Quick viewing(Text Mode)

Simulation, Integration, and Economic Analysis of Gas-To

Simulation, Integration, and Economic Analysis of Gas-To

SIMULATION, INTEGRATION, AND ECONOMIC

ANALYSIS OF GAS-TO-LIQUID PROCESSES

AThesis

by

BUPINGBAO

SubmittedtotheOfficeofGraduateStudiesof TexasA&MUniversity inpartialfulfillmentoftherequirementsforthedegreeof

MASTEROFSCIENCE

December2008

MajorSubject:ChemicalEngineering

SIMULATION, INTEGRATION, AND ECONOMIC

ANALYSIS OF GAS-TO-LIQUID PROCESSES

AThesis

by

BUPINGBAO

SubmittedtotheOfficeofGraduateStudiesof TexasA&MUniversity inpartialfulfillmentoftherequirementsforthedegreeof

MASTEROFSCIENCE

Approvedby:

ChairofCommittee, MahmoudM.ElHalwagi CommitteeMembers, NimirElbashir M.SamMannan GuyCurry HeadofDepartment, MichaelPishko

December2008

MajorSubject:ChemicalEngineering iii

ABSTRACT

Simulation,Integration,andEconomicAnalysisof

GastoLiquidProcesses.(December2008)

BupingBao,B.S.,ZhejiangUniversity

ChairofAdvisoryCommittee:Dr.MahmoudM.ElHalwagi

Gastoliquid(GTL)processinvolvesthechemicalconversionofnaturalgas(orother gassources)intosyntheticcrudethatcanbeupgradedandseparatedintodifferentuseful fractionsincludingliquidtransportationfuels.AleadingGTLtechnologyis theFischerTropschprocess.Theobjectiveofthisworkistoprovideatechnoeconomic analysisoftheGTLprocessandtoidentifyoptimizationandintegrationopportunities forcostsavingandreductionofenergyusageandenvironmentalimpact.First,abase case flowsheet is synthesized to include the key processing steps of the plant. Then, computeraidedprocesssimulationiscarriedouttodeterminethekeymassandenergy flows, performance criteria, and equipment specifications. Next, energy and mass integrationstudiesareperformedtoaddressthefollowingitems:(a)heatingandcooling utilities, (b) combined heat and power (process cogeneration), (c) management of process water, (c) optimization of tailgas allocation, and (d) recovery of catalyst supporting hydrocarbon solvents. Finally, an economic analysis is undertaken to determinetheplantcapacityneededtoachievethebreakevenpointandtoestimatethe returnoninvestmentforthebasecasestudy.Afterintegration,884million$/yrissaved fromheatintegration,246million$/yrfromheatcogeneration,and22million$/yrfrom watermanagement.Basedon128,000barrelsperday(BPD)ofproducts,atleast68,000 BPDcapacityisneededtokeeptheprocessprofitable,withthereturn oninvestment (ROI)of5.1%.Comparedto8$/1000SCFnaturalgas,5$/1000SCFpricecanincrease theROIto16.2%. iv

ACKNOWLEDGEMENTS

Iwouldliketothankallthosewhogavemethepossibilitytocompletethisthesis.First, Iwanttoexpressmysincereandutmostgratitudetomyadvisor,Dr.ElHalwagi,not onlyforhisinsightfulsuggestionsthroughoutmyresearch,butalsoforhispatienceand generous support during my graduate years. I owe a great deal to him. Without his spiritualguidanceandinvaluableadvice,Iwouldnothavegoneasdeepintotheresearch nor realized the essence of chemical process engineering. His passion for process research,enthusiasticattitudetopeople,andwisdomsetanexampleforme. I am especially obliged to my committee members for their support and advice. I appreciateDr.ElbashirverymuchforofferingmethechancetosimulatetheFTsolvent recoveringandforhiskindnesstogivemedetailedexplanationstomyquestions.Ialso want to thank Dr. Mannan and Dr. Curry for their careful and kind instruction in courseworkandresearch.Theirdedicationandprofessionalspiritmovesme. I would like to extend my gratitude to all the staff in the department, especially Towanna,whohasneverbeenbotheredbyhelpingmewithdocumentsandhasalways providedmewithtremendoushelp.Icannotthankherenough. Ifurtherhavetothanktheprocessintegrationgroupandcolleagues:Eman,Denny,Viet, Ting,Arwa,Grace,andJose,fortheirhelpandsupport.Theiraccompanimentmademy researchlifedelightfulandcheerful. Finally,Iamdeeplyindebtedtomyparents,whosupportmeunconditionallywhenIam depressed and nervous. It is their encouragement and love that leads me to insist, to striveallthewaytowardmygoal,andtosticktomyinterestsanddreams. v

NOMENCLATURE

ASF AndersonSchulzFloryEquation ASU AirSeparationUnit ATR AutothermalReactor bbl Barrels BPD BarrelsPerDay BSCFD StandardCubicFeetperDay CAPEX CapitalExpenditures CFB CirculatingFluidizedBed EIA EnergyInformationAdministration FCI FixedCapitalInvestment FT FischerTropsch gal Gallon GTL GastoLiquid HEN HeatExchangeNetwork HP HighPressure hr Hour HTFT HighTemperatureFischerTropsch IGCC IntegratedCombinedCycle kg Kilogram kWh KilowattHour lb Pound LNG LiquefiedNaturalGas LP LowPressure LPG LiquefiedGas LTFT LowTemperatureFischerTropsch MEN MassExchangeNetwork MILP MixedIntegerLinearProgram vi

MMBtu MillionBritishThermalUnit MMTPA MillionTonesPerYear POX PartialOxidation ROI ReturnOnInvestment SAS AdvancedSynthol SMDS ShellMiddleDistillateSynthesis SMR SteamReforming SPD SlurryPhaseDistillateProcess TAC TotalAnnualizedCost TCI TotalCapitalInvestment TEHL TableofExchangeableHeatLoads TID TemperatureIntervalDiagram ton Tonne WGS WaterGasShift yr Year $ Dollar

vii

TABLE OF CONTENTS

Page

ABSTRACT...... iii

ACKNOWLEDGEMENTS...... iv

NOMENCLATURE...... v

TABLEOFCONTENTS...... vii

LISTOFFIGURES...... ix

LISTOFTABLES...... xi

1 INTRODUCTION...... 1

1.1InterestandBackground...... 1 1.2BasicProcessSteps...... 3 1.3HistoricalDevelopment...... 12 1.4LiteratureReview...... 16 1.5RelevantFeatures...... 18

2 PROBLEMSTATEMENT...... 27

3 METHODOLOGYANDAPPROACH...... 29

3.1OverviewoftheDesignApproach...... 29 3.2MethodologyonFormulationforMEN&HENRetrofitting...... 32

4 CASESTUDY...... 51

4.1GTLProcessDescription...... 51 4.2DesignBasisandSpecifications...... 52

5 RESULTSANDANALYSIS...... 56

5.1ProcessSynthesisandAlternativeOperatingConditionAnalysis. 56 5.2ProcessMassandHeatBalance...... 58 5.3HeatIntegrationandTargeting...... 59 5.4HeatEngineandCogenerationTargeting...... 63 viii

Page

5.5MassIntegration...... 68 5.6TotalCostforGTLPlant...... 74

6 CONCLUSIONSANDRECOMMENDATIONS...... 81

REFERENCES...... 83

VITA...... 91 ix

LIST OF FIGURES

Page

Figure1.1 EnvironmentaladvantagesofGTLprocessescomparedtonormal diesel...... 3 Figure1.2 GTLprocessinchemistry...... 4 Figure1.3 EnergyconsumptionofeachunitforGTLprocess...... 5 Figure1.4 ASFdistributionofGTLproductswithlogscheme...... 7 Figure1.5 FTreactors...... 10 Figure1.6 SasolburgGTLprocess...... 14

Figure1.7 CO 2fromeachunit...... 17

Figure2.1 Schematicrepresentationoftheproblemstatement...... 28

Figure3.1 OverviewoftheGTLprocessanalysis...... 29 Figure3.2 Hierarchicaldesignapproach...... 30 Figure3.3 Processsynthesisproblems...... 32 Figure3.4 Processanalysisproblems...... 33 Figure3.5 Processfromspeciesperspectivewhenintegrated...... 36 Figure3.6 Identifyingpinchpointformaximumrecycling...... 38 Figure3.7 Cascadediagramformassintegration...... 39 Figure3.8 Heatexchangenetwork(HEN)synthesis...... 40 Figure3.9 Thermalpinchdiagram...... 42 Figure3.10 Temperatureintervaldiagram...... 43 Figure3.11 Heatbalancearoundatemperatureinterval...... 44 x

Page Figure3.12 CascadediagramforHENs...... 46 Figure3.13 PlacingoftheheatenginefortheHEN...... 47 Figure3.14 Overviewofthestrategiesfortheapplication...... 48 Figure3.15 Extractablepowercogenerationtargetingpinchdiagram...... 50 Figure4.1 SchematicrepresentationofthebasecaseGTLflowsheet...... 51 Figure4.2 ProductsdistributionfollowingASF...... 54 Figure4.3 Productsboilingpointcurve...... 54 Figure5.1 GTLprocessflowsheet...... 56

Figure5.2 Descriptionofthehotandcoldstreams...... 59 Figure5.3 TemperatureintervaldiagramfortheGTLprocess...... 61 Figure5.4 CascadediagramfortheGTLprocess...... 64 Figure5.5 GrandcompositecurvefortheGTLprocess...... 65 Figure5.6 IntegratingoftheheatenginewithHEN...... 66 Figure5.7 Unshiftedextractablepowerversusflowrateplot...... 67 Figure5.8 Representationofthecogenerationflowsheet...... 67 Figure5.9 AssignmentofsplitfractionsandassignmenttosinksforGTL process...... 69 Figure5.10 Solventrecoverabilityfromtheflashasafunctionof temperatureandpressure...... 71 Figure5.11 C10+ increasewithtemperatureandpressurechangeintheflash...... 71 Figure5.12 Flowsheetforsolventrecovering...... 72 Figure5.13 Breakevenpointcalculation...... 80 xi

LIST OF TABLES

Page Table1.1 ComparisonbetweenGTLandLNG...... 2

Table1.2 ExampleofapilotFTproductdistribution...... 8

Table1.3 FeaturesforeachFTreactor...... 11

Table1.4 ListofGTLcommercialdevelopment...... 14

Table1.5 ComparisonofdifferenttypesofFTreactors...... 18

Table1.6 Thefeaturesforeachcatalyst...... 22

Table1.7 DistillationrangeforLTFTsynthesiscrude(orsyncrude) fractions...... 24 Table4.1 Thefeedgasconditions...... 52

Table4.2 CompositionoftheproductsfromtheFTreactor...... 53

Table4.3 Conditionsandcostsoftheheatingandcoolingutilities...... 55

Table5.1 Syncrudefractions...... 57

Table5.2 Compositions(mass%)ofthestreamsleavingthedistillation columns...... 58 Table5.3 MassbalanceforGTLprocess...... 58

Table5.4 HeatdutyforeachunitintheGTLprocess...... 59

Table5.5 Heatingandcoolingutilitiessavings...... 60

Table5.6 TEHLforprocesshotstreams...... 61

Table5.7 TEHLforprocesscoldstreams...... 62

Table5.8 Steamheaderinformation...... 63 xii

Page

Table5.9 SourcedatafortheGTLprocess...... 69

Table5.10 SinkdataforGTLprocess...... 69

Table5.11 Comparisonbetweenadistillationcolumnandaflashunit...... 72

Table5.12 CO 2separationandrecycling...... 73

Table5.13 EstimationofCO 2separationcost...... 74

Table5.14 PriceforAugust2008...... 75

Table5.15 Costsofrawmaterials...... 75

Table5.16 Costsofheatingandcoolingutilities...... 76

Table5.17 Calculationofannualoperatingcostandsavings withprocessintegration...... 76

Table5.18 SalesofGTLproducts...... 77

Table5.19 TACcalculationforGTLplant...... 77

Table5.20 Rawmaterialcostfor4,300BPDcapacity...... 78

Table5.21 Operatingcostforthe4,300BPDcapacity...... 79

Table5.22 TACcalculationforthedifferentsizes...... 79

1

1 INTRODUCTION 1.1 Interest and Background

Naturalgasisrecognizedasoneofthecleanestandmostabundantfossilfuels.Withthe growingglobalmarketfornaturalgas,itisimportanttoidentifyeffectivemethodsfor deployingthevitalresourceworldwide.Inmanycases,thereisaneconomicincentiveto shipthegasinliquidformwhichoccupiesmuchlessvolumethanthegaseousform.In thisregardstwomainapproacheshavebeenadopted:liquefactionleadingtoliquefied natural gas (LNG) and chemical conversion to convert gas to liquid (GTL). The key conceptofaGTLprocessistochemicallyconvertthegastolongerchain that will typically be in the range of liquid transportation fuels. A leading GTL technologyistheFischerTropsch(FT)process.

It is beneficial to compare the key features of GTL and LNG. Table 1.1 lists (Patel, 2005)themainpointsofcomparisonbetweenGTLandLNG,whereBSCFDissetas billionstandardcubicfeetperday,BPDisbarrelsperday,MMTPAismilliontonesper year, bbl is barrels, CAPEX is capital expenditures. Carbon efficiency is defined as (carbon molecules in the final products)/ (carbon molecules in natural gas feed), and energy efficiency is set as (low heating value of liquid final products)/ (low heating valueofnaturalgas),asindicatedinthatreport.Theyproducequitedifferentproducts formarkets.TheproductsofGTLrangefromandjetfueltomiddledistillates. DifferentfromLNG,middledistillatesarethemostpopularproductsfromGTL,andcan beutilizedasthefeedstocktoproduceandpropylene.Consideringthecostfor theprocess,GTLprocesswillbeprospectiveifthecrudeoilobtaineddieselhasaprice higherthansomelimit.Affectedbytherecentlypricetrendofcrudeoil,naturalgas,and otherfacilities,thepotentialfortheGTLprocessshowsup(SteynbergandDry,2004). ______ ThisthesisfollowsthestyleofBioresourceTechnology.

2

Table1.1.ComparisonbetweenGTLandLNG(Patel,2005) GTL LNG 1BSCFD 1BSCFD ProductCapacity ~110,000BPD ~280,000BPD ~5MMTPA ~7MMTPA $2.4billion $2.2billion ($1.2billionplant, CAPEX (mostlyinproducing $0.8billionships, location) $0.4billion) Productvalue $2427/bbl $1619/bbl EnergyEfficiency 60% 85% CarbonEfficiency 77% 85%

There are environmental advantages for using FT based GTL technologies. These include low content of sulfur compounds and NOx, coupled with the benefit of less aromatics left reducing the toxicity and the particulate matter generated when combustion.Focusalsogoestotheabilitytodiversifyfurthertohighervaluedchemical products other than fuels, with a higher cetane number (7080) allowing a superior performanceforenginedesign(Hodge,2003;Ijeomah,etal.,2008;Cooke,2003;Jory, 2006; Kurevija, et al., 2007; Liu and You, 1999; Liu, et al., 2008; Rahmin, 2003; Weeden, et al., 2001; Wu, et al., 2007). Moreover, it tackles the problem of transportationofnaturalgas,andtheproductscouldbeblendedwithrefinerystockas superior diesel as an alternative way (Government of Qatar, 2007; Hall, 2005). The primaryenvironmentaladvantagesforGTLcomparedtorefineriesareillustratedinFig. 1.1(Inc.,2005).

