The Solanaceous Genera, Brow Alma, Capsicum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Playing with Extremes Origins and Evolution of Exaggerated Female
Molecular Phylogenetics and Evolution 115 (2017) 95–105 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Playing with extremes: Origins and evolution of exaggerated female forelegs MARK in South African Rediviva bees ⁎ Belinda Kahnta,b, , Graham A. Montgomeryc, Elizabeth Murrayc, Michael Kuhlmannd,e, Anton Pauwf, Denis Michezg, Robert J. Paxtona,b, Bryan N. Danforthc a Institute of Biology/General Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany b German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany c Department of Entomology, Cornell University, 3124 Comstock Hall, Ithaca, NY 14853-2601, USA d Zoological Museum, Kiel University, Hegewischstr. 3, 24105 Kiel, Germany e Dept. of Life Sciences, Natural History Museum, Cromwell Rd., London SW7 5BD, UK f Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa g Laboratoire de Zoologie, Research institute of Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium ARTICLE INFO ABSTRACT Keywords: Despite close ecological interactions between plants and their pollinators, only some highly specialised polli- Molecular phylogenetics nators adapt to a specific host plant trait by evolving a bizarre morphology. Here we investigated the evolution Plant-pollinator interaction of extremely elongated forelegs in females of the South African bee genus Rediviva (Hymenoptera: Melittidae), in Ecological adaptation which long forelegs are hypothesised to be an adaptation for collecting oils from the extended spurs of their Greater cape floristic region Diascia host flowers. We first reconstructed the phylogeny of the genus Rediviva using seven genes and inferred Trait evolution an origin of Rediviva at around 29 MYA (95% HPD = 19.2–40.5), concurrent with the origin and radiation of the Melittidae Succulent Karoo flora. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
A Molecular Phylogeny of the Solanaceae
TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae. -
Antimicrobial Activity of Cestrum Aurantiacum L
Int.J.Curr.Microbiol.App.Sci (2015) 4(3): 830-834 ISSN: 2319-7706 Volume 4 Number 3 (2015) pp. 830-834 http://www.ijcmas.com Original Research Article Antimicrobial Activity of Cestrum aurantiacum L. B.Sivaraj, C.Vidya, S.Nandini and R.Sanil* Department of Zoology, Government Arts College, Udhagamandalam 643002, The Nilgiris, India *Corresponding author A B S T R A C T Antimicrobial studies were conducted in the Cestrum aurentiacum which is K e y w o r d s commonly called orange Cestrum, an exotic plant common in the Nilgiris. The plant material was collected fresh from the Nilgiris and the root, the leaf and the Cestrum, flower were separated. All these plant materials were dried at 37oC and extracted in Antimicrobial ethyl alcohol. Antimicrobial activity of the extract was carried out against activity, Kliebsella, Proteus, Staphylococcus, E. coli, & Pseudomonas. Among the extract Proteus, of various plant parts, the flower extract shows maximum antimicrobial activity. Pseudomonas The report that the Cestrum aurentiacum can be used as an antimicrobial agent is a new one. The active principle behind this may be alkaloid or saponin, but to prove this, more study has to be conducted. Introduction Cestrum aurantiacum L. (Capraria large acutish lober strongly reflexed. It is lanceolata), also called orange Cestrum, claimed to be a poisonous plant and all the orange Jessamine, orange flowering plant part if ingested is considered to be Jessamine and yellow Cestrum) is an poisonous. However, it attracts a lot of bees, invasive species native to North and South birds etc. The studies in the related species America belongs to Solanacea family. -
Solanum Mauritianum (Woolly Nightshade)
ERMA New Zealand Evaluation and Review Report Application for approval to import for release of any New Organisms under section 34(1)(a) of the Hazardous Substances and New Organisms Act 1996 Application for approval to import for release Gargaphia decoris (Hemiptera, Tingidae), for the biological control of Solanum mauritianum (woolly nightshade). Application NOR08003 Prepared for the Environmental Risk Management Authority Summary This application is for the import and release of Gargaphia decoris (lace bug) for use as a biological control agent for the control of Solanum mauritianum (woolly nightshade). Woolly nightshade is a rapid growing small (10m) tree that grows in agricultural, coastal and forest areas. It flowers year round, and produces high numbers of seeds that are able to survive