICHAEL EPSTEIN studies with normal and hearing-impaired adults” Int. J. Audiol. Suppl. 2 47, 1 S53-S73. Communication Research Laboratory 2 Auditory Modeling and Processing Laboratory Blauert, J. (1997). Spatial Hearing: The Psychophysics of Human Sound 3 Localization (The MIT Press, Cambridge, MA). Dept. of Speech-Language Pathology and Audiology and Institute for Hearing, Speech, and Language Behrens, T., Neher, T., and Johannesson, R.B. (2008). “Evaluation of speech corpus 4 for assessment of spatial release from masking” in Proceedings of ISAAR 2007: Communications and Digital Processing Center, ECE Department Auditory Signal Processing in Hearing-Impaired Listeners. 1st International Northeastern University, Boston, Massachusetts, 02115 USA Symposium on Auditory and Audiological Research. Elsinore, Denmark. Edited Most laboratory studies of binaural loudness summation show ample by T. Dau, J.M. Buchholz, J. Harte, and T.U. Christiansen. ISBN: 87-990013-1- amounts of summation (e.g., a tone presented binaurally is clearly louder 4. (The Danavox Jubilee Foundation, Copenhagen), pp. 449-457. than the same tone presented monaurally), but classroom demonstrations of Daneman, M., and Carpenter, P.A. (1980). “Individual differences in integrating this phenomenon in typical daily environments yield negligible loudness information between and within sentences” J. Exp. Psychol. Learn. Mem. Cogn. summation for most listeners. To gain insight into this difference, 9, 561-584.
  • Tuning Curves and Pitch Matches in a Listener with a Unilateral, Low-Frequency Hearing Loss

    Tuning Curves and Pitch Matches in a Listener with a Unilateral, Low-Frequency Hearing Loss

    Tuning curves and pitch matches in a listener with a unilateral, low-frequency hearing loss Citation for published version (APA): Florentine, M., & Houtsma, A. J. M. (1983). Tuning curves and pitch matches in a listener with a unilateral, low- frequency hearing loss. Journal of the Acoustical Society of America, 73(3), 961-965. https://doi.org/10.1121/1.389021 DOI: 10.1121/1.389021 Document status and date: Published: 01/01/1983 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
  • Meeting Abstracts

    Meeting Abstracts

    PROGRAM OF The 118th Meeting of the AcousticalSociety of America Adam's Mark Hotel ß St. Louis, Missouri ß 27 November-1 December 1989 MONDAY EVENING, 27 NOVEMBER 1989 ST. LOUIS BALLROOM D, 7:00 TO 9:00 P.M. Tutorial on Architectural Acoustics Mauro Pierucci, Chairman Departmentof Aerospaceand EngineeringMechanics, San DiegoState University,San Diego, California 92182 TUI. Architecturalacoustics: The forgottendimension. Ewart A. Wetherill (Wilson, lhrig, and Associates, lnc., 5776 Broadway,Oakland, CA 94618) The basic considerationsof architeclural acouslics---isolation from unwanled noise and vibration, control of mechanicalsystem noise, and room acousticsdesign---are all clearly exemplifiedin Sabinc'sdesign for BostonSymphony Hall. Openedin ! 900,this hall isone of theoutstanding successes in musical acoustics. Yet, aswe approachthe hundredthanniversary of Sabine'sfirst experiments, acoustical characteristics remain one of the leastconsidered aspects of buildingdesign. This is due, in part, to the difficultyof visualizingthe acouslicaloutcome of designdecisions, complicated by individualjudgment as to whatconstitutes good acous- tics. However,the lack of a comprehensiveteaching program remains the dominantproblem. Significant advancesover the past 2 or 3 decadesin measurementand evaluationhave refinedthe ability to design predictabilityand to demonsIrateacoustical concerns to others. New techniquessuch as sound intensity measurements,new descriptors for roomacoustics phenomena, and the refinemen t of recording,analysis, and amplificationtechniques provide fresh insights into the behaviorof soundin air and other media.These topics are reviewedwith particularemphasis on the needfor a comparableadvance in translationof acousticprinci- plesinto buildingtechnologies. Sl J. Acoust.Soc. Am. Suppl. 1, VoL86, Fall1989 118thMeeting: Acoustical Society of America S1 TUESDAY MORNING, 28 NOVEMBER 1989 ST. LOUIS BALLROOM C, 8:00 A.M. TO 12:00 NOON SessionA.
  • 156 a Half-Century's Perspective on Békésy