3

Figure1.1.EnvironmentaladvantagesofGTLprocessescomparedtonormaldiesel (GTLemissionreductioninpercentbasedonnormaldiesel)(RentechInc.,2005)

1.2 Basic Process Steps TheGTLprocessismainlycomprisedofthreestepsshowninFig.1.2.Thesearesteam reformingofnaturalgastoproduce(COandH 2),followedbyFTreaction,and finally upgrading of the products to cracking and hydroprocessing units for the synthesisliquidhydrocarbonstoyieldproductsthatmeetthemarketspecifications.

4

Figure1.2.GTLprocessinchemistry

TherearemanydesignvariablesthatcomplicatetheFTsynthesisstep(Steynbergand Dry,2004).Oneoftheseisthecatalystsinceitwillundergochangesduringthereaction duetointeractionwithchemicalspecies.Thereactorperformanceisanotherimportant element. The gas velocity and the conversion rate can all be affected by the reactor diameterandheight,aswellashowthecoolingsystemisinstalled.Ofcourse,feedgas composition, reaction pressure and temperature should all be taken into account. The technologyforthedesigncomeswithmanyoptimizationobjectivesandconstraints.So thereactionrateandtheproductselectivityshouldbereconciledwiththeconversionrate andotherconsiderations(Vessia,2005;Vosloo,2001). To get an efficient process, many facets are generally dealt with falling into the categories of integrating and managing mass management and energy management (SteynbergandDry,2004).Oftenwastedgasfromthe main units is recycled back to conserve the recourses. The same one is applied to the huge amount of waste water producedintheprocess.Theseinvolvevariousseparationtechnologiesassociatedwith themanufactureoftheFTcatalyststechnologies.Anotherconsiderationisintheenergy balance.Inthewholeprocess,thereisalotofenergyconsumedinvariousunits.The distributionofcostinvestmentforeachunitintheprocessisillustratedinFig.1.3.Itis important to point out that improving the energy efficiency is necessary both for environmentalissuesandeconomicconsiderations.

5

Figure1.3.EnergyconsumptionofeachunitforGTLprocess(Tijmensen,etal.,2002)

1.2.1 Synthesis Gas Preparation The first step is investigated by many researchers (e.g., Cao, et al., 2008; Nouri and Kaggerud,2006;Repasky andReader,2004;Suehiro, etal.,2004;Wesenberg,2006; Wilhelm,etal.,2001).Thefeedstockreactswithsteamandoxygentoproduce, carbon monoxide and carbon dioxide. The technologies for producing syngas from natural gas involve: partial oxidation “POX”, catalytic steam methane reforming “SMR”,twostepreforming,autothermalreformingATR,andheatexchangereforming. Thechoiceofthereactorisdeterminedbybalancingbetweenthecharacteristicsofeach one.SMRdoesn’trequireoxygenandhightemperature,butitproducesmuchhigher hydrogentoCOratiothanneeded.POXcouldallowabsenceofcatalystandthuslower

CO 2 content, but it requires oxygen and high operating temperature causing soot formationthat’shardtohandle.ATR,knownasendothermicsyngasreformingreactions automatically happening by virtue of the internal heat brought in by oxidation of a portion of the feed hydrocarbons, has the most favorable H 2/CO ratio, but it needs

6

oxygentoproceedandhaslimitedcommercialexperience.Heatexchangeforreforming canusecompactequipmentandintroducesflexibilitytoapplication,butinsomecasesit mustbecoupledwithothersyngasproducingtechniques to achieve the job. Oxygen blownreforminghasreceivedmoreattentionoverairblownreforminginthelowair compressionpowerdemands,highthermalefficiency,theabilitytorecycleFTtailgas, andthesmallerdownstreamequipmentsizesmission(RepaskyandReader,2004).Also, ATRshowsupinmanycommercialprocessesduetotheabilitytohandlelargescale scenarios.ThereactionscarriedonintheATRcanbeexpressedasfollows(Yagi,etal., 2005;Suehiro,etal.,2004):

CH 4+3/2O 2→CO+2H 2OH298 =520kJ/mol (1.1)

CH 4+H 2O↔CO+3H 2H298 =206kJ/mol (1.2)

CO+H 2O↔CO 2+H 2H298 =41kJ/mol (1.3)

The H 2/CO ratio is subject to adjustment by controlling some factors including the flowrateofCO 2anduseofsteam.WhilerecyclingCO 2,andremovingH2willdecrease ratio,increasingsteamwouldyieldoppositeeffect(LuandLee,2007). Themajorrequirementforthefeediscompositionof carbon. In this regard, the feed doesnotneedtobenaturalgas,sinceitmayrangefromcoaltobiomass,etc.Theclean natureofnaturalgasmakesitfeasibletouseexpensivecatalyst,althoughthecostfrom coal to syngas will be much lower (Cornelissen and Hirs, 1998; Steynberg and Dry, 2004).Consideringtheemissionsfromthisstep,GTLwilltaketheadvantagenotonlyin thelowcontentofsulfurandNOx,butalsointhesootparticles.Inthisstep,theoxygen is consumed almost completely, and the excess unconverted gas is either burned to producemoreheatandpowerorrecycledtothereformer.Thereispotentialbenefitfrom carbon dioxide removal both in reducing the emissions and in the improving the productivity. Tam (Tam, et al., 2001; Vessia, 2005) introduces a method for high pressure carbon dioxide separation process for IGCC (integrated gasification combined cycle) plants,

7

comparingtheeconomiccostandbenefitbetweentheoldconfiguration andthisnew continueddevelopmentoftheprocess,statingthecost reducing advantage of the new inventedprocess.Intheprocessofsteamreforming,combinedsteamandcarbondioxide reforming of methane (CSCRM) is catching eyes from researchers. This presents disadvantagesincontrollingthesyngasusageratioandtheenergyconsumption.

1.2.2 Fischer-Tropsch Synthesis The FischerTropsch (FT) reaction is highly exothermic, which is a significant characteristic,thusinfluencingtheefficiencyofthewholeprocess.Thekineticprocess canbeexpressedbythefollowingequation(Suehiro,etal.,2004)

(2n+1)H 2+nCO→C nH(2n+2) +nH 2OH298 =167kJ/mol/CO (1.4) TheFTprocessproducesolefins,alcohols,acids,oxygenatesandparaffinsofdifferent length.TheproductsdistributionfollowsAndersonSchulzFlory(ASF)(Kuipers,etal., 1996)distributionaslongasthereisconstantprobabilityofchaingrowthfactor,withthe 2 n1 function being W n/n = (1α) α where W n is the mass fraction of the hydrocarbons containingncarbonmoleculesandαisthechaingrowthprobabilityofthemoleculesto continuereactingtoformlongerchains,exponentialfunctiondescribedinFig.1.4.A typicalFTproductdistributionisshowninTable1.2.

Figure1.4.ASFdistributionofGTLproductswithlogscheme

8

Table1.2.ExampleofapilotFTproductdistribution(SteynbergandDry,2004) Catalyst Cobalt Iron Iron Reactortype Slurry Fluidized Slurry Temperature °C 220 340 240

%Selectivities(Catombasis)

CH 4 5 8 4 C2H4 0.05 4 0.5 C2H6 1 3 1 C3H6 2 11 2.5 C3H8 1 2 0.5 C4H8 2 9 3 C4H10 1 1 1 C5C6 8 16 7 C7160 °C 11 20 9 160 °C350 °C 22 16 17.5 +350 °C 46 5 50 TotalH2Osolubleoxygenates 1 5 4 ASFαvalue 0.92 0.7 0.95

CommercialscaleFTreactors(e.g.,Davis,2002;Davis,2005;ElbashirandRoberts, 2005;KrishnaandvanBaten,2003;KrishnaandSie,2000;Krishna,etal.,2000a;Sie andKrishna,1999;Steynberg,etal.,1999)include multitubular fixed bed reactors, fixed fluidized bed reactors, circulating fluidized bed reactors, and fixed slurry bed reactors(seeFig.1.5).Fixedbedreactorsplacecatalystinsidethetubeswherebysurface thereactionstakeplace,whilecoolingmediumontheshellsides.Circulatingfluidized bedreactorsrecyclepartoftheproductsfromthereactionthroughoutsidetubestoassist theinternalcoolingsystem.Intheslurrybedreactorsthecatalystissuspendedinthe liquidwaxmediumitself.FTreactortechnologiesareclassifiedaslowtemperature process (LTFT) or high temperature process (HTFT). LTFT process normally ranges between200240°CwhileHTFTprocessrangesbetween300350°C(e.g.,Krishna,et al.,2000b;Krishna,etal.,2001a;SieandKrishna,1999;ElbashirandRoberts,2005). Most of HTFT processes conducted in absence of liquid phase. Two most important

9

designfactorsaretemperaturecontrolandheatremovalforlargescalecommercialFT reactors when considering product selectivity and catalyst lifetime. Features affecting choiceofreactorsalsoincludegassolidseparation,catalystsettling,scalingupaspects, mass transfer, heat transfer, recycle effect, and diffusion problems. FT synthesis dependsonthefeedstockandthedesiredproducts.Thefeaturesforeachtypeofreactor areshowninTable1.3. CatalystroleinFTSreactionisdiscussedgooddetailsinseveralreviewsstudies(e.g., Brumby,etal.,2005;Dry,2003).Besidesthecomparingcatalystefficiencyandother economicissuesrelatedtoprocessoperatingcosts,H2toCOratioisanotherimportant parametertostudy.ForcobaltcatalystsH2toCOratioissupposetobearound1.82.1, while for iron catalysts H2 to CO ratio is way below 1 as a favor for water gas shift reaction(Koo,etal.,2008a;Steynberg,etal.,1999).Ironcatalystsarebettersuitedto usewithcoalderivedsynthesisgasbecausecobaltcatalystsaremoreexpensiveanditis difficulttopreventcoalderivedcatalystpoisons. Inthecaseofdifferenttemperaturereactions,HTFTprocessisstillcompetitiveinthe higher value products it can produce. Moreover, at higher temperatures, it is also convenienttoachievehighconversions.However,theLTFTprocessisalsocapableof providinghighervalueproductssuchasbaseoilsanddetergentfeedstockswithfurther processing.Sotoachievelargequantitiesofproductsinafutureview,LTFTwillbea betterchoice(SteynbergandDry,2004).

10

Figure1.5.FTreactors(SpathandDayton,2003)

11

Table1.3.FeaturesforeachFTreactor(Dry,1981;SteynbergandDry,2004) Reactorbedtype fixed slurry Fluidized slurry Catalysttype Precipitated Fused Particlesize 2.5mm 40150m <70m <40m Feloaded(kg) 2.7 0.8 4.2 1.0 Expandedbedheight 3.8 3.8 2.0 3.8 (m) Averagebed 230 236 323 324 temperature( °C) Recycletofreshfeed 1.9 1.9 2.0 2.0 ratio Totalgaslinearvelocity 36 36 45 45 (cm/s) Freshfeedconversion (%)

CO+H 2 46 49

CO+CO 2 93 79 Selectivity(Catom basis) methane 7 5 12 12 gasoline 14 15 43 42 Hardwax(BP>500 °C) 27 31 0 0

1.2.3 Product Upgrading Separation is typically the way to tackle the products with many phases. Pressure requirementsshouldbe mettofacilitatetheatmospheric storage. First light gases are separated.Oxygenatedcompoundsareusuallyremovedfromtheliquidfortheeaseof laterprocessing.Then,throughfractionationandextractivedistillationolefinscouldbe removed from the straight liquid products. They are either oligomerised, alkylated or hydroformylatedtoproducedesiredproductsorblendedwithotherliquidproductsfor themixinguse.Theotherproductsaregenerallyconvertedintonaphthaanddieselby themeansofstepandfractionated.Thenaphthacanbefurtherprocessed to gasoline. For LTFT processes with cobalt catalyst only hydroprocessing and

12

separationareemployedsincetheolefincontentislow(SteynbergandDry,2004;Perry andGreen,1984;Maiti,etal.,2001). Usually,theproduceddieselisblendedwithspecialchemicalstoenhancestability.At the same time, other methods may be used to improve properties such as lubricity. Chemical conversion is one method involving hydroisomerisation, in which straight chain hydrocarbons are changed to branched ones forimprovingcoldflowproperties. Whilelongchainhydrocarbonshavetwowaystogo. Oneishydrocrackedtofurther providenaphtha.Alternativeoneishydroprocessedtohighqualitylubricantbaseoils. To get further cuts or fractions, vacuum or short path distillation is used to produce specialdemandedwaxorproducts(SteynbergandDry,2004). In light of the increasing demand for diesel for transportation and industrial uses, producingdieselmainlyfromGTL processisagood choice, especially this diesel is verylowinsulfurcontent.Thus,waxcouldbecrackedwithcertainselectivitytodiesel withthehelpofspecialcatalysts,andproducednaphthaisanotherresorttogetdiesel throughvariousprocesses. Theplantscalegenerallydependsonwhetherthelatterprocessesarejustified.Although theLPGwithC 3toC 4parrafinstakeslittleplaceinthewholeproducts,itshouldn’tbe lookeddownforthesignificanthigherprices. Itis recovered directly from the vapor productoftheFTreactor.Theycanbefurtherproducedtoplasticsorcrackedtoolefins. Smallfractionsofoxygenatesaredissolvedinthereactionwaterandbydistillationfrom thebulkwatertheycanbeprocessedtoavarietyofchemicalranges(SteynbergandDry, 2004).

1.3 Historical Development Theresearchanddevelopment(Freerks,2003)ofGTLapplicationhascomethrougha longhistory.ThefirstindustrialFTreactorwasconstructedasafixedbedreactorby

13

FranzFischerandHansTropschin1935tryingtoproduce liquid fuels from gas and coals.Later,thesuccessfulpilotplantexperienceatOberhausenHoltenactedasamajor milestoneinFTsynthesis.WorldWarIIbehavedasaninitiatortoscaleuptheprocess when pushing for a petroleum boom. At that time all the plants were atmospheric pressureoperatedandusedlowtemperaturetechnology.In1940s,Americancompanies begantoconstructplantsofthistechnique,mainlywithHTFT.AndHTFTsolidedbasis for the GTL plant currently in operation in Africa. In 1955 circulating fluidized bed (CFB)reactorfounditsapplicationinSasolandwentalongasanattractiveFTreactor (SteynbergandDry,2004;Chedid,etal.,2007). Shell Malaysia tested its commercial application on GTL in 1993 at Bintulu plant, converting 140 million cubic feet of gas into 14,700 barrels of liquids per day by employing Shell middle distillate synthesis (SMDS) technology. The SMDS diesel fractionisknownasultracleanfuelthatprotectstheengineinjectionsystem.Afterthat ShellintroducednewgenerationofthemultitubularFTreactorstoitsPearlGTLproject inQatarofcapacityabout140,000bbl/d(thisisthelargestenergyprojectsofararound Qatar).AprocessflowsheetforSasolburgisshowninFig.1.6.Anotherbigprojectis OryxGTLplantusinginternallycoolingslurryphasedistillateprocess(SPD),acquiring 34,000bbl/dproduction(Crook,2007;Dry,1982;GTLTaskForceDepartment,2001; Halstead,2006;Hoek,2005;SmithandKlosed,2001;SteynbergandDry,2004).

14

Figure1.6.SasolburgGTLprocess(SteynbergandDry,2004)

Here is a summary of some commercial development in GTL applications (Rahmim, 2003)listedinTable1.4.