for long periods before germinating. It forms dense stands that inhibit the growth of other species through overcrowding, shading and production of inhibitory substances. It is an unwanted organism and is listed on the National Pest Plant Accord. The woolly nightshade lace bug (lace bug) is native to South America, and was introduced to South Africa as a biological control agent for woolly nightshade in 1995. Success of the control programme in South Africa has been limited to date. The lace bug has been selected as a biological control agent because of its high fecundity, high feeding rates, gregarious behaviours and preference for the target plant. Host range testing has indicated that the lace bug has a physiological host range limited to species within the genus Solanum, and that in choice tests woolly nightshade is the preferred host by a significant margin. -
Intoxicación Por Nierembergia Rivularis En Ovinos De Uruguay
UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Intoxicación por Nierembergia rivularis en ovinos de Uruguay por ETCHEBERRY CARRASCO, Gabriel Pedro GOYEN UNARES, Juan Martin PEREIRA OIAZ, Rodrigo Agustín TESIS DE GRADO presentada como uno de los requisitos para obtener el título de Doctor en Ciencias Veterinarias Orientación Medicina Veterinaria Orientación Producción Animal MODALIDAD Ensayo Experimental MONTEVIDEO URUGUAY 109TG 2008 Intoxicación po "iflfliliiiíFV/28103 IIi¡II¡iiniliilll 1111 1111 11111 N Presidente de Mesa: Dr. Jorge Bonino c.~'~.......•... Segundo Miembro (Tutor): •••••• ftT~:;:-;;;'~'••••••••••••••••••••• Dra. Carmen García y Santos Tercer Miembro: Fecha: •.•-?~/.l~J ..~ . Autores: Gabriel Pedro Etcheberry C~rrasco Juan Martin Goyén Linares Rodrigo Agustín Pereira Díaz 28. 103 1 3 A nuestras respectivas familias que han hecho posible que hoy estemos dedicándoles este trabajo final. A todos y cada uno de los que contribuyeron en la realización de esta Tesis. A toda la gente que de cierta manera influyó durante toda nuestra carrera y vida como estudiantes de la gran Facultad de Veterinaria. 4 AGRADECIMIENTOS ~ A la Dra. Carmen Garcia y Santos, por darnos la oportunidad de realizar este trabajo, por habemos guiado, enseñado, brindado su tiempo y apoyo así como también por habernos soportado durante largas jornadas de planificación y realización de todo este trabajo. Muchísimas gracias. ~ Al Sr. William Pérez por ayudarnos de forma invalorable durante el transcurso de todo este trabajo. ~ Al Botánico Eduardo Alonso, por habemos ayudado y enseñado tanto y de manera desinteresada y por estar siempre con una disposición admirable para el trabajo. ~ Al Sr. Jesús Pinheiro por su constante e invalorable apoyo en la realización de la reproducción experimental, así como por su ayuda totalmente desinteresada en todo lo que fuera necesario. -
Newsletter No
Newsletter No. 127 June 2006 Price: $5.00 Australian Systematic Botany Society Newsletter 127 (June 2006) AUSTRALIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President John Clarkson Darren Crayn Centre for Tropical Agriculture Royal Botanic Gardens Sydney PO Box 1054 Mrs Macquaries Road Mareeba, Queensland 4880 Sydney NSW 2000 tel: (07) 4048 4745 tel: (02) 9231 8111 email: [email protected] email: [email protected] Secretary Treasurer Kirsten Cowley Anna Monro Centre for Plant Biodiversity Research Centre for Plant Biodiversity Research Australian National Herbarium Australian National Herbarium GPO Box 1600, Canberra ACT 2601 GPO Box 1600 tel: (02) 6246 5024 Canberra ACT 2601 email: [email protected] tel: (02) 6246 5472 email: [email protected] Councillor Dale Dixon Councillor Northern Territory Herbarium Marco Duretto Parks & Wildlife Commission of the NT Tasmanian Herbarium PO Box 496 Private Bag 4 Palmerston, NT 0831 Hobart, Tasmania 7001 tel.: (08) 8999 4512 tel.: (03) 6226 1806 email: [email protected] email: [email protected] Other Constitutional Bodies Public Officer Hansjörg Eichler Research Committee Kirsten Cowley Barbara Briggs Centre for Plant Biodiversity Research Rod Henderson Australian National Herbarium Betsy Jackes (Contact details above) Tom May Chris Quinn Chair: Vice President (ex officio) Affiliate Society Papua New Guinea Botanical Society ASBS Web site www.anbg.gov.au/asbs Webmaster: Murray Fagg Centre for Plant Biodiversity Research Australian National Herbarium Email: [email protected] Loose-leaf inclusions with this issue ● ASBS Conference, Cairns Publication dates of previous issue Austral.Syst.Bot.Soc.Nsltr 126 (March 2006 issue) Hardcopy: 1st May 2006; ASBS Web site: 2nd May 2006 Australian Systematic Botany Society Newsletter 127 (June 2006) DeathsPresident’s report I have always been comfortable with the notion Council time to complete some of the tasks they that any proposal to change the rules of a have taken on. -