    156 a Half-Century's Perspective on Békésy

    A HALF-CENTURY’S PERSPECTIVE ON BÉKÉSY TRACKING AND LOUDNESS GROWTH AT THRESHOLD 1 1,2 Elizabeth Rooney and Mary Florentine Department of Speech-Language Pathology and Audiology 1 Department of Electrical and Computer Engineering 2 Northeastern University (106-A FR), 360 Huntington Avenue, Boston, MA 02115 USA [email protected] and [email protected] Abstract In the more than half a century since Georg von Békésy was awarded the Nobel Prize, many of his findings have stood the test of time. Implications of the width of the excursions in the Békésy tracking procedure, however, are not as simple as described in his classic book, Experiments in Hearing (von Békésy, 1960). The interpretations of his findings have created some misunderstandings in hearing science and audiology. This article reviews a large body of data on Békésy tracking and more recent threshold, discrimination, and loudness data in order to answer the following question: Is the width of the excursions a reliable indicator of cochlear pathology? In 1947, von Békésy described a new audiometer and claimed that this new audiometer permitted the testing of recruitment. Recruitment has been defined as a rapid growth in loudness above the threshold of hearing (Fowler,1936; Steinberg and Gardner, 1937; Brunt, 1994) and was believed to be associated with all cochlear hearing losses (Dix, Hallpike, and Hood, 1948). The audiometer was automated. As the frequency of the signal increased slowly, the subject pressed a button when the signal was audible and released it when inaudible. This pressing and releasing of the button caused the level of the signal to decrease or increase, respectively, and a visible tracing of the excursions (or trackings) between the just-audible and just-inaudible pulsed tones could be observed on recording paper that was attached to a rotating drum.
  • Temporal Integration of Loudness in Listeners with Hearing Losses of Primarily Cochlear Origin

    Temporal Integration of Loudness in Listeners with Hearing Losses of Primarily Cochlear Origin

    Downloaded from orbit.dtu.dk on: Sep 25, 2021 Temporal integration of loudness in listeners with hearing losses of primarily cochlear origin Buus, Søren; Florentine, Mary; Poulsen, Torben Published in: Acoustical Society of America. Journal Link to article, DOI: 10.1121/1.424673 Publication date: 1999 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Buus, S., Florentine, M., & Poulsen, T. (1999). Temporal integration of loudness in listeners with hearing losses of primarily cochlear origin. Acoustical Society of America. Journal, 105(6), 3464-3480. https://doi.org/10.1121/1.424673 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Temporal integration of loudness in listeners with hearing losses of primarily cochlear origina) b) So”ren Buus Communication and Digital Signal
  • Volume Preface

    Volume Preface

    Springer Handbook of Auditory Research Series Editors: Richard R. Fay and Arthur N. Popper For other titles published in this series, go to www.springer.com/series/2506 wwww Mary Florentine • Arthur N. Popper Richard R. Fay Editors Loudness with 75 Illustrations Editors Mary Florentine Richard R. Fay Department of Speech-Language Pathology Department of Psychology and Audiology with joint appointment in Loyola University Chicago Department of Electrical and Computer Chicago, IL Engineering USA Northeastern University [email protected] Boston, MA 02115 USA [email protected] Arthur N. Popper Department of Biology University of Maryland College Park, MD USA [email protected] ISBN 978-1-4419-6711-4 e-ISBN 978-1-4419-6712-1 DOI 10.1007/978-1-4419-6712-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938801 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec- tion with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
  • International Hearing Aid Research Conference August 13 – 17, 2008

    International Hearing Aid Research Conference August 13 – 17, 2008

    IHCON 2008 International Hearing Aid Research Conference August 13 – 17, 2008 GRANLIBAKKEN CONFERENCE CENTER LAKE TAHOE, CALIFORNIA IHCON 2008 SPONSORS National Institute on Deafness and Other Communication Disorders Department of Veterans' Affairs Deafness Research UK The Gatehouse Memorial Lecture (sponsored by the Oticon Foundation and the MHR Institute of Hearing Research, and administered by the House Ear Institute) The House Ear Institute IHCON 2008 2 August 13-17, 2008 TABLE OF CONTENTS Conference Sponsors ...................................................2 Table of Contents.........................................................3 Planning Committee.....................................................4 Student Scholarship Recipients……………………....5 Daily Schedule…………………………………….....6 Program Summary………………………………..7-12 Oral Program........................................................ 13-42 Poster Program, Session A................................... 43-66 Poster Program, Session B................................... 67-90 Poster Program, Session C................................. 91-113 Conference Attendees ...................................... 114-122 IHCON 2008 3 August 13-17, 2008 IHCON 2008 Planning Committee Technical Chair Brian Moore Technical Co-Chair Judy Dubno Jan Wouters Organizational Co-Chair Sigfrid Soli Steering Committee Michael Akeroyd Brent Edwards, Past Technical Co-Chair MRC Institute of Hearing Research Starkey Hearing Research Center Ian Bruce Mary Florentine McMaster University Northeastern University Laurel
  • Loudness Functions for Long and Short Tones