Table1.4.ListofGTLcommercialdevelopment(Rahmim,2003)  Developednewslurryphasedistillateprocess(SSPD)employingcobalt catalystin1990s  SouthAfricanplantsusedLurgicoalgasifiersforsyngasproductionand multitubularfixedbedandfluidizedbedreactorsfortheFTstep  CombinedpartialoxidationprocessforsyngasproductionwithChevron SasolChevron productupgradingtechnology  Designed FT reactors including circulating fluid bed (Synthol), multitubular fixedbed with internal cooling (Arge), noncirculating fluidbedreactors(SAS),andSSPD  HadcontractswithQatar(SasolConocoPhillips)

15

Table1.4.Continued  Manufacturedpartialoxidationbasedsyngasformationunit

Shell  UsedShellMiddledistillatessynthesisreactors(SMDS)  ExpandedBintuluduetoexplosionofairseparationunitin1997  DevelopedAGC21technologythatemployscatalyticpartialoxidation forsyngasproduction,slurryphasebubblecolumnFTreactorforchain

ExxonMobil growth,hydroisomerizationtoproducewax  UsedCobaltandRutheniumbasedcatalysts  Operated200BPDGTLpilotplantinBatonRougesince1996  Usedcatalyticpartialoxidationforsyngasproductionstep

ConocoPhillips  DevelopedFTcatalystanddesignedhighefficiencyreactor  HadQatarjointcontractwithSasol  Employed compact steam reformer for syngas production (1/40 th of conventionalsize)

BP  UsedfixedbedFTreactorwithmoreefficientcatalyst  Employedwaxhydrocrackingforupgrading  Alaskaplantinstartup(1Q2003)  UsednitrogeninairtoremoveheatfromATR(autothermalreformer)in syngasproduction  Rejectedairseparationunit

Syntroleum  Costlessthancommercialtechnologies  Employed fixedbed or fluidizedbed FT reactor with cobaltbased catalyst  Usedhydrocrackingforupgrading  HadaccesstotheTexacogasifier

Rentech 1  CombinedpartialoxidationwithSMRforheatbalance  EmployedslurryphasereactorandironbasedcatalystforFTreaction

1RentechGTLinformationisavailableathttp://www.rentechinc.com.

16

1.4 Literature Review Lu(LuandLee,2007)hasshownthatthefeedgascompositiontotheFTsynthesis plays a major role in determining the chain length and the hydrocarbon product distribution.Severalstudiesthatutilizeddatacollectedfrompilotplant,labexperiment, and semisimulation looked at influence of syngas composition on product yields, energyefficiency,andcarbonutilization(e.g.,Suehiro,etal.,2004;ReddyandBasu,

2007). They suggested by later recycling process to adjust H2:CO ratio, the carbon efficiency for the process will increase to 50% based on the case in that paper. CO 2 functionwasalsoexaminedandonlyadilutingrolewasfoundundercurrentcommercial slurryphaseFTprocess. Another paper indicates (Iandoli and Kjelstrup, 2007) that heat and power exergy is related in some way to operation cost. It’s better to fully utilize the heat and find a balance between power consumption and work produced. Simulation work has been donebasedonslurryphaseprocessusingcobaltbasedcatalystfocusingontheefficiency of both HTFT and LTFT. Air separation unit is indicated to be a major power consumption unit and heat released from FT reactor can be a supplement to it. By controllingCO 2contentwasteexergywillbeadjusted. Issueswithreactormodelinghavebeenaddressedbysomeresearchers(e.g.,Hao,etal., 2008;Khoshnoodi,1997;Levenspiel,2002;Sehabiague,etal,2008).Usingarigorous calculation of vaporliquid equilibrium Quasisteadystate model was proposed to be suitabletothetransientsimulationconsideringtwochainpropagationmechanisms(e.g., Ahon, et al., 2005; Khoshnoodi, 1997; Wang, 2004; Zhang and Zhu, 2000). Results showedthatthehydrocarbonproductdistributioncouldbeexplainedbyincludingboth olefin readsorption and the propagation mechanisms. Process simulation analysis has beenconductedontheoncethroughconceptandrecyclemodeltoinvestigatethecarbon efficiency and the selectivity towards C 5+ . Other simulation comparisons have been testedtoevaluatedifferentpropertymethodapplicableintheprocess(e.g.,Ahon,etal.,

17

2005; Hao, et al., 2008; Soterious and Ignacio, 1983; Wang, 2004; Zhang and Zhu, 2000). AnewGTLprocessisproposed(e.g.,Jaramillo,2007;Larsson,2007;Suehiro,etal., 2004)tobecandidateinnaturalgasutilizationmainlyfocusingonreducinggreenhouse gasemissionsalthoughGTLisquitelowinotheremissiondischarges.Energysystem aspects of this process are summarized with an attempt to get an overview of the pathway,figuringouttheeconomicissueswiththeemissions. A full product life cycle assessment was conducted on GTL process by three joint companies (Five Winds International Inc., 2004). Result showed that waste released fromGTLisdramaticallyreducedcomparedwithotherdieselproductionprocesses.Fig.

1.7 shows the CO 2 distribution from each unit in the GTL process calculated from Iandoli’spaper.Byconstructingamodeltoresearcheconomyinfluence,theyconcluded GTL industry will bring significant benefits to government and society, conceiving a verypromisingindustryinmarket.

Figure1.7.CO 2fromeachunit(IandoliandKjelstrup,2007)

18

1.5 Relevant Features 1.5.1 F-T Reactor Design There are many design and scaleup problems relating with the FT reactor. These problems have several features. First, the process should consider the high pressure operating conditions. Second, the highly exothermic reaction makes the reactor need enormouscoolingsystemstoremovetheheatgeneratedintheprocess.Third,thescale up and flow rate determine the reactor diameter and heights to satisfy the production requirements.Furtherfocusisneededformassandheattransfer,residencetimeinthe reactorformsabasisforthesimulationandintegrationoftheprocess(Krishna,etal., 1996; Krishna, et al., 2001b). The comparisons of these reactors are summarized in Table1.5(Fox,1990;Jarosch,etal.,2005;Maretto,2001;Maretto,etal.,2001;Saxena, 1995;SieandKrishna,1999).

Table1.5.ComparisonbetweendifferenttypesofFTreactors Reactor Gassolidfluidized Multitubulartrickle Slurrybubblecolumn reactor bed Products Applicablegasoline Heavierproducts Heavierproducts Application Growthchance Safefor Bestforlargecapacity parameterlessthan straightforwardscale 0.7 up

Hereissomeillustration(Steynberg,etal.,1999)ofcomparison,forexample,theSAS reactorandCFBreactor.TheypointedoutthatSAS(Sasol advanced synthol) reactor makesuseoftheimportanttermofbedvoidage,whichindicatestheamountofcatalysta givenreactorvolumecanhandle,affectingtheconversionofthereactionproduct.The functionofthereactorcanbewellunderstoodbytakingalookatthereactorschemethat consistsofgasdistributortocarryupsyngasstream,thefluidizedbed forcatalystto react, cooling coils dispersed throughout the bed, and cyclones to separate entrained

19

catalystfromtheproduct.Thesystemcouldalsobemodeledbasedontheinformation relatedtoprocessdynamicsandcatalystkineticandselectivityperformance. CFB (circulated fixed bed) reactor is composed of fastfluidizedbed,settlinghopper, standpipeandslidevalve.Inthesystemcatalystflowsdownthestandpipewithreaction flowandbuildsupthepressurealongituntilreachingthevalve.Afterthecatalystgoes through the valve, it meets with high velocity synthesis gas and thus is carried up verticallyalongthebedsection.Inthehopperthegasleavesthesystemandatthesame timeseparatedfromcatalystwiththehelpofcyclones.Thenthestandpipeprotectsthe reactiongasagainstcontinuingpassingthroughthereactor,whilemaintainingnecessary pressurerecoverytoholdupthecatalystflowtoguaranteesufficientyield(Steynberg,et al.,1999). Taking the two reactors into consideration, catalyst contacting gas quantity is about twiceforSASthanthatofCFB,sincehalfofcatalystisinthestandpipezoneforCFB, onthebasisofthesameamountofcatalystpresentinbothreactors.Anothersignificant factoristheenergyefficiencywhichbenefitsmorefromthecoolingcoilsfromSAS,as well as the larger cooling area installed in SAS due to the constraints placed by the maximum velocity and pressure balance requirements in CFB. Due to these benefits, SAS has fewer demands for external heat exchangers and pumps, resulting in further economyscaleadvantages.Otherfacesneededtoconsiderarethecatalystconsumption whichisextremelydecreasedinSAS,andtheincreasedsteamproductionresultedfrom thepowermanagement,loweringthecostprettymuch.Catalystconsumptionistheterm todescribethatintheprocesstherewillbefreecarbonproducedfavoringCFB,which willconsiderablydilutesthecatalystinthereactor. The increasedproduct conversion leadstothedecreasedcostforrecyclingtailgas(Steynberg,etal.,1999). Wang(Wang,etal.,2003)constructedamodeltopredicttheheterogeneousfixedbedF Treactorstakingintoaccountthecatalystporesfilledwithliquidwax.Theyreported

20

that it outperformed other models. This one is very detailed in the selectivity of the catalyst.Toreporttheselectivity,theusageratio,recycleperformanceandcoolingeffect areinvestigated.Others(Iliuta,etal.,1999)takeaviewonthetricklebedreactor’smass transfer and fluid dynamics characteristics, on the basis of investigating flow regime database. Since the products consist of gases, liquids, and solids, taking place in three phase system,theefficientmasstransferattractssignificantattention(SieandKrishna,1999). CommercialscalereactorsaremostlydevelopedinWorldWarII,whichpresentlotsof limitations for pressure drop and capacity aspects. Later large scale reactors are developed.Multitubularfixedbedreactor,fluidizedbedandslurrybedreactorsarethe maincommercialreactors.Thefeaturesoffluidizedbedreactorsaregoodheattransfer performance free from diffusion limitations, although the fluidized bed reactors inevitably get products to agglomerate around the surface of the catalysts. The pore diffusionlimitationsareevidentinfixedbedreactorsmakingthereactionratequitelow, inadditiontotheaffectfromheattransferproblemsandpressuredropproblems.There aretwomainregimesforslurryphasereactors,thebubblyflowregimeandthechurn turbulentregime.Toachievehighproductoutput,thegasvelocityneedbeashighas0.4 m/s, which is within the churn turbulent regime. Besides the excellent heat transfer featurefortheslurryreactor,effectivemasstransferalsogivesrisetotheapplicationin homogeneousregimeofthisreactor(SieandKrishna,1999). ForeconomicreasonsFTconversionsarebettercarriedoutinlargescaleplantsand therefore scaling up is an important selection factor to consider. To guarantee the successofthescaleupofthereactors,carefulsightsshouldbegiventotheaspectsof gas hold up, interphase mass transfer and dense phase backmixing as listed by (e.g., KrishnaandSie,2000;SieandKrishna,1999;Urseanu,etal.,2003;VanduandKrishna, 2004).Aslistedpreviously,theslurrybubblecolumnreactorisanidealreactortypefor largescaleplants.

21

Mostofthedesignparametersarecorrelated(SteynbergandDry,2004).Forexample, heat transfer will be influenced by bubble rise velocity, because heat transfer is determinedbytheformationrateoftheliquidfilmonthetube,whiletheformationrate isunderbubblevelocitycontrol.Moreover,thegasholdupandaxialdispersionarealso dictatedbythevelocity,andtheycanaffectthedistributionofbubblesizesalongthe reactionsection.Onthebasisofmaximizingthereactordimensions(SteynbergandDry, 2004),itismuchlessexpensivetoaddreactorheightratherthanreactordiameter.The considerationfacetsareplacedoneconomicdesign,fabricationconstraints,andeffective transportways.Anotherapproach(SteynbergandDry,2004)underconsiderationisthe useofreactorsinseries.Thisallowswaterremoval between stages and increases the partialpressureforthesyngas.Accompanyingitisthereducedrecycleratioandreactor volume,whicharebothwelcomed.However,researchisgoingontofindoutwhether theseeffectiveadvantageswillovercomethecomplexityfromtheseriesconfiguration forthereactors. 1.5.2 F-T Catalysts TypicallytheFTcatalysttakesuseofceramictoactassupport,basemetaltobehaveas theactivemetal,andpreciousmetal(e.g.,platinum,ruthenium)topromotethecatalytic reaction(SteynbergandDry,2004).Concerningthepreparation(Steynberg,etal.,1999) of the catalyst for the FT reaction, catalyst parameters like mechanical strength and surfaceareaplay animportantrole,depending onthe mole ratio, fusion, distributing variables. Onlyfourmetals,Fe,Co,NiandRu(Table1.6)areapplicablefortheiractivityinthe reaction.ThemostactiveoneisRuthenium,butthecostistoohighforlargecapacity production.Nickelisnotpracticaleither,forthereasonthatitwillformvolatilematerial duringtheoperationconditionsofFTandgetlost.TheabovereasonleavesonlyFeand Cotobeappliedinthelargeplantproduction.CobaltismoreactivethanFe,howeverit isexpensive.Soinchoosingthecatalyst,thespecialconditionsandtargetproductsofF

22

Treactiondeterminetheapplication.IronisgoodinHTFTreactorsatcatalyzinghigh value linear , so iron can be chosen for producing this type of products (SteynbergandDry,2004;SongandSayari,1996). Koo(Koo,etal.,2008a;Koo,etal.,2008b)listedthecriteriaforchoosingFTcatalyst considering the molecular adsorption and formation effect to overcome the disadvantages listed above. They also introduce an effective and stable nano sized catalystfortheFTreaction.Italsotellsthewaytoadjustingtheusageratiootherthan controllingthefeedsteamtogasratio,bylookingintotheagglomeration,dispersionand activityofthedifferenttypesofcatalyst. Toincreasetheeconomicusecycleofthecatalyst,recyclingthecatalystisamandatory way. Brumby (Brumby, et al., 2005) discusses some of the challenges and the economical concerns when considering catalyst recycling strategy. In their paper the demand,supplyandpricesofthemostusedcatalystsfortheoilrefiningprocesswere given.Tofacilitateeconomicallyvalidrecyclingprocesstheyhavecombinedrecycling of the base metal with the recycling of the precious metal, weighing two potential methods:precipitationorpyrometallurgicalmethod.

Table1.6.Thefeaturesforeachcatalyst(SteynbergandDry,2004) Catalyst Pressure(bar) Conversion% Relativeproduction Co 60 47 109 Co 30 86 100 Co 3 99 12 Fe 30 37 43 Fe 60 37 86 Fe(5xmoreactive) 30 68 79 Fe(5xmoreactive) 60 68 158

23

ThefollowinglistsfactorsassociatedwithloweringactivityforFTcatalyst(Steynberg andDry,2004)  Foulingincatalystporeswillbringdiffusionproblemsforcatalyst.  Elementalcarbondepositingonthesurfaceofcatalyst, willcauselesscontacting areaforcatalystandreactant.

 Poisons from feed gas in the form of H 2S or sulphur compounds will cause the catalystlessactive.  Duetohydrothermalsintering,catalystwillbelessactive.  Duetooxidation,thecatalystmetalwillbecomeinactivecrystals. Inthepresenceofcobaltcatalyst,heatremovalisaseriousissuetoconsider.Iftheheat exchange is not effective enough, large amount of methane will be produced. Heat removalisalsoimportantforbothcatalystssinceimpropertemperatureswillresultin formationoflighthydrocarbonsandcokethatmayleadtodeactivationofactivesiteson catalysts(SteynbergandDry,2004). 1.5.3 F-T Products Processing The target chemicals and fuels production range dominates the specifications and configurationfortherefiningtechnologies.Soindesigningtherefiningprocesses,the chemicalrangesplitshouldbetakenintoconsideration.AnexampleisshowninTable 1.7 about the distillation range. On serving the refining options for different cuts of products, the specific properties of each desired products are considered for specific approachtobeapplied.