Cestrum Parqui Global Invasive Species Database (GISD)
FULL ACCOUNT FOR: Cestrum parqui Cestrum parqui System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Solanales Solanaceae Common name palqui (English), duraznillo negro (English), willow-leafed jessamine (English), duraznillo (English), duraznillo hediondo (English), green cestrum (English), mala yerba (English), palque (English), hediondilla (English), coerana (Portuguese), coeirana (English), quina del campo (Spanish), Chilean flowering jassamine (English), green poison berry (English), Chilean cestrum (English), willow jasmine (English) Synonym Similar species Cestrum nocturnum, Cestrum elegans, Cestrum aurantiacum Summary Cestrum parqui is a shrub of the Solanaceae family that is a toxic plant and has become an invasive weed. It prefers moist habitats but is commonly found along roadsides, and neglected, disturbed, and abandoned sites. This species exhibits vigorous growth and out competes most native vegetation. With its extensive, shallow root system C. parqui is extremely difficult to eradicate, however there are various control methods available. C. parqui is toxic and is responsible for the death livestock around the world annually. It is just as dangerous to humans. view this species on IUCN Red List Global Invasive Species Database (GISD) 2021. Species profile Cestrum parqui. Pag. 1 Available from: http://www.iucngisd.org/gisd/species.php?sc=850 [Accessed 06 October 2021] FULL ACCOUNT FOR: Cestrum parqui Species Description QDNRM (2005) states that, \"Cestrum parqui is an erect, perennial shrub to 3m high, with one or more stems emerging from each crown. The young stems are whitish; older stems are darker, striated at the base and mottled above. The leaves are alternate, up to 12cm long and 2.5cm wide, and have an unpleasant odor when crushed. -
Intoxicación Experimental Con Nierembergia Linariifolia Var. Linariifolia En Cabras
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319330361 Intoxicación experimental con Nierembergia linariifolia var. linariifolia en cabras Article · August 2017 DOI: 10.14409/favecv.v16i2.6742 CITATIONS READS 0 38 4 authors, including: Luis Adrian Colque Caro Olga Gladys Martínez Instituto Nacional de Tecnología Agropecuaria Universidad Nacional de Salta - IBIGEO. Salta… 19 PUBLICATIONS 0 CITATIONS 62 PUBLICATIONS 167 CITATIONS SEE PROFILE SEE PROFILE Juan Francisco Micheloud Instituto Nacional de Tecnología Agropecuaria 76 PUBLICATIONS 22 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: PROBLEMAS SANITARIOS EN EL NOROESTE ARGENTINO View project Plantas Toxicas del Noroeste Argentino View project All content following this page was uploaded by Juan Francisco Micheloud on 29 August 2017. The user has requested enhancement of the downloaded file. Revista FAVE – Sección Ciencias Veterinarias 16 (2017) 66-69; doi: https://doi.org/10.14409/favecv.v16i2.6742 Versión impresa ISSN 1666-938X Versión digital ISSN 2362-5589 COMUNICACIÓN CORTA Intoxicación experimental con Nierembergia linariifolia var. linariifolia en cabras Torino F1, Colque-Caro LA2, Martinez O3, Micheloud JF1,3* 1 Cátedra de Práctica hospitalaria de Grandes Animales, Universidad Católica de Salta. Salta, Argentina. 2 Cátedra de Diversidad de las Plantas, Universidad Nacional de Salta. Salta. Salta, Argentina. 3 Grupo de Trabajo de Patología, Epidemiología e Investigación Diagnóstica. Área de Sanidad Animal-IIACS, Instituto Nacional de Tecnología Agropecuaria. Cerrillos, Salta Argentina. * Correspondencia: JF Micheloud. Grupo de Trabajo de Patología, Epidemiología e Investigación Diagnóstica. Área de Sanidad Animal-IIACS Salta/INTA. RN 68, km 72- Salta, Argentina. -
Karyotype Differentiation of Four Cestrum Species (Solanaceae) Based on the Physical Mapping of Repetitive DNA