    LOUDNESS FUNCTIONS FOR LONG AND SHORT TONES Mary Florentine,1,2 Michael Epstein,1,3 and Søren Buus1,3 1Institute for Hearing, Speech, and Language 2Dept. of Speech-Language Pathology and Audiology (133 FR) 3Communications and Digital Signal Processing Center, ECE Dept. (440 DA) Northeastern University, 360 Huntington Avenue, Boston, MA 02115 U.S.A. E-mail: [email protected], [email protected], [email protected] Abstract This study tests the Equal-Loudness-Ratio hypothesis [Florentine et al., J. Acoust. Soc. Am. 99, 1633-1644 (1996)], which states that the loudness ratio between equal-SPL long and short tones is independent of SPL. The amount of temporal integration (i.e., the level difference between equally loud short and long sounds) is maximal at moderate levels. Therefore, the Equal-Loudness-Ratio hypothesis predicts that the loudness function is shallower at moderate levels than at low and high levels. Equal-loudness matches and cross- modality string-length matches were used to assess the form of the loudness function for 5- and 200-ms tones at 1 kHz and the loudness ratio between them. Results from nine normal listeners show that (1) the amount of temporal integration is largest at moderate levels, in agreement with previous studies, and (2) the loudness functions are shallowest at moderate levels. For eight of the nine listeners, the loudness ratio between the 200- and 5-ms tones is approximately constant, except at low levels where it tends to increase. The average data show good agreement between the two methods, but discrepancies are apparent for some individuals.
  • An Overview of Bertram Scharf's Research in France on Loudness Adaptation

    An Overview of Bertram Scharf's Research in France on Loudness Adaptation

    An overview of Bertram Scharf’s research in France on loudness adaptation Sabine Meunier To cite this version: Sabine Meunier. An overview of Bertram Scharf’s research in France on loudness adaptation. 21st International Congress on Acoustics, Acoustical Society of America, Jun 2013, Montreal, Canada. pp.1-7, 10.1121/1.4800471. hal-00947137 HAL Id: hal-00947137 https://hal.archives-ouvertes.fr/hal-00947137 Submitted on 14 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An overview of Bertram Scharf′s research in France on loudness adaptation Sabine Meunier* LMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, F-13402 Marseille Cedex 20, France Marseille, 13402, France, France, [email protected] Since 1978, Professor Bertram Scharf divided his time between the USA and France. He was a Visiting Scientist at the Laboratoire de Mécanique et d'Acoustique in Marseille until the mid-1990s and collaborated with the University of Marseille (Faculté de Médecine) until his death. One of Bertram Scharf’s major contributions to the field of psychoacoustics is in the area of loudness. He first studied spectral loudness summation, when he started working at Harvard University.
  • Advancements in Psychophysics Lead to a New Understanding of Loudness in Normal Hearing and Hearing Loss

    Advancements in Psychophysics Lead to a New Understanding of Loudness in Normal Hearing and Hearing Loss