24

Table1.7.DistillationrangeforLTFTsynthesiscrude(orsyncrude)fractions(Steynberg andDry,2004) Distillationrange FTcondensate%vol FTWax%vol C5160 °C 44 3 160270 °C 43 4 270370 °C 13 25 370500 °C 40 >500 °C 28

BasedonthepreviousdiscussionsfordifferentFTtemperatureproductsandapproach choosing,upgradingcanbedividedintoHTFTproductsupgradingandLTFTproducts upgrading (Steynberg and Dry, 2004). For HTFT upgrading, here are some common attributesoftheproductsthatcanimpacttherefiningprocess(SteynbergandDry,2004):  Productsheadtowardlighthydrocarbons,followingASFdistribution.  Productsaremostlylinear.  Theyshowhighpercentofolefinicproducts.  Theyarelowinaromaticsandnaphthenics.  Productscontaincertainamountofshortchainoxygenates. So in exploiting the olefin abundant products, the following refining processes are required(SteynbergandDry,2004)  Oligomerization can be employed to convert light products to higher carbon materials,sinceproductsheadtowardlighthydrocarbons.  Isomerisationisalsorecommendedtoimprovetheoctanenumberandthedensity.  Hydrogenationcanbeconductedtoremoveexcessoxygenates,olefins,etc. Itwillbenotedthatthermalcrackingandalkylationarenotinvolvedintheprocess.But theywillbeincludediftheproductshavelongerchain materials. To summarize, the followingfactorsarelistedtoillustratetheexactprincipalforthechoosingapproachto

25

upgrading configuration, taking into account the plant size, capital constraints, and productpricing,etc(SteynbergandDry,2004).  Thefirstprincipleistominimizewastetoguaranteemostproducts.  Paraffinproductsshouldbeupgraded.  Targetshouldbeplacedforhighervalueproducts. TheLTFTproductsaregenerallysuitedtoprocesstomiddledistillateswithnaphthaas themaincoproduct.Dieselisthemostidealmiddledistillateproductwiththesuitable marketprices.To exploitmiddledistillateproducts, heavy FT paraffinic wax can be hydrocackedandlightolefinscanbeoligomerised.Theremainingnaphthasareusedas feedstocksforsteamcrackers.ItisobviouslyapplicabletointegrateLTFTwithHTFTin ordertoshifttheproductscarbonnumberforbetter diesel value (Steynberg and Dry, 2004). Theselectionoftheconfigurationsfromhydroprocess,cracking,isomerizemethodsare in the same fashion with the choosing in HTFT as long as the desired products are targeted.

1.5.4 Chemical Concepts Toobtainahighdegreeofflexibilityregardingthetypeofproductsandthecarbonrange, factors(e.g.,selectivity,conversion,chaingrowthfactor)canbemanipulatedwithchain growthfactorasanessentialone.Whenprobabilityofchaingrowthisdetermined,the selectivityisdetermined.Thesefactors(e.g.,chaingrowthprobability)canvaryinthe reaction temperature, the choice of catalyst, the syngas usage ratio and the partial pressures of the reactant (Adegoke, 2006; Steynberg and Dry, 2004; Van der Laan, 1999). First, temperatures should be considered. Desorption of the growing surface can terminate the chain growth reaction. It’s endothermic. So processes with higher

26

temperatureswillfavorthedesorption.Byincreasing temperatures the spectra can be shiftedtolowercarbonnumberproducts(SteynbergandDry,2004). For the same thermodynamic reason, as the temperature increases the degree of chain branchingincreases.Thehydrocarbonproductdistributionwillproduceloweralcohols andacidsandatthesametimetheratiooftoalkaneswilldecrease,sincehigher temperatureaccelerateshydrogenating(SteynbergandDry,2004). Irrespective of temperatures, catalyst surface coverage is also an important factor in determineFTselectivityandconversion.Itisstatedthatdesorptionandhydrogenation willleadtoterminationofchaingrowthreaction.OnthebasisthathigherCOratiocan lead to higher catalyst surface coverage, higher CO will increase chain growth probability. Therefore, it’s not hard to argue that increasing the H 2/CO ratio, chain terminationiseasiertohappen,andinthatmannermuchlowermolecularhydrocarbons willbeproduced(SteynbergandDry,2004). WGS(watergasshift)reactionoftenaccompaniestheFTreaction.Whencobaltactsas catalyst the extent is usually negligible, unlike the case for iron catalyst. When iron catalystispresent,WGSreactionworkstowardreversedirection,whichconsumesCO 2 andfurtherpromotestheFT reaction(SteynbergandDry,2004).Soit’spossibleto reducetheCO 2emissionsfromtheGTLprocess.

27

2 PROBLEM STATEMENT

Given a GTL process with certain units and feedstock specifications, it is desired to developatechnoeconomicanalysisoftheprocessandtoreduceitscostandenhanceits energyefficiency. Thequestionstobeaddressedfollowas:  Howcanthebasecaseprocessbesimulatedandanalyzed?  Howshouldtheprocessberetrofittedtoreducethecost?  Whatareopportunitiesforenergyandmassintegration?Whatarethetargetsfor performance?Andhowtoachievethesetargets? Toaddresstheaforementionedproblem,thefollowingtaskswillbeundertaken:  Developmentofabasecasedesignofgastoliquidprocess  TechnoeconomicevaluationoftheGTLproductionprocesses  MassandheatintegrationoftheGTLprocesses TheschematicrepresentationoftheproblemstatementisshowninFig.2.1.

28

? Heating/cooling ? Power utilities

Input data GTL GTL products flowrate,temperature, pressureandfeed Process By products composition water,etc ? Waste

Figure2.1.Schematicrepresentationoftheproblemstatement

29

3 METHODOLOGY AND APPROACH

3.1 Overview of the Design Approach AfterthoroughexaminationonthebasecaseGTLprocessandtheproblemtobesolved, descriptionofthedesignapproachandthemethodologyisillustratedhere.Thedesign approach is intended to evaluate and enhance the performance of the GTL process. Special attention is given to improve the energy usage of the process. This is an importantfactorgiventhesubstantialenergyusageinGTLproduction.Inthisregard, theactivities(Fig.3.1)areundertakentoaddresstheproblemaimedatreducingenergy consumptionandenhancingtheprocessperformance:

CombinedHeatand Power

Optimization GTL Heat ofDesign& Process Integration Operating Variables

MassIntegration

Figure3.1.OverviewoftheGTLprocessanalysis

30

Fig.3.2illustratesahierarchicalapproachtooptimizetheGTLsystem.Itconsistsofa sequenceofinterlinkedstepsthatanalyzeandintegratetheprocess.

Input data (i.e., specification, flowrate, composition, T, P) ProcessConstructionStep Try alternative applicable SimulationandAnalysisStep process parameters AlternativewayOptimizationStep

Designperformancecriteriameet? No Yes ProcessIntegrationand SynthesizingStep SizingandDesignStep EconomicAnalysisStep Goal :CosteffectiveProcess Figure3.2.Hierarchicaldesignapproach

Foreachstep,detailedapproachesareplannedheretofacilitatetheimplementation.  Formulate a typical GTL flowsheet from literature data and develop process

31

alternatives(e.g.,H 2/CO).  RunASPENPlussimulation,performdesignspecificationsandsensitivityanalysis, andoptimizeoperatingconditions(e.g,temperaturesandpressures).  Apply thermal pinch analysis and synthesize a network of heat exchangers using MILP(mixedintegerlinearprogramming)formulation.Applymassintegrationto thetailgascompositionsaswell.  Specify utilitiescostanduse ICARUS costevaluator for evaluation of fixed and operatingcosts.  Conductanalysistotheheatandpowerintegration. Hereisthedescriptionoftheschematicrepresentationofthesequentialsteps.First,data and variables are selected based on literature review to create a basecase process flowsheetwithbasicinformation.Aftersimulationofthesynthesizedflowsheetwitha computeraided simulation package (ASPEN Plus), specific characteristics of the key pieces of equipment and streams are determined. Alternative ways are developed and sensitivity analysis is carried out to explore the impact of varying the initial design specification.Theabovementionedstepsshouldberepeatediftheresultsobtainedfrom theseeffortsdonotmeetrequiredspecificationsoftheprocess.Toreduceheatingand cooling utilities, heat integration using pinch analysis is conducted to conserve the process energy. The pinch analysis determines the minimum heating and cooling utilities. In order to reach these targets, a mixed integer linear program (MILP) is developed and solved using the optimization software LINGO. Additionally, mass integration is carried out to conserve mass resources. The recycling of the catalyst supportingmediumisalsoanimportantactivityfortheeaseofthereactionintheFT reactor. Cost evaluation is carried out to provide an assessment of the different cost itemsandtheeconomicfeasibilityoftheprocess.

32

Thedataandresultsobtainedfromeachstepwillbeanalyzedandimpactbediscussed basedonthecasefromcasesimulationresults,coupledwithcomparinginformationwith datareportedinliterature.

3.2 Methodology on Formulation for MEN & HEN Retrofitting 3.2.1 Process Integration A novel and systematic technique to approach the process design problems is to use processintegrationincludingprocesssynthesisandprocessanalysis(ElHalwagi,2006). Thismethodfocusesontheholisticprocessnetworkasaunity,intermsoftheinputs and outlets concerning the process framework. As the objective to reach the desired targetthroughtheprocessperformance,itleadsthefundamentalwayforinsightsand decisionstobeplaced. Process synthesis (ElHalwagi, 2006) deals with configuration of interactive and connected process comprising of individual process elements. Therefore the structure generation and system optimization involves separating or incorporating sequential streams, calculating and analyzing the operation variables, comparing between agents andchemicals,selectingunits(reactors,flashes,heatexchangers,etc.)toattaincertain requirements.Inordertomeetthespecificoutputtarget,thesystemneedstoberevised throughprocesssynthesis,withtheprocessinputsandoutputschosen,whiletheprocess flowsheetstructureandcomponenttobedetermined.Theprocesssynthesisillustration isdescribedinFig.3.3.

Process Inputsfor Outputs system Process from &parameters Process ?

Figure3.3.Processsynthesisproblems

33

Incontrasttoprocesssynthesis(ElHalwagi,2006),processanalysisdividesthewhole process into its constituent components, behaving as a complement for combining individualprocesselementsintoaholisticwholeforindividualperformanceassessment. Hence,theprocessdetailedcharacteristics(e.g.,temperature,flowrates,compositions, and heat duty) are studied through analysis technologies as soon as the process is synthesizedoranalternativeisrevised.Thesetechniquesinvolvemathematicalmodels, empirical prediction functions, and computeraided process simulation tools. Furthermore,predictingpilotperformanceandconfirmingexperimentaldataalsotouch theborderofprocessanalysis,howeverthescaleis.Inexistingfacilitiesthisisusuallya commonresorttovalidatetheoperationandinvestigationgoingonthroughtheprocess. TheprocessanalysisstatementisputhereinFig.3.4.

Process Inputsfor Outputs system Process from &parameters Process ?

Figure3.4.Processanalysisproblems

Traditionalapproachestotheimprovementoftheprocess solving is limited by some inevitable shortcomings, blocking the way to either real case modeling or feasible operation,whicharelistedasbelow(ElHalwagi,2006)  Oversimplifiedmodelsthatwillerectinaccurateresultssupposedtocovergeneral cases while in reality not (e.g., fixed value of heat transfer coefficient, pre determinedheatexchangertypes,etc.)  Adoptedsolutionsthatareevolvedfromearlierscenarios,notreliablefordifferent plants

34

 Complicatedmathematicalformulationsthatmaynotbegloballysolvable,resulting inonlylocaloptimumschemesorrequiringmoreburdenedworkcapacity Thisobjectiveistosteponanovelprocedurethatenjoysthefollowingfeatures:  Systematically finds matches between the integrated mass streams and heat exchangers  Identifiescomplicatedoutputandinputforactualcase  Allowsrigoroussimulation Theactivitiesinvolvingprocessintegrationisframedoutandconductedasfollowsinan effectivemode(ElHalwagi,2006)  Taskidentification Task identification is the advent of the process integration step. This step locks the specifiedgoalandthetasksbasedontheconsiderationoftheinputtotheprocess.While expressingtheproductionandoutput,qualityandeconomyshouldalsobemanaged.  Targeting Targetingisthemostamazingpartoftheprocess,asitcomesupwithhowfarthebound cango,whatspecificpotentialtheparametercanreach,withoutresortingtothedetailed proceduresandtechnologies.Soemphasizedagain,itfallsontheholisticsysteminstead oftheindividualone.Inthisregard,thisisaconvenientwaytospecifyandeffective waytoimplement.  Generationofalternatives(synthesis) It is necessary to reach all configurations of interest for the process since there is a mountainofalternative choices.Oncethedesignspace is broadened, it’s effective to representalternativesandsolutionstoobtainthedefinedaim.  Selectionofalternatives(synthesis) Itisinstructivetoidentifytheoptimumsolutionsfromamongthepossibleoptions,after thesystemwiththesuitablegeneratedelementsembedstheappropriatealternatives.The

35

selection of the optimum solutions can be verified with the help of such methods as algebraic,graphical,andmathematicaloptimizationsoftware.  Analysisofselectedalternatives Processanalysistechniquesarebroughtintoplaytoelaboratetheselectedalternatives. The evaluation comes to design test, hazard executive, economic assessment, environmentaldiscussion,etc. Process integration can be generally classified into two categories in the standing of massandenergyperspectives.Oneismassintegrationandtheotherenergyintegration. Massintegrationstandsonmassandspeciestoinvestigatethecombination,separation, and coping of different streams to facilitate the overall performance of the resources fromthestreamswiththeassistanceoftheflexibilityofthestructure.Inthesamemean, energyintegrationgenerates,allocates,andexchangesenergy(heat,power&work)in betweenprocessunitstoenhancethequalityandconsumptionoftheprocess,whichwill betalkedaboutinlaterparts.

3.2.2 Strategies in Mass-Integration Consideramassexchangenetwork,oncethetargetisset,it’spossibletosegregatethe streamstosomefraction,feedthemtocertainsinks,andthenmixthesplitsofstreamsto some extent to designate an optimum way, claiming minimum fresh input, minimum wasteout,andmaximumrecycleoftherawmaterials.Soquestionscomeashowtodeal withtherecycling,howtoaltertheexistingoperationconditions.Thedesigndecisions canbeconstructedinFig.3.5.

36

Massseparating Segregated agentsinlet Sources sources Sinks Mass 1 . Sources . Exchange 2 (backto . Network process) (MEN) N

Massseparating agentsoutlet(to regenerationand recycle) Figure3.5.Processfromspeciesperspectivewhenintegrated(ElHalwagi,2006)

Based on fundamental principles of chemical analysis, this provides the global identificationandallocationoftheperformanceinagentstreatment.Massbalanceand equilibrium functions are most enjoyed in the calculations. The system could be classifiedintoprocesssinksandprocesssources.Processsinksareunitsacceptingthe species,thusstreamsleavingsinkswilltwisttosourcessupplyingspecies.Inthisregard, altering the design operations influencing flowrates and concentration will in turn manipulatethesinks. Fresh sources for the targeted species are possibly replaced by equivalent recycling streams from intermediate process outlet streams, on the condition that flowrate and compositionconstraintsaremet.Afterthatrecycleorreroutecanbeundertakentoattain thetarget.However,iftheconditionsdon’tstand,it’snecessarytointercepttheoutlet streamsuntiltheycantakethetaskofreplacement.