Genetics and Molecular Biology, 29, 1, 97-104 (2006) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Research Article Karyotype differentiation of four Cestrum species (Solanaceae) based on the physical mapping of repetitive DNA Jéferson Nunes Fregonezi1, Thiago Fernandes1, José Marcelo Domingues Torezan2, Ana Odete S. Vieira2 and André Luís Laforga Vanzela1 1Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Geral, Londrina, PR, Brazil. 2Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Londrina, PR, Brazil. Abstract We studied the karyotypes of four Brazilian Cestrum species (C. amictum, C. intermedium, C. sendtnerianum and C. strigilatum) using conventional Feulgen staining, C-Giemsa and C-CMA3/DAPI banding, induction of cold-sensitive regions (CSRs) and fluorescent in situ hybridization (FISH) with rDNA probes. We found that the karyotypes of all four species was 2n = 2x = 16, with, except for the eighth acrocentric pair, a predominance of meta- and submetacentric chromosomes and various heterochromatin classes. Heterochromatic types previously unreported 0 0 + - in Cestrum as neutral C-CMA3 /DAPI bands, CMA3 bands not associated with NORs, and C-Giemsa/CSR/DAPI bands were found. The heterochromatic blocks varied in size, number, position and composition. The 45S rDNA probe preferentially located in the terminal and subterminal regions of some chromosomes, while 5S rDNA appeared close to the centromere of the long arm of pair 8. These results suggest that karyotype differentiation can occur mainly due to changes in repetitive DNA, with little modification in the general composition of the conventionally stained karyotype. -
Honolulu, Hawaii 96822
COOPERATNE NATIONAL PARK FEmFas SIUDIES UNIT UNIVERSI'IY OF -1 AT MANQA Departmerrt of Botany 3190 Maile Way Honolulu, Hawaii 96822 (808) 948-8218 --- --- 551-1247 IFIS) - - - - - - Cliffod W. Smith, Unit Director Professor of Botany ~echnicalReport 64 C!HECXLI:ST OF VASaTLAR mANIS OF HAWAII VOLCANOES NATIONAL PARK Paul K. Higashino, Linda W. Cuddihy, Stephen J. Anderson, and Charles P. Stone August 1988 clacmiIST OF VASCULAR PLANrs OF HAWAII VOLCANOES NATIONAL PARK The following checMist is a campilation of all previous lists of plants for Hawaii Volcanoes National Park (HAVO) since that published by Fagerlund and Mitchell (1944). Also included are observations not found in earlier lists. The current checklist contains names from Fagerlund and Mitchell (1944) , Fagerlund (1947), Stone (1959), Doty and Mueller-Dambois (1966), and Fosberg (1975), as well as listings taken fram collections in the Research Herbarium of HAVO and from studies of specific areas in the Park. The current existence in the Park of many of the listed taxa has not been confirmed (particularly ornamentals and ruderals). Plants listed by previous authors were generally accepted and included even if their location in HAVO is unknown to the present authors. Exceptions are a few native species erroneously included on previous HAVO checklists, but now known to be based on collections from elsewhere on the Island. Other omissions on the current list are plant names considered by St. John (1973) to be synonyms of other listed taxa. The most recent comprehensive vascular plant list for HAVO was done in 1966 (Ihty and Mueller-Dombois 1966). In the 22 years since then, changes in the Park boundaries as well as growth in botanical knowledge of the area have necessitated an updated checklist. -
The Spread of Non-Native Plant Species Collection of Cibodas Botanical Garden Into Mt
THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 3, NO. 2, pp. 74 – 82, May, 2013 The Spread of Non-native Plant Species Collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park Musyarofah Zuhri*, Zaenal Mutaqien Cibodas Botanical Garden, Indonesian Institute of Sciences, Cianjur, Indonesia ABSTRACT The role of botanic garden in spread of invasive alien plant species has concerned of international worldwide. The aim of this research was to study the extent to which non-native plant species from Cibodas Botanical Garden (CBG) invades into natural rainforest of Mt. Gede Pangrango National Park that adjacent CBG. A line transect was made edge-to-interior with 1600 m in distance from CBG boundary. Result showed that distance from CBG was not significant in correlation with tree and tree- let non-native density. Furthermore, presence of existing CBG’s plant collection irregularly responsible for spread of non-native species into natural forest. Three invasive species (Cinchona pubescens, Calliandra calothyrsus, and Cestrum aurantiacum) possibly were escape from CBG and it showed edge-to- interior in stems density. The patterns of other species were influenced by presence of ditch across transect (Brugmansia candida and Solanum torvum), transect location along human trail which facilitate Austroeupatorium inulifolium spread into interior forest, and another non-native species (Solanum macranthum and Toona sinensis) did not have general pattern of spread distribution. Overall, botanical gardens should minimize the risk of unintentional introduced plant by perform site-specific risk assess- ment. Keywords: invasive alien species, non-native species, distance, forest edge, Cibodas Botanical Garden INTRODUCTION rance, high competitive abilities, and alellopathy [6, 7].