    ADVANCEMENTS IN PSYCHOPHYSICS LEAD TO A NEW UNDERSTANDING OF LOUDNESS IN NORMAL HEARING AND HEARING LOSS Mary Florentine Institute for Hearing, Speech, and Language and Dept. Speech-Language Pathology and Audiology (133 FR) Northeastern University, Boston, MA 02115 USA [email protected] Abstract P sychophysics has brought us to a better understanding of loudness growth in subjects with normal hearing and hearing loss of primarily cochlear origin. Three trends in psychophysics have led the way: (1) investigations of the relationship between temporal integration of loudness and the loudness function, (2) investigations of individual differences in loudness functions among normal listeners and listeners with different types of hearing losses, and (3) investigations of how context affects loudness. These trends were aided by technological developments that permitted large amounts of data to be modeled. T his has important theoretical implications for understanding loudness in people with normal hearing and hearing losses, as well as applied applications to impr ove hear ing-aid design. The purpose of this invited paper is to review some psychophysical developments that have led to a better understanding of loudness in subjects with normal hearing and hearing losses over the past twenty-five years at Northeastern University. As is the case in most of science, knowledge has progressed in incremental steps. Three major areas of investigation are noteworthy and are reviewed in the following sections. 1. Investigations of temporal integration of loudness and the loudness function The puzzling question of how to reconcile two sets of loudness data from normal-hearing listeners has been solved. One set of data clearly indicates that the amount of temporal integration for loudness varies nonmonotonically with level and is greatest at moderate levels (Florentine et al., 1996; Buus et al., 1997).
  • Verbal Expression of Emotional Impression of Sound: a Cross-Cultural Study

    Verbal Expression of Emotional Impression of Sound: a Cross-Cultural Study

    J. A-coust. Soc. Jpn.(E) 12, 1 (1991) Verbal expression of emotional impression of sound: A cross-cultural study Seiichiro Namba,*1 Sonoko Kuwano,*1 Takeo Hashimoto,*2 Birgitta Berglund,*3 Zheng Da Rui,*4 August Schick,*5 Holger Hoege," and Mary Florentine" *1College of General Education , Osaka University, 1-1 Machikaneyama, Toyonaka, 560 Japan *2Facultv of Enkineerink , Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, 180 Japan *3 Department of Psychology, University of Stockholm, S-106 91 Stockholm, Sweden *4 Institute of Acoustics , Academia Sinica, 5 Zhongguancun Street, Beijing, China *5lnstitut zur Erforschung von Mensch-Umwelt Beziehungen, Psychologie, Fachbereich- 5, Universitaet Oldenburg, Postfach 2503, D-2900 Oldenburg, F. R. Germany *6Communication Research Laboratory , Northeastern University, 360 Huntington Avenue 133FR, Boston, MA 02115 U.S.A. (Received 6 September 1990) Emotional expression of four levels of six kinds of sound (aircraft noise, train noise, road traffic noise, speech, music and construction noise) was examined using the method of selected description in five countries-Japan, Sweden, West Germany, China and the U.S. Subject were asked to select the adjectives which they thought appropriate for expressing the impression of each sound. Using the method of selected description, the differences and similarities between sound sources and use of adjectives were expressed more clearly than when conventional semantic differential was used. On the basis of the adjectives selected and cluster analysis, it was found for sounds used in this experi mentthat "loud" in Japan, Sweden and China has neutral connotations while "loud" in Germany and the U.S. has negative connotations. It was also suggested that "noisy" and "annoying" are not differentiated in Japan, while in the other four countries these two adjectives are differentially used.
  • Measurement of Loudness, Part I: Methods, Problems, and Pitfalls

    Measurement of Loudness, Part I: Methods, Problems, and Pitfalls

    Chapter 2 Measurement of Loudness, Part I: Methods, Problems, and Pitfalls Lawrence E. Marks and Mary Florentine 2.1 Introduction It is a matter of everyday experience that sounds vary in their perceived strength, from the barely perceptible whisper coming from across the room to the over- whelming roar of a jet engine coming from the end of an airport runway. Loudness is a salient feature of auditory experience, closely associated with measures of acoustical level (energy, power, or pressure) but not identical to any of them. It is a relatively straightforward matter for a person to note whether one sound is louder or softer than another, or to rank order a set of sounds with regard to their loudness. To measure loudness, however, in the typical sense of “measuring,” requires more than just ranking the experiences from softest to loudest. It entails quantifying how much louder (e.g., determining whether the ratio or difference in the loudness of sounds A and B is greater or smaller than the ratio or difference in loudness of sounds C and D). The quantitative measurement of loudness in this sense is important both to basic research and to its applications – important to scientists seeking to understand neural mechanisms and behavioral processes involved in hearing and to scientists, engi- neers, and architects concerned with the perception of noise in factories and other industrial settings, in the streets of urban centers, and in residences located along flight paths and near airports. As Laird et al. (1932) wrote more than three-quarters of a century ago, in an article describing one of the earliest attempts to quantify the perception of loudness, When a considerable amount of money is to be appropriated for making a work place quieter, for instance, the engineer can say that after acoustical material is added the noise level will be reduced by five or ten decibels.