37

Here is the graphical illustration of the source and sink interaction problem. As we alreadyindicated,theidentificationoftheperformanceisaheadofthedetailedstrategies. First,thesinksarerankedinorderofsequentialincreasingadmissiblecompositionway. Thesameisdonetorankthesources.Placeeachsink’smaximumloadofimpurities versusitsflowrateinthecoordinate,oneafterone,constructingthesinkcompositecurve, intheascendingorder.Thesourcescompositecurveisdeveloped,withoutconsidering wherethestartingarrowtailwillbeplotted.Inall,it’sanaccumulativerepresentationof allsinksandsourcesshowingtheupperfeasibleboundinthediagramregion.Itisworth tomentionthesourcestreamcurveisthenmovedhorizontallyuntilittouchesthesinks composite curve where overlap is forbidden. From the diagram the material recycle pinchpointisdesignatedasthepointwheretheytouch,showninFig.3.6.Thereare somerulesforthedesignmethod,allowingnoflowratetopassthroughthepinchpoint, nowastetoleavefromsourcesbelowthepinchpoint,andnofreshtofeedinthesink abovethepinchpoint(ElHalwagi,2006).Thekeyreflectionobservedfromthediagram ischaracterizedfromthedistinguishedzones.Theextentbetweenthesourcecurveand sinkcurveonthehorizontalaxiscorrespondstominimumfreshusage,andinthesame manner,themaximumrecycleamountandtheminimumwastedischargeareidentified fromthediagramconsideringpurefresh.

38

Load Material recycle Composite pinch curvefor point sink Composite curvefor source

Flowrate Minimum Maximum Minimum freshfeed recycle wasteout Figure3.6.Identifyingpinchpointformaximumrecycling(ElHalwagi,2006)

Toindentifytargetsfordirectrecycleproblems,algebraicapproachisalsobeneficialto developprovidingusefulinsights.Forlargeamountsofsourcesandsinks,andscaling problemsaswell,abroadertaskshouldbehandled.It’seasytoputtheproblemintoan interval cascade diagram to illustrate. The most negative residual in the diagram indicates the minimum fresh input for the process, with the sinks and sources calculationsforeachintervalshown(Fig.3.7). Thisprocedureconstitutesthebasisforthematerialreroutingstrategy.Theadvantageis tofacilitatethedesigner’seffortandtoensuretheprocesscapabilities.Inthespiritof integration,targetingisputoverthedetailedtechniqueofeachunit.Tosummarizeit,the dataandmodelsaregeneratedfromthefundamentalinformation,beforeminimizingthe netgeneration.Next,designandvariablesareadjustedtominimizethefreshusageand recovertheloadsystem.Thenthewholematerialbalanceisformulatedregardingthe feedandwaste,toaimthetarget.

39

δ0=0

⊿W1 ⊿G1 Interval1

δ1

⊿W2 ⊿G2 Interval2

δ2

δn-1 ⊿Wn ⊿Gn Intervaln

Δn

Δi-1 ⊿Wi ⊿Gi Intervali

Δi Figure3.7.Cascadediagramformassintegration(ElHalwagi,2006)

3.2.3 Method for HENs In a typical process, heat is one of the most significant factor concerning heating, cooling,powergenerationandconsumption,sheddingthelightontheattentiontopayto the heat integration. This kicks off to the important role HEN plays. An HEN (heat exchangenetwork)isanetworktakinguseofexistingheatingutilitiesandframeworkto effectivelysaveenergy(ElHalwagi,2006).Thereforesynthesisandanalysisofheatare appliedtoaddresstheperformanceformostindustrialfacilities.Itplaysnormallywith hotstreamsandcoldstreamsandthepotentialthatcanbeextractbetweenthem.Forthe overallscheme,thefeedsintoandtheflowsfromtheunitareillustratedinFig.3.8.The supplyandtargetingtemperatureandheatcapacityareprovidedtocalculatetherequired externalutilities.

40

Cold Streams FeedIn

Heat Hot Exchange Hot Streams Network Streams FeedIn (HEN) Goes Out

Cold Streams GoesOut Figure3.8.Heatexchangenetwork(HEN)synthesis(ElHalwagi,2006)

Oneofthemajormethods(ElHalwagi,2006)isthermalpinchanalysis,drawingsupport from graphical technique. In this context, after the heat exchange from the process streamsaremaximized,theminimumusageofutilitiescanbeobtained.

Consideraprocesswithanumber N H ofhotstreamsandanumber NC ofcoldstreams, theheatareexchangedbyeachstream.Forthe u thhotstream,theheatexchangedbyit canbesetas(ElHalwagi,2006)

s t HH u = FuC p,u (Tu −Tu ) (3.1) where

s Tu issupplytemperatureforuthhotstream

t Tu istargettemperatureforuthhotstream

41

Fu C p,u isheatcapacityforuthprocesshotstream

HH u isheatexchangefromthe u thhotstream

u =1,2,…, N H Atthesametime,theheatexchangedbythe vthcoldstreamissetas

s t HCv = f vC p,v (tv − tv ) (3.2) where

s tv issupplytemperatureforvthcoldstream

t tv istargettemperatureforvthcoldstream

f vC p,v isheatcapacityforvthprocesscoldstream

HCv isheatexchangebythe v thcoldstream

v=1,2,…, NC Each stream can be arranged by heat capacity ascending order with head and tail connectingontheplotofenthalpyexchangeversustemperaturefunction(ElHalwagi, 2006).Thetemperatureforthehotstreamisplottedin T ,whilethatforthecoldstream is plotted in cold scale t , whereT = t + T min is assumed to satisfy the second law of thermodynamics. Different heat exchange can be decided by moving cold composite streamcurveverticallyinthediagram.Whenthecoldcompositecurvetouchesthehot streamcurve,itmeanstheoptimumtargetarrivesleavingnospaceoroverlapbetween thetwocurvesinhorizontallevel.Asaresult,thethermalpinchpointisgainedatthe pointsharedbythecoldandhotcompositestreamcurves.Wecanfindtheminimum heatingandcoolingutilitiesfromtheFig.3.9.Italsoshowsthemaximumintegrated heatexchangethatcanbetargetedwithoutdetailingthecomplicatedmeasurestakento fulfillthetask. Another way for the targeting of the integrated heat exchange is algebraic method, providingquantitativedata.Itcomplementsgraphicalmethodwithmoreinsightsintothe specifictransferheatexchangedbetweeneachleveloftemperatureunit.Itincludesthree

42

steps:temperatureintervaldiagram(TID),tableofexchangeableheatloads(TEHL)and thecascadediagram.

Figure3.9.Thermalpinchdiagram(ElHalwagi,2006)

In TID, numerous temperature intervals are defined with each line indicating each required temperature. The arrows show the target and supply temperature for each stream in the process. Since it is thermodynamically possible and feasible to transfer heatfromthehotstreamtothecoldstreaminthesameinterval(ElHalwagi,2006)and fromanintervaltoanyonebelowitbyhotstreams,theheatexchangenetworkissolved withthismanner.Fig.3.10givesabriefexampleoftemperatureintervaldiagram(TID). Thisbasesthewayforthenextstep,atableofexchangeableheatloads(TEHL).This comprises of series of temperature intervals mentioned above. For each interval, the exchangeableheatiscalculated(ElHalwagi,2006).

43

The exchangeable heat by the v th hot stream going through the z th interval is expressedas(ElHalwagi,2006) HH = F C (T − T ) u,z u p,u z−1 z (3.3) where

Tz−1 , Tz arethebottomandtoptemperatureforthe z thintervalfromthehotstream. The exchangeable heat by the v th cold stream going through the z th interval is expressedas HC = f C (t − t ) v,z v p,v z−1 Z (3.4) where

t z−1 , t z arethebottomandtoptemperatureforthe z thintervaltothecoldstream.

Intervel HotStream ColdStream in in min TH1 TH1 T in min out 1 TC1 + T TC1 out min out 2 HP1 TC2 + T TC2 in in min 3 T H2 TH2 T Cp1 out in 4 TH1 TC1 out min out 5 TC2 + T TC2 int in 6 HP2 TH3 TH3 Tmin Cp2 in min in 7 TC2 + T TC2 out out 8 HP3 TH2 TC3 in min in 9 TC3 + T TC3 Cp3 out out 10 TH3 TH3 Tmin ...... in TCN N T out HN Figure3.10.Temperatureintervaldiagram(ElHalwagi,2006)

44

Fig.3.11showstheheatbalancearoundthe z thinterval. Togetthetotalloadofcapacityaroundthe z thintervalitisnecessarytosumupthe heatcapacityofeachstreamthatpassesthroughthatinterval HH Total = HH z Σ u,z u passes through interval z whereu= 2,1, ...... ,NH (3.5) HCTotal = HC z Σ v,z v passes through interval z andv= 2,1 ,....,NC (3.6) The heat balance can be expressed by the following equation for each temperature interval,inordertogettheoverallheatneededtotransferwithintheprocesstocheck wherethethermalpinchpointis.

Total Total Total Total rz = HH Z + HHU z − HCZ − HCU z + rz−1 (3.7) where

rz−1 , rz aretheresidualheatstoandfromthe z thinterval(ElHalwagi,2006)

Figure3.11.Heatbalancearoundatemperatureinterval(ElHalwagi,2006)

45

A negative rz tells that the residual heat is passing up which is thermodynamically infeasible.Tobringthediagramtoafeasibleway,ahotcapacityequivalenttothemost negative residual heat is added, which is also the minimum heating utility required corresponding to the result from graphical heat integration method. And minimum cooling utility corresponds to the residual from the bottom interval, with the zero residual point matching the thermal pinch point. The detailed information for each intervalisshownfromFig.3.12. 3.2.4 Combined Heat and Power Integration Whenworkisintroduced,energyintegrationcanbemorecompletewiththeperspective ofbothgenerationforheatandwork.Usuallyittakesanenginetothepinchdiagram, eitherdischargingorinteractingtheheat.ForHEN(ElHalwagi,2006),theplacesabove thepinchpointheatisstronglyneeded,sohightemperatureheatsourceenginecouldbe placed to provide the minimum heat, generating work simultaneously. While for the regionbelowthepinchpoint,heatisinsurplusform,indicatingtheycanbedischarged tolowtemperatureheatsinkengine,generatingworkatthesametime.Thisideacanbe representedintheFig.3.13(ElHalwagi,2006).Sothisleadstothetasktoidentifythe cogeneration target for the process. For example, steamcanbeusedservingboththe powerproducingfunctionandtheprocessstream.If releasinghighpressuresteamto lowerpressure,powercanbeproduced,andthisextractableenergycanbecoupledwith theturbineaction.

46

Hot added Hot removed Hot added HotHo t removed by by by by hot streams cold streams hot streams Q h,min =r 0+|r 2| cold streams

r0

Total Total HH Total HC Total HH 1 HCHC1 1 1 Total Total Total Total HCU HHU 1 HCU 1 HHU 1 1 1 1

d1=r 1+|r 2| r1 Total Total HH Total HC Total HH 2 HC 2 2 2 2 Total Total 2 Total Total HCU HHU HCU 2 HHU 2 2 2

d2=0 (most negative) (zero heat residual point) r2 Total Total HH Total HC Total HH 3 HC 3 3 3 3 Total Total 3 Total Total HCU HHU HCU 3 HHU 3 3 3

r3 d3=r 3+|r 2|

Total Total HC Total Total HH K K HH K HC NK K Total NK HCU Total Total Total HHU K K HHU K HCU K

K r Qc,min =r K+|r 2| Figure3.12.CascadediagramforHENs(ElHalwagi,2006)

Basedonallthemeasures,proceduresareproposedtoacquiretheheattarget,whichare listedinFig.3.14.

47

HighTemperature HeatSource TH

Heat Work out Engine w

LowTemperature HeatSink TL Figure3.13.PlacingoftheheatenginefortheHEN

Inordertodeterminethetargetforprocesscogeneration,theprocedureof(ElHalwagi, 2006)willbeused.First,westartbyconsideringthecombustiblewastesintheprocess thatwillprovidesurplussteam.Thedemandheadersrepresenttheprocessneedsof steam.Foranisentropicturbineoperatingbetweentwoheaders,theenthalpychange canbedeterminedas: H isentropic = H in − H out is (3.8) where Hisentropic isthespecificisentropicenthalpychangeintheturbine, Hin isthe specificenthalpyofthesteamattheinlettemperatureandpressureoftheturbine

out and H is isthespecificisentropicenthalpyattheoutletpressureoftheturbine.The isentropicefficiencytermisdefinedasfollows: H real η is = isentropic H (3.9)

48

real where ηis istheisentropicefficiencyand H istheactualspecificenthalpy differenceacrosstheturbine.Foragivenflowrateofsteampassingthroughtheturbine,

• m ,thepowerproducedbytheturbine, W,isgivenby:

• in out W = mη is (H − H is ) (3.10)

Input Initial Simulation of Existing Process with Heat Exchangers Pinch Analysis for Minimizing Heating and Cooling Utilities Placing Heat Engine for HEN Grand Composite Analysis for Utility Selection Retrofitted HEN Figure3.14.Overviewofthestrategiesfortheapplication

49

Inordertoavoidperformingdetailedturbinecalculationsattheleveloftargeting,El Halwagi(ElHalwagi,2006)introducedtheterm“ extractable energy ”whichisbasedon theactualconditionsoftheheaders. e = η H Header Header Header (3.11) where eHeader istheextractableenergyforagivenheader, η Header isanefficiencyterm and HHeader isthespecificenthalpyatagivensetofconditionsfortheheader.The extractablepower, EHeader ,ofaheaderisdefinedas:

• • E = mη H = me Header Header Header Header (3.12) Thepowergenerationexpressioncanberewrittenasthedifferencebetweentheinletand outletextractablepower: W = E in − E out (3.13) where Ein istheextractablepowerattheheaderconditionsfeedingtheinletsteamtothe turbine and Eout is the extractable power at the header conditions receiving the outlet steam from the turbine. By developing composite representations of the surplus and deficit steam headers and using the concepts of extractable power, a cogeneration targetingpinchdiagramisdevelopedtodeterminetocogenerationpotentialandexcess steamasshowinFig.3.15.

50

Figure3.15.Extractablepowercogenerationtargetingpinchdiagram(ElHalwagi,2006)

51

4 CASE STUDY

4.1 GTL Process Description ConsiderabasecaseGTLprocesswhichusesnaturalgasasafeedstock.Theprocess involves three steps: reforming, FT reaction, and upgrading. First, natural gas is preheated and sent into an autothermal reactor to react with steam and oxygen. The temperature of the syngas from the reactor is too high to be fed into the FT reactor. Therefore,thesyngasstreamiscooleddownandwaterisseparatedout.Thesyncrude from the FT reactor is fed to distillation columns to produce different hydrocarbon fractionswhicharereferredtoasGTLproducts,andthetailgasisintroducedthrough coolingequipmentandwaterseparationequipmenttofinaltreatmentortorecycle.Fig. 4.1isaschematicrepresentationofthebasecaseflowsheet.

O2

STEAM SYNGAS

NATURAL GAS COOL1 HEAT2

SEPARATOR HEAT1 ATR WATEROUT TAILGAS

FUEL GAS COOL2

BURNER AIR SEPARATOR F-T REACTOR SYNCRUDE FOR NG WATEROUT UPGRADE

Figure4.1.SchematicrepresentationofthebasecaseGTLflowsheet

52

Thedesignspecificationsandrequirementsarediscussedinthefollowingsectionson thebasisoffeed,product,andoperatingconditionsoftheunits.

4.2 Design Basis and Specifications 4.2.1 Feed Conditions Thecasestudydealswithafeedstockofnaturalgas.Table4.1liststhecharacteristicsof thenaturalgasfedtotheprocess.

Table4.1.Thefeedgasconditions(AlSobhi,2007)

Flowrate(kg/hr) 30,000 Temperature( oC) 26 Pressure(bar) 26 Component Composition(mol%) methane 95.39 ethane 3.91 propane 0.03 CO 2 0.59 N2 0.08

4.2.2 Process Specifications Forthestreamfedtotheautothermalreactor,themolefractionofwatertomethaneisset tobe1.3.Additionally,themolarratioofoxygentomethaneisspecifiedtobe0.6inthe feedtotheautothermalreactor.BecauseofthenumerouscompoundsexistingintheFT product stream, few model compounds are selected to represent the stream while providing a proper description of the ASF distribution. Table 4.2 gives the list of representative compoundsproducedfromtheFTreactor modeling the type of slurry phasereactor.

53

Table4.2.CompositionoftheproductsfromtheFTreactor Component Mass%

CH 4 0.91 N2 11.57 C2H6 0.13 C3H8 10.13 C26 H54 27.64 C19 H40 30.59 C9H20 11.09 C9H18 7.94 C9H18 O2 0.90 Total 100.00

4.2.3 Conditions for the Main Units ThethermodynamicpropertiesofthestreamsweremodeledusingNRTLRKproperty method.TheautothermalreactorissimulatedwiththeASPENPlusREquilmodelwhich isanequilibriumbasedcalculation.Thepressure and temperature of the autothermal reactor are set at 18 bar and 1300 K, respectively. The syngas usage ratio (H 2/CO) produced from this unit is better to keep around 2 as mentioned in the introduction before.TheextentofreactionsintheFTreactorisadjustedsoastomeetthedesired ASFdistribution;thedistributionofproductsforthiscaseisillustratedinFig.4.2.The pressureismaintainedat30barandtemperatureissettobe510K.Toproperlymodel theupgradingsystem,itisimportanttohaveafeedthatrepresentsthedistillationcurve (orboilingpointfractionassay)ofthesyncrudeproducedfromtheFTreactor,andthe boilingcurveforthiscaseisshowninFig.4.3.

54

Figure4.2.ProductsdistributionfollowingASF

Figure4.3.Productsboilingpointcurve

55

4.2.4 Utilities ThecoolingandheatingutilitiesconditionsandcostsarelistedinTable4.3.

Table4.3.Conditionsandcostsoftheheatingandcoolingutilities Temperature Pressure Utility Name Type (° F) Cost (psia) in out Lowpressure Cooling 75 95 50 $4.0/MMBtu steam Highpressure Heating 510 501 350 $6.8/MMBtu steam Hightemperature Heating 1055 1015 25 $23/MMBtu heatingoil Water Cooling 80 90 1.0 $0.4/ton

Otheroperatingutilitypricesinclude:Electricityis0.064$/kWhandGasis8.3$/ MMBtu.

56

5 RESULTS AND ANALYSIS

5.1 Process Synthesis and Alternative Operating Condition Analysis The basecase GTL process flowsheet is constructed to include three main sections: autothermalreaction,FTreaction,andupgradingofsyncrude.Theunitsprecedingthe FTreactorservetoprovidethedesiredsyngascharacteristicswhiletheunitsfollowing thereactorservetotreatthetailgasandthesyncrudeproducts.Thesimulationflowsheet isshowninFig.5.1.Thesimulatedplantconverts900,000kg/hrnaturalgas(equivalent to1.16billionSCF/dayofnaturalgas)to128,000barrel/day(BPD)ofproducts.

Figure5.1.GTLprocessflowsheet

Fortheautothermalreactor,byadjustingtheoxygenfeedrate(from0.36to0.78molar ratio to methane) and the water feed (from 1.0 to 1.5 molar ratio to methane), the

57

resultingratioofH 2/COinthesyngaschangesfrom1.8to3.2.Whenthemolarratioof oxygentomethaneisabout0.5,thesyngasusageratioiscloseto2.0.Whenthisratio goesbeyond0.6,thereislittlechangeinthevalueofthesyngasusageratio(stillaround

2.0).ThissuggeststhatthereisnotmuchbenefitforincreasingtheO 2/CH 4ratiobeyond

0.6.ThesameapproachisusedfortheselectionoftheH 2O/CH 4ratio,anditcomesout thatamolarratioof1.3workswell. Fortheupgradingstep,theproductsproducedareinvaporandliquidforms.Thevapor fractionisseparatedoutastailgastobeeitherrecycledorburned. Theliquidfraction comprisesthemajorityofthesyncrudewhichismostlyhydrocarbonwithlittlewater. Thesyncrudeisfedintoadistillationcolumntoseparatethedifferentboilingfractions withthemajorpartsbeingLPG,naphthaandwax.Table5.1givesadescriptionofthe carbonrangeforthedifferentcuts.Thesimulationresultsforthecompositionsofthe distillationproductsareshowninTable5.2.

Table5.1.Syncrudefractions(Zhang,2000)

LPG C2C4

gasoline C5C12

Dieseloil C13 C18

wax C19+

58

Table5.2.Compositions(mass%)ofthestreamsleavingthedistillationcolumns STREAM HEAVY LIGHT TOP WAX FRACTION DIESEL DIESEL LPG 3.37E15 5.08E01 4.23E+01 1.99E29 NAPHTHA 7.67E06 1.46E+01 5.73E+01 2.34E14 LIGHTDIESEL 3.84E+00 8.48E+01 3.81E01 1.21E05 HEAVYDIESEL 7.37E+01 1.07E01 8.80E11 2.94E+01 WAX 2.24E+01 7.27E12 5.31E35 7.06E+01

5.2 Process Mass and Heat Balance ThemassbalanceforthewholeGTLprocessislistedinTables5.3.

Table5.3.MassbalanceforGTLprocess Components Tailgas Feedin Syncrude Waterout (kg/hr) out Water 1,195,020 0 1,143,720 586,320 896,280 0 0 0 O2 990,000 0 0 0 CO 0 0 0 122,580 H2 0 = 0 0 73,950 CO 2 0 0 0 604,500 >C 4 0 476,430 0 0 OTHER 0 0 0 73,830 Total mass 3,081,300 476,430 1,143,720 1,461,180 Total 1,158,171,540 224,640 GAL/hr

volume SCF/D 128,000 BPD

59

TheheatbalancearoundeachunitislistedinTable5.4.ItshowsthattheFTreactor producesthemajorityofheatwhichmaybeusedforpowercogeneration.Furthermore, whenthetailgasisburned,itcanprovideadditional heat. As such, special attention shouldbegiventopowercogenerationinthisGTLprocess.

Table5.4.HeatdutyforeachunitintheGTLprocess(positivenumbersindicateheatto beaddedwhilenegativenumbersrepresentheattoberemoved)

Units Enthalpy(Btu/hr) Heat1 2.9E+09 Heat2 1.2E+09 Cool1 9.9E+09 Cool2 6.5E+08

5.3 Heat Integration and Targeting ThedescriptionofhotandcoldstreamsisillustratedinFig.5.2.

Figure5.2.Descriptionofthehotandcoldstreams

60

Thenthermalpinchanalysisisconductedtodeterminethepotentialheatthatcouldbe exchangedamongthehotandcoldstreams.Thesavingsforheatingandcoolingutilities resulting from heat integration are listed in Table 5.5. As described before, the construction of the temperature interval diagram is followed in Fig. 5.3. A minimum approachtemperatureof10Kisassumed.Next,thetable of exchangeable heat loads (TEHL)fortheprocesshotandcoldstreamsisconductedinTables5.6and5.7.Later, thecascadediagramisconstructedtocheckthethermalpinchpoint,showninFig.5.4. The grand composite curve is shown in Fig. 5.5. The most negative value from the cascadediagramshowsthethermalpinchpoint,andbyaddingexternalheatingutility fromthetoptheminimumutilityrequirementwillbegot.However,fromthisdiagramit indicatesthattheconfigurationisalreadyintheoptimumandtheheatflowsdownward. Sotheminimumcoolingutilityis6.16billionBtu/hrandheatingutilityis0.

Table5.5.Heatingandcoolingutilitiessavings Heating utilities Cooling utilities (Btu/hr) (Btu/hr) before 4.2E+09 10.6E+09 integration after integration 0 6.16E+09 Savings 100% 41.8% ($/yr) 671,071,380 213,378,132

61

Figure5.3.TemperatureintervaldiagramfortheGTLprocess

Table5.6.TEHLforprocesshotstreams

CapacityofH1 Interval CapacityofH2(Btu/hr) Totalcapacity(Btu/hr) (Btu/hr) 1 2,435,320,800 0 2,435,320,800 2 324,709,440 0 324,709,440 3 182,649,060 0 182,649,060 4 4,789,464,240 0 4,789,464,240 5 50,735,850 0 50,735,850 6 131,913,210 0 131,913,210

62

Table5.6.Continued

7 436,328,310 139,697,970 576,026,280 8 1,491,633,990 477,572,130 1,969,206,120 9 101,471,700 32,487,900 133,959,600 10 0 0 0 11 0 0 0

Table5.7.TEHLforprocesscoldstreams

Interval CapacityofC1(Btu/hr) CapacityofC2(Btu/hr) Totalcapacity(Btu/hr)

1 0 0 0

2 0 0 0

3 0 0 0

4 2,651,134,320 0 2,651,134,320

5 73,018,530 0 73,018,530

6 241,522,830 0 241,522,830

7 241,522,830 272,208,060 513,730,890

8 0 930,571,740 930,571,740

9 0 0 0

10 0 0 0

11 0 0 0

63

5.4 Heat Engine and Cogeneration Targeting Fromthecascadediagramdiscussedinprevioussection,itispossibletoplaceaheat engineatthebottomofthecascadetodischargeheattoalowtemperatureheatsink which can be coupled to an LNG process refrigerantstep,forexample,to250K.In suchcases,theCarnotefficiencymaybecalculatedas: T 250 η = 1− C = 1− = .0 18 (5.1) TH 305

AssumingQ out is3,000,000,000Btu/hr,thusthepowermaybecalculatedby:

W= η *Q out /(1η )=658,536,570Btu/hr (5.2) andtheinletheat:Q in =Q out /(1η )=3,658,536,570Btu/hr. (5.3) With this integration the cooling utility is reduced from 6,161,723,610 Btu/hr to 2,503,187,010Btu/hr(Fig.5.6). Consideracoupleofsteamheaders,highpressure(HP) and low pressure (LP). From Fig.5.7,itcanbeseenthatat700Ka350psiaHPcanbegenerated,andbylettingit downinaturbinethe50psiaLPwith450Kisobtained,andatthesametimethepower is generated which can significantly reduce the cost for the LP steam and power consumption.ThesteaminformationisprovidedinTable5.8.Thepowerefficiencyis takenas0.72.Byplottingtheextractablepowerversustheflowrate,thecogeneration potentialisobtainedinFig.5.7.

Table5.8.Steamheaderinformation

Specific Netenthalpy Pressure Flowrate Extractable Header enthalpy differenceper (psia) (lb/hr) power(Btu/hr) (Btu/lb) hour(Btu/hr)

HP 350 1,205 3,734,000 4.5E+09 3.2E+09

LP 50 1,174 4,344,000 5.1E+09 3.6E+09

64

Qheating=0.00

2435320800 1 0.00

2435320800

324709440 2 0.00

2760030240 182649060 3 0

2942679300 4789464240 4 2651134320

5081009220 50735850 5 73018530

5058726540 131913210 6 241522830

4926834240 5760 26280 7 513730890

4989129630 1969206120 8 930571740

6027764010 133959600 9 0.00

6161723610 0 10 0

6161723610

0 11 0.00

6161723610

Qcooling=6161723610Btu/hr Figure5.4.CascadediagramfortheGTLprocess

65

Figure5.5.GrandcompositecurvefortheGTLprocess

AsteadystateASPENPlussimulationisconductedforthiscaseandresultshows 224,000hp(167,000KW)powerisgeneratedfromtheturbine,showninFig.5.8. Thevalueofproducedpoweriscalculatedtobe 167,000kW*0.064$/kWh*8760h/yr=93,627,000$/yr (5.4) Andthelowpressuresteamsavedfromthiscogenerationhasavalueof153MM$/yr Thismeansabout246MM$/yrcanbesavedfromthiscogenerationconduction.

66

Qheating=0.00

2435320800 1 0.00

2435320800

324709440 2 0.00

2760030240 182649060 3 0

2942679300 4789464240 4 2651134320

5081009220 50735850 5 73018530

5058726540 131913210 6 241 522830

4926834240 576026280 7 513730890

4989129630 1969206120 8 930571740

6027764010 133959600 9 0.00

6161723610 0 10 0

6161723610

0 11 0.00

Qcooling=2503187010Btu/hr 3658536570 W=658536570

HeatEngine

Qout=30 00000000 Btu/hr

Figure5.6.IntegratingoftheheatenginewithHEN

67

Figure5.7.Unshiftedextractablepowerversusflowrateplot

EXPANDE

BOIL1 LOW

B1

HIGHST2

HIGHST HIGH

2

LOWST

LOWST2

BOIL2 Figure5.8.Representationofthecogenerationflowsheet

68

5.5 Mass Integration There are several opportunities for mass integration. Here, focus is given to three problems: a. Utilizationofthetailgas b. Recoveryofcatalystsupportingmedium c. Watermanagement

d. CO 2separation 5.5.1 Utilization of Tail Gas BasedonthedesignandfeaturesoftheGTLprocess,thetailgasproblemisrepresented viaasourcesinkmappingdiagram(Fig.5.9).Thesourceissplitintofractionsthatare allocatedtoeachsink.Theobjectiveistominimizethewaste(assignedtoburner),based onthemassbalancecalculationandspeciesequilibrium. Minimizeburnerflowrate Subjectto: Source=FT+ATR+burner (5.5) Source*Source fraction = FT*FT fraction + ATR*ATR fraction + burner*burner fraction (5.6) aswellasthefollowingconstraints: Thesyngasusageratioshouldbekeptaround2.Therefore, the maximum inlet mass fractionforFTshouldnotexceed0.87.Droppingthevaluetolowermassfractionswill negativelyinfluencethereactionyield.Iftherecycleratiois1totheATR,thefractions ofcomponentswillinfluencethereactionandthusthesyngasratio.Basedonsimulation analysis,themaximumflowthatcouldberecycledtoATRis0.25ofthetailgasflow rate.SotheflowrateandfractionsforeachsinkandsourcearelistedinTables5.9and 5.10.

69

Figure5.9.AssignmentofsplitfractionsandassignmenttosinksforGTLprocess Table5.9.SourcedatafortheGTLprocess Flowrate Inletmass source (kg/hr) fraction Separator 886,470 0.138 Table5.10.SinkdataforGTLprocess Minimum Maximum Flowrate Sink inletmass inletmass (kg/hr) fraction fraction FTreactor 1,937,610 0.4 0.875 ATR 2,091,360 0 1 Burner ? ? ?

From the abovementioned discussions, the mass integration suggests 0.25 ratio of recycleforthetaigastotheATR,intendingtoreserveresourcesandalsokeepahigh yieldforthesyncrudeproduced. 5.5.2 Recovery of the Catalyst Supporting Medium A catalystsupporting medium is used in the FT reactor. A common medium is a hydrocarbonmixtureC 5C7.Insteadofpurchasingfreshmedium,itisdesiredtousea portionofahydrocarbonfraction(e.g.,C 5C7)producedintheprocess.Aparticularly

70

attractiveseparationsystemissupercriticalextractionwhichcanbeusedtorecoverC 5

C7(simulatedherewiththemodelcompoundhexane).Supercritical fluid solvents are efficientindiffusionsimilarwithgasand atthe same time good at heat transfer and solubilitylikeliquid.Soheretheprocessandoptimizationforthesolventrecoveryunit isanalyzed.Itutilizesaseparatingmodeltoseparatethesolventfromunreactedsyngas andtheproductsproducedintheFTreaction.Thesimulationiscomparedbetweena flash distillation column and a Radfrac Distillation column to analyze the cost. The productcompositionwasprovidedbyDr.Elbashir(N.Elbashir,TexasA&MUniversity, Qatar, 2008, personal communication), at different reaction temperatures over an aluminasupportedcobaltcatalyst.TheconditionsintheFTreactoraresyngas:solvent molarratio=1:1,totalpressureof45barwhiletemperaturewasvariedfrom210–250 °C.

By controlling the flash temperature and pressures, solvent recoverability and C 10+ fractions were studied as a function of the combination of temperature and pressure. ResultswereobtainedfromASPENsimulationasshowninFigs.5.10and5.11.Inthe previoussectionsithasbeenindicateddifferentconditions(temperaturesandpressures) will affect the products distribution, while the change in these conditions also has significant influence on the thermal characteristicofthesupercriticalsolvents.Soit’s necessarytostudyontheseconditions.Fromthefiguresitcanbeconcludedthatwith temperatureincrease,thesolventrecoverabilityisincreased,andbydecreasingpressure thesolventrecoverabilityisincreased.FortheC 10+ hydrocarboncomponentsfromthe flash, which are sold in majority in the market as middle distillates fractions, these components compositions increase as pressures go down, and there is no too much influencebytemperature.Therefore,itcouldbeconcludedthatwiththepressuregoing down,solventrecoverabilitycanbeguaranteedandC 10+ componentsfractionsincrease, andtheflowsheetforthisprocessisshowninFig.5.12.

71

Figure5.10.Solventrecoverabilityfromtheflashasafunctionoftemperatureand pressure

Figure5.11.C10+ increasewithtemperatureandpressurechangeintheflash

72

VAPOR H2CO 210

HEXANE

M1 220

MIX PRODUCT

240

FLASH

SELECT 250 LIQUID Figure5.12.Flowsheetforsolventrecovering

There aredifferenttypesofseparationunitsthat could be applied to separate hexane from liquid product. Leading among those are distillation and flash separation. Both options were modeled and their costs were evaluated using the software ICARUS as showninTable5.11.Ascanbeseen,flashseparationissuperiortodistillation.

Table5.11.Comparisonbetweenadistillationcolumnandaflashunit Fixed Hexane Type Cost ($) purity RadfracDistillationcolumn 39.5million 94.6% Flash2 4.3million 93.4%

73

5.5.3 Management of Water Basically, from the simulation 2.9 million kg/hr water is generated in the process, in which600,000kg/hrwatershouldbeseparatedwiththesyncrudewiththevolumeratio tobe0.7.Then,reverseosmosisisusedtocleanitup.Thecostofwatertreatmentis takenas0.2$/m 3.Therecoveredwatercanbeeitherusedinsidetheprocessforsteam, or outside the process for irrigation purposes or for use in other industrial facilities. Taking the selling price of treated water to be 0.4$/tonne, the process can save 22.6 million$/yrfromwatermanagement. 5.5.4 CO 2 Separation

InthestepofFTreaction,thereissomeCO 2producedfromthewatergasshiftreaction.

Such CO 2shouldbeseparatedfromtheproductgasandfedback to the autothermal reactortocontactthemethaneandproducesyngas,bothtoincreasetheproductivityand toreducethegreenhouseemissions.Thecostisobtained from literature (Singhal and

Singhal,2000)foronepilotplantreducingCO 2in2000.Sincethereporteddatawerefor adifferentsizeandyear,thefollowingequationsareappliedtonormalizetheresult.The recyclingofCO 2islistedinTable5.12andthecostforseparatingCO 2isindicatedin Table5.13. operating capacity A = A (5.7) operating B capacityB FCI capacity A = ( A ) 6.0 FCI capacity B B (5.8)

Table5.12.CO 2separationandrecycling

Production Compare (kg/hr) Before recycling 476,430 After CO2 recycling 570,000 Increase 19.6%

74

Table5.13.EstimationofCO 2separationcost Totalannual Totalcapital Capacity operatingcost investment($) (Mt/yr) ($/yr) Costfromliterature 467,200,000 30,980,000 4.6 (Singhal,2000) Costforthecasestudy 79,428,000 1,616,000 0.24

5.6 Total Cost for GTL Plant Therearewidevariationsintheestimatesofthecapital investment of a GTL plant 2. Some estimates are reported to be $20,000 – 30,000 per daily barrel produced (http://www.chemlink.com.au/gtl.htm).BasedonreporteddataofaShellGTLplantin QatarcalledthePearlPlantwitha140,000bbl/daycapacity,therearedifferentreported capital costs ranging from $5 billion (http://www.siteselection.com/ssinsider/snapshot /sf040202.htm) to $1218 billion (http://uk.reuters.com/article/UK_SMALLCAPSRPT /idUKL3064135320071030).Thetotalcapitalinvestmentofa140,000bbl/dayplantis$ 12to18billion.Thesenumberstranslateto$36,000(inthecaseof$5billion)to$86,000 (in the case of $12 billion) to $129,000 (in the case of $18 billion) per daily barrel produced. Assuming that the fixed capital investment is 85% of the total capital investmentandbychoosingthe$12billionfigure,thefixedcostofthe140,000bbl/day plantis$10.2billion.Inthiscasestudy,theproductrateis128,000bbl/day.Thefixed costiscalculatedtobe9.67billiondollars,andthetotalcapitalinvestmentisthus11.3 billiondollars. ThefixedandoperatingcapitalcostisevaluatedbyAspenIcarus.Thefixedcostisnot so accurate since the plant size is beyond the normal capacity Aspen can simulate. Therefore the fixed cost is calculated from literature reported. The result for the GTL 2Qatarplantpriceisavailableathttp://www.chemlink.com.au/gtl.htm, http://www.siteselection.com/ssinsider/snapshot/sf040202.htm, http://uk.reuters.com/article/UK_SMALLCAPSRPT/idUKL3064135320071030.

75

plantisshowninthefollowing.Beforecalculating,thepricefortheproductandutilities are listed in Table 5.14 for August 2008 to compare. EIA is Energy Information Administration,ICISprovidesinformationwithchemicalprices. Table5.14. PriceforAugust2008(EIA,ICIS,2008 3) Diesel 3.29$/gal Naphtha 2.5$/gal Heatingoil 3.5$/gal Naturalgas 8.3$/MMBtu Electricity 0.064$/kWh Workingcapitalinvestmentissetas15%oftotalcapitalinvestment.Beforecalculating theoperatingcost,therawmaterialcostandutilitycostarefirstlistedasinTable5.15 andTable5.16.Thenthecomparisonofannualoperatingcostforintegrationeffectis illustrated in Table 5.17. GTL products sales are listed in Table 5.18. The total annualizedcostisinTable5.19indicatesthattheplantmakesmoney. LPGindicates liquefied petroleum gas, FCI indicates fixed capital investment, TCI indicates total capitalinvestment,MMBtustandsformillionBritishthermalunit. Table5.15.Costsofrawmaterials Raw Flowrate Cost Annual Cost ($/yr) Materials (kg/hr) NaturalGas 0.4$/kg 900,000 3,153,600,000 Water 0.4$/ton 1,195,020 4,187,000 Oxygen 0.138$/kg 990,000 1,196,791,000 Air 23,000 Total 4,354,601,000 3EIA(EnergyInformationAdministration)informationisavailableathttp://www.eia.doe.govaccessedon August2008.ICISpricingisavailableathttp://www.icis.comaccessedinAugust2008.

76

Table5.16.Costsofheatingandcoolingutilities Heat Utility Annual utility cost Utility Utility flowrate exchanger cost ($/yr) Cooling Cool1 11,091,787lb/hr 0.4$/ton 479,165,000 Water Cooling Cool2 724,741lb/hr 0.4$/ton 31,308,000 Water Heat1 Heatingoil 721gal/hr 3.5$/gal 605,640,000 High 6.8$/ Heat2 pressure 30,190lb/hr 65,431,000 MMBtu steam Total 1,181,545,000 Table5.17.Calculationofannualoperatingcostandsavingswithprocessintegration

Items Cost ($/yr) RawMaterialsCost 4,354,601,000 OperatingLaborCost 600,000 MaintenanceCost 135,000 Supervision 280,000 Electricity 1,380,000 HeatingandCoolingUtilities 1,181,545,000 Catalyst 5,185,000 Total before integration 5,543,727,000 Savings from process integration heatintegration 884,449,000 waterrecovering 22,629,000 Powercogeneration 93,627,000 LPsaved 153,000,000 Total savings from process integration 1,153,705,000

Total operating cost with process 4,390,022,000 integration Areductioninthecostofnaturalgasoranincreaseintheunitsellingpriceoftheliquid productswillrendertheprocessprofitable.Itisworthnotingthatifthecompanyowns

77

its own gas wells or if special discounts in the cost of natural gas are given to the companybythehostcountry,theGTLprocesscanindeedbeprofitable.

Table5.18.SalesofGTLproducts Annual sales Products Production Price ($/yr) Diesel 150,930gal/hr 3.29$/gal 3,972,477,000 LPG 6,840gal/hr 1.62$/gal 88,646,000 Naphtha 67,470gal/hr 2.51$/gal 1,354,797,000 Total 5,415,921,000

Table5.19.TACcalculationforGTLplant Items value capacity 128,365BPD usefullifeperiod 20years FCI($) 9.67billion TCI($) 11.3billion totaloperatingcostbeforeintegration($/yr) 5,543,727,000 totaloperatingcostafterintegration($/yr) 4,390,022,000 totalproductionincome($/yr) 5,415,921,000 salvagevalue($) 0.967billion Depreciation/annualizedfixedcost($/yr) 0.43billion totalannualizedcost(TAC)($/yr) 4.82billion

a. ROIcalculating profit The ROI = ×100% =(5.44.82)/11.3=5.1% (5.9) TCI Thisreturnofinvestment(ROI)issolowthatitseemsnotsoprofitable.However,in gasproducingcountrieslikeQatarthisisattractivebecausetheactualcostofnaturalgas willbemuchlessthanthemarketsellingprice.Forinstance,ifthecostofnaturalgasis setat5$/thousandSCF,thecostofrawmaterialsisreducedto3.1billion$/yr.This

78

meansthattheTACisreducedto3.576billion$/yr, while other fixedand operating costsremainthesame.Inthiscase,theROIiscalculatedtobe: profit ROI = ×100% =(5.43.576)/11.3=16.2% (5.10) TCI b. Breakevenpointcalculating Theprocessprofitabilityisstronglydependentontheplantcapacity.Toillustratethis point, let us start with a relatively small GTL plant producing 4,300 BPD. The raw materialcostisinTable5.20andoperatingcostisinTable5.21.Theresultsshownin Table5.22indicatethatsuchaprocesswillleadtoafinancialloss.Inordertofindout whattheproductionrateleadingtoprofit,abreakevenpointanalysisiscarriedoutas shownbyFig.5.13. Table5.20.Rawmaterialcostfor4,300BPDcapacity Raw Flowrate Cost Annual Cost ($/yr) Materials (kg/hr) NaturalGas 0.4$/kg 30000 105,120,000 Water 0.4$/ton 39834 127,000 Oxygen 0.138$/kg 33000 36,432,000 Air 23,000 Total 141,702,000

79

Table5.21.Operatingcostforthe4,300BPDcapacity

Items Cost ($/yr) RawMaterialsCost 141,702,000 OperatingLaborCost 320,000 MaintenanceCost 116,000 Supervision 280,000 Electricity 42,000 HeatingandCoolingUtilities 39,384,000 Catalyst 172,000

Total before integration 182,018,000

Savings from process integration

heatintegration 29,481,000

waterrecovering 754,000 Powercogeneration 619,000 LPsaved 184,000 Total savings from process integration 31,040,000

Total operating cost with process 150,977,000 integration

Table5.22.TACcalculationforthedifferentsizes

Items value value capacity 128,000BPD 4,300BPD usefullifeperiod 20years 20years FCI($) 9.67billion 1.26billion TCI($) 11.4billion 1.48billion totaloperatingcostbeforeintegration($/yr) 5,543,727,000 182,000,000 totaloperatingcostafterintegration($/yr) 4,390,022,000 150,977,000 totalproductionincome($/yr) 5,415,921,000 180,500,000 salvagevalue($) 0.935billion 0.13billion Depreciation/annualizedfixedcost($/yr) 0.43billion 0.0567billion totalannualizedcost(TAC)($/yr) 4.82billion 0.2billion

80

Figure5.13.Breakevenpointcalculation From Fig. 5.13, it can be noticed that at production rates of 68,000 BPD, the total productcostlinecrosseswiththetotalincomeline,whichmeansatthatpointthecost breakseven,whileatproductionratesbiggerthanthispoint,thetotalincomelinegoes overthetotalproductcostline,indicatingtheplantbeginstomakeprofit.Thehigherthe capacitythemoreprofitabletheplantcanbe.

81

6 CONCLUSIONS AND RECOMMENDATIONS

ThisworkhasprovidedaframeworkforanalyzingandimprovingtheperformanceofF TGTLplants.Thefollowingtaskshavebeenperformed: • AtypicalGTLprocesshasbeensynthesized.

• The design and operating conditions for the process has been optimized by controlling the feed ratio, the various heating and cooling utilities, and the masses.

• A thermal pinch analysis has been applied to get the optimum heating and coolingutilities.

• Integration of heat engine with HEN has been examined and cogeneration has been undertaken to generate power simultaneously with the production of differentpressureheadersteamrequirement.

• Mass integration has been conducted to recycle the tail gases, to recover the catalystsupportingmedium,andtomanageprocesswater.

• ASPENPlusandICARUShavebeenusedinevaluating the performance and costoftheprocess.

AcasestudyhasbeendevelopedtoassessaGTLplantusing1.16billionSCF/dayof naturalgastoproduce128,000barrel/dayofproducts. • Simulation,optimization,andintegrationactivitieshavebeenapplied.Someof thekeyresultsinclude:

Heatintegrationleadstoareductionincostof884,449,000$/yr

Cogenerationgivesreductionincostof246,000,000$/yr

Watermanagementprovidescostsavingsof22,629,000$/yr

82

Depending on the price of natural gas, the return on investment ranges from5.1%to16.2%forthecostofnaturalgasbeing$8and5/1000SCF, respectively.Withreductioninthecostofnaturalgas(becauseofmarket conditions, production conditions, or special contractual terms) or the increase in the selling prices of the liquid fuels, the process can make higherprofit.Abreakevenpointanalysisindicated that under current marketconditions,theproductioncapacityshouldbeatleast68,000BPD tomakeprofit.Largerplantsizesprovidemoreprofit.

Thefollowingrecommendationsaresuggestedforfuturework: • Strategiestoreducegreenhousegas(GHG)emissionsfromtheGTLplant

• Scaleupstrategiesandanalysisshouldbecarriedout

• Combination of an air separation unit (ASU) with the process will give more detailedenergyconfigurationsincetheASUconsumesalargepartofenergyin thisprocess

• Flexibilityanalysistocheckthechangesintheprocessdesignandoperationwith changingproductionratesandqualityofthefeedstocks

• IntegrationofGTLplantswithLNGplants

83

REFERENCES

Adegoke,A.A.,2006.UtilizingtheHeatContentofGastoLiquidsbyProductsStreams for Commercial Power Generation. M.S. thesis, Petroleum Engineering, Texas A&M University,CollegeStation,TX. AlSobhi,S.,2007.SimulationandIntegrationofLNGProcesses.M.S.thesis,Chemical Engineering,TexasA&MUniversity,CollegeStation,TX. Ahon,V.R.,Costa,E.F.,Monteagudo,J.E.P.,Fontes,C.E.,Biscaia,E.C.,etal.,2005.A ComprehensiveMathematicalModelfortheFischerTropschSynthesisinWellMixed SlurryReactors.ChemicalEngineeringScience.60,677694. Brumby, A., Verhelst, M., Cheret, D., 2005. Recycling GTL Catalysts A New Challenge.Today.106,166169. Cao,Y.,Gao,Z.,Jin,J.,Zhou,H.,Cohron,M.,etal.,2008.SynthesisGasProduction withanAdjustableH 2/CORatiothroughtheCoalGasificationProcess:EffectsofCoal RanksandMethaneAddition.EnergyandFuels.22,17201730. Chedid,R.,Kobrosly,M.,Ghajar,R.,2007.ThePotentialofGastoLiquidTechnology intheEnergyMarket:TheCaseofQatar.EnergyPolicy.35,47994811. Cooke,J.,2003.PlantDesignandEngineering.FundamentalsofGastoLiquids,2003, ed.SoutarE.andDeavilleJ.,PetroleumEconomist,London,UnitedKingdom,2021. Availableathttp://www.fwc.com/publications/tech_papers/files/peGTLp2021.pdf. Cornelissen, R. L., Hirs, G.G., 1998. Exergy Analysis of Cryogenic Air Separation. EnergyConversionandManagement.39,18211826. Crook,J.,2007.PearlTheWorld'sLargestGTLPlant.ChemicalEngineer.May,2931. Davis,B.H.,2002.OverviewofReactorsforLiquidPhaseFischerTropschSynthesis. CatalysisToday.71,249300. Davis,B.H.,2005.FischerTropschSynthesis:OverviewofReactorDevelopmentand FuturePotentialities.TopicsinCatalysis.32,143168. Dry, M.E., 1981. The FischerTropsch Synthesis. Catalysis Science and Technology, vol.1,1981,ed.Anderson,J.R.andBoudart,M.,SpringerVerlag,NewYork,159255.

84

Dry,M.E.,1982.Sasol'sRoutetoFuels.ChemicalEngineeringTechnology.12,744 750. Dry,M.E.,2003.EncyclopediaofCatalysis.JohnWileyandSons,NewYork. Elbashir,N.O.,Roberts,C.B.,2005.EnhancedIncorporationofαOlefinsintheFischer TropschSynthesisChainGrowthProcessoveranAluminaSupportedCobaltCatalystin NearCritical and Supercritical Hexane Media. Industrial Engineering Chemistry Research.44,505521. ElHalwagi,M.M.,2006.ProcessIntegration.ProcessSystemsEngineeringSeries,Vol 7,AcademicPress,SanDiego,CA. FiveWindsInternationalInc.,2004.GastoLiquidsLifeCycleAssessmentSynthesis. Report, web information available at http://www.shell.com/static/shellgasandpower en/downloads/products_and_services/what_is_gtl/benefits_of_gtl/gtl_lca_synthesis_repo rt.pdf. Fox,J.M.,1990.FischerTropschReactorSelection.CatalysisLetters.7,281292. Freerks, R., 2003. Early Efforts to Upgrade FischerTropsch Reaction Products into Fuels,Lubricants,andUsefulMaterials.AIChESpringNationalMeeting,NewOrleans, LA. Government of Qatar, 2007. Turning Qatar into a Competitive Knowledge Based Economy.Qatar KnowledgeEconomyProject, onlineavailable at http://siteresources. worldbank.org/KFDLP/Resources/QatarKnowledgeEconomyAssessment.pdf GTLTaskForceDepartment,2001.GastoLiquidsIndustryDevelopment.Department ofIndustry,ScienceandResearches,CanberraACT,2001.Adiscussionpaperavailable http://www.ret.gov.au/resources/fuels/alternative_transport_fuels/Documents/GTL_Disc ussionPaper.pdf Hall, K.R., 2005. A New Gas to Liquids or Gas to Ethylene Technology. Catalysis Today.106,243246. Halstead,K.,2006.OryxGTL:ACaseStudy.ChemicalEngineer.July,3436. Hao,X.,Djatmiko,M.E.,Xu,Y.,Wang,Y.,Chang,J.,2008.SimulationAnalysisofa GastoLiquidProcessUsingAspenPlus.ChemicalEngineeringTechnology.31,188 196. Hodge,C.,2003.Comment:MoreEvidenceMountsforBanning,notExpanding,Useof EthanolinUSGasoline.OilandGasJournal.101,1820.

85

Hoek, A., 2005. The Shell GTL Process: Towards a World Scale Project in Qatar. ChemieIngenieurTechnik.8,77. Iandoli,C.L.,Kjelstrup,S.,2007.Exergy Analysis of a GTL Process Based on Low TemperatureSlurryFTReactorTechnologywithaCobaltCatalyst.EnergyandFuels. 21,23172324. Ijeomah,C.E.,Dandekar,A.Y.,Chukwu,G.A.,Khataniar,S.,Patil,S.L.,etal.,2008. Measurement of Wax Appearance Temperature under Simulated Pipeline Conditions. EnergyandFuels.22,24372442. Iliuta, I., OrtizArroyo, A., Larachi, F.L.F., Grandjean, B.P.A., Wild, G., 1999. Hydrodynamics and Mass Transfer in TrickleBed Reactors: An Overview. Chemical EngineeringScience.54,53295337. Jaramillo,P.,2007.ALifeCycleComparisonofCoalandNaturalGasforElectricity Generation and the Production of Transportation Fuels. PhD dissertation, Civil and EnvironmentalEngineering,CarnegieMellonUniversity,Pittsburgh,PA. Jarosch, K.T., Tonkovich, A.L.Y., Perry, S.T., Kuhlmann, D., Yong, W., 2005. MicrochannelReactorsforIntensifyingGastoLiquidTechnology.AmericanChemical Society.914,258272. Jory, R., 2006. GTL Fues: Driving the Growth of the GTL Market. 23 th World Gas Conference,Amsterdam. Khoshnoodi,M.,1997.SimulationofPartialOxidationofNaturalGastoSynthesisGas UsingASPENPLUS.FuelProcessingTechnology.50,275289. Koo,K.Y.,Roh,H.,Yu,T.S.,Seo,D.J.,Yoon,W.L.,etal.,2008a.CokeStudyonMgO PromotedNi/Al 2O3CatalystinCombinedH 2OandCO 2ReformingofMethaneforGas toLiquid(GTL)Process.AppliedCatalysisA:General.340,183190. Koo,K.Y.,Roh,H.,Yu,T.S.,Seo,D.J.,Yoon,W.L.,etal.,2008b.AHighlyEffective andStableNanoSizedNi/MgOAl 2O3CatalystforGTLProcess.InternationalJournal ofHydrogenEnergy.33,20362043. Krishna, R., Ellenberger, J., Sie, S.T., 1996. Reactor Development for Conversion of NaturalGastoLiquidFuels:AScaleupStrategyRelyingonHydrodynamicAnalogies. ChemicalEngineeringScience.51,20412050. Krishna, R., Sie, S.T., 2000. Design and Scaleup of the FischerTropsch Bubble ColumnSlurryReactor.FuelProcessingTechnology.64,73105.

86

Krishna,R.,vanBaten,J.M.,Urseanu,M.I.,2000a.ThreePhaseEulerianSimulations of Bubble Column Reactors Operating in the Churn Turbulent Regime: A Scale up Strategy.ChemicalEngineeringScience.55,32753286. Krishna, R., Urseanu, M. I., Dreher, A.J., 2000b. Gas Hold up in Bubble Columns: Influence of Alcohol Addition versus Operation at Elevated Pressures. Chemical EngineeringScience.39,371378. Krishna,R.,vanBaten,J.M.,Urseanu,M.I.,Ellenberger,J.,2001a.AScaleupStrategy forBubbleColumnSlurryReactors.CatalysisToday.66,199207. Krishna,R.,vanBaten,J.M.,Urseanu,M.I.,Ellenberger,J.,2001b.DesignandScaleup of a Bubble Column Slurry Reactor for FischerTropsch Synthesis. Chemical EngineeringScience.56,537545. Krishna,R.,vanBaten,J.M.,2003.MassTransferinBubbleColumns.CatalysisToday. 7980,6775. Kuipers,E.W.,Scheper,C.,Wilson,J.H.,Winkenburg,I.H.,Oosterbeek,H.,1996.Non ASF Product Distributions due to Secondary Reactions during FischerTropsch Synthesis.JournalofCatalysis.158,288300. Kurevija,T.,Kukulj,N.,Rajkovic,D.,2007.GlobalProspectsofSyntheticDieselFuel ProducedfromHydrocarbonResourcesinOilandGasExportingCountries.Rudarsko GeoloskonaftniZbornik.19,7986. Larsson,M.,2007.AnExperimentalStudyofFischerTropschFuelsinaDieselEngine. B.S. thesis, Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden. Levenspiel, O., 2002. Modeling in Chemical Engineering. Chemical Engineering Science.57,46914696. Liu, H., You, L., 1999. Characteristics and Applications of the Cold Heat Exergy of LiquefiedNaturalGas.EnergyConversionandManagement.40,15151525. Liu,W.,Huang,Z.,Wang,J.,Qiao,X.,Hou,J.,2008.EffectsofDimethoxyMethane Blended with Gas to Liquid on Particulate Matter Emissions from a Compression IgnitionEngine.EnergyandFuels.22,23072313. Lu,Y.,Lee,T.,2007.InfluenceoftheFeedGasCompositionontheFischerTropsch SynthesisinCommercialOperations.JournalofNaturalGasChemistry.16,329341.

87

Maiti,S.N.,Eberhardt,J.,Kundu,S.,Cadenhousebeaty,P.J.,Adams,D.J.,2001.How toEfficientlyPlanaGrassrootsRefinery.HydrocarbonProcess.80,4349. Maretto, C., 2001. Design and Optimization of a MultiStage Bubble Column Slurry ReactorforFischerTropschSynthesis.CatalysisToday.66,241248. Maretto,C.,Piccolo,S.,Krishna,R.,2001.Hydrodynamics,DesignandScaleupofa MultiStage Bubble Column Slurry Reactor for FischerTropsch Synthesis. 6 th World CongressofChemicalEngineers,Melbourne,Australia. Nouri,S.,Kaggerud,K.,2006.WastetoPlastics:ProcessAlternatives.Report,Energy and Environment, Norwegian University of Science and Technology, Trondheim, Norway. Patel,B.,2005.GasMonetisation:ATechnoEconomicComparisonofGastoLiquid andLNG."7 th WorldCongressofChemicalEngineering,Glasgow,Scotland,UK. Perry, R.H., Green, 1984. Perry's Chemical Engineers' Handbook. McGrawHill Inc., SanFrancisco,CA. Rahmin, I.I., 2003. GastoLiquid Technologies: Recent Advances, Economics, Prospects.26 th AnnualInternationalConference,Prague,CzechRepublic.Availableat http://www.gtlpetrol.com/public/iirahmim2003prague.pdf. Reddy, K.T., Basu, S., 2007. GastoLiquid Technologies: India's Perspective. Fuel ProcessingTechnology.88,493500. Rentech Inc., 2005. The Economic Viability of an FT Facility Using PRB Coals. Presentation to the Wyoming Governor's Office available at http://www.wyoming business.org/pdf/energy/WBC_Public_Presentation_41405.pdf Repasky,J.M.,Reader,R.T.,2004.InEnhancedHeatTransferReformerTechnology for GTL Applications, Proceedings of AIChE Spring Meeting Conference, New Orleans,LA.AmericanInstituteofChemicalEngineers,NewYork,NY,15041508. Saxena,S.C.,1995.BubbleColumnReactorsandFischerTropschSynthesis.Catalyst Reviews:ScienceandEngineering.37,227. Sehabiague, L., Lemoine, R., Behkish, A., Heintz, Y.J., Sanoja, M., et al., 2008. Modeling and Optimization of a LargeScale Slurry Bubble Column Reactor for Producing10,000bbl/dayofFischerTropschLiquidHydrocarbons.JournalofChinese InstituteofChemicalEngineers.39,169179.

88

Sie,S.T.,Krishna,R.,1999.FundamentalsandSelectionofAdvancedFischerTropsch Reactors.AppliedCatalysisA:General.186,5570. Singhal,R.K.,Singhal,A.K.M.,2000.EnvironmentalIssuesandManagementofWaste inEnergyandMineralProduction.TaylorandFrancis,Alberta,Canada. Smith, A.R., Klosed, J., 2001. A Review of Air Separation Technologies and Their Integration with Energy Conversion Processes. Fuel Processing Technology. 70, 115 134. Song, X., Sayari, A., 1996. Sulfated Zirconia as a Cocatalyst in FischerTropsch Synthesis.EnergyandFuels.10(3),561565. Soterious, A., Ignacio, E., 1983. A Structural Optimization Approach in Process Synthesis.ComputersandChemicalEngineering.7,723734. Spath, P.L., Dayton, D.C., 2003. Preliminary ScreeningTechnical and Economic AssessmentofSynthesisGastoFuelsandChemicalswithEmphasisonthePotentialfor BiomassDerived Syngas. Report, National Renewable Energy Laboratory (NREL), Golden,CO. Steynberg, A.P., Espinoza, R.L., Jager, B. Vosloo, A.C., 1999. High Temperature FischerTropschSynthesisinCommercialPractice.AppliedCatalysisA:General.186, 4154. Steynberg,A.P.,Dry,M.E.,2004.FischerTropschTechnology.Elsevier.Amsterdam, theNetherlands. Suehiro,Y.,Nakamura,A.,Sacomota,A.,2004.NewGTLProcessBestCandidatefor ReductionofCO 2inNaturalGasUtilization.SPEAsiaPacificOilandGasConference andExhibition,Perth,Australia,14231429. Tam,S.S.Stanton,M.E.,Ghose,S.,Deppe,G.,Spencer,D.F.AHighPressureCarbon DioxideSeparationProcessforIGCCPlants.Sourceisavailableat www.netl.doe.gov/publications/proceedings/01/carbon_seq/1b4.pdf. Tijmensen, M. J.A., Faaij, A.P.C., Hamelinck, C.N., van Hardeveld, M.R.M., 2002. ExplorationofthePossibilitiesforProductionofFischerTropschLiquidsandPowervia BiomassGasification.BiomassandBioenergy.23(2),129152. Urseanu,M.I.,Guit,R.P.M.,Stankiewicz,A.,vanKranenburg,G.,Lommen,J.H.G.M., 2003.InfluenceofOperatingPressureontheGasHoldupinBubbleColumnsforHigh ViscousMedia.ChemicalEngineeringScience.58,697704.

89

Van der Laan, G., 1999. Kinetics, Selectivity and Scale up of the FischerTropsch Synthesis. PhD dissertation, Chemical Engineering, University of Groningen, Groningen,Netherlands. Vandu,C.O.,Krishna,R.,2004.InfluenceofScaleontheVolumetricMassTransfer CoefficientsinBubbleColumns.ChemicalEngineeringScience.43,575579. Vessia, O. 2005. Biofuels from lignocellulosic Material. Project report, Electrical Engineering,NorwegianUniversityofScienceandTechnology,Trondheim,Norway. Vosloo,A.C.,2001.FischerTropsch:AFuturisticView.FuelProcessingTechnology. 71,149155. Wang, X., 2004. Computer Simulation of GTL and Various Problems in Thermodynamics. PhD dissertation, Chemical Engineering, Texas A&M University, CollegeStation,TX. Wang,Y.,Xu,Y.,Li,Y.,Zhao,Y.,Zhang,B.,2003.HeterogeneousModelingforFixed Bed FischerTropsch Synthesis: Reactor Model and Its Applications. Chemical EngineeringScience.58,867875. Weeden,S.,2001.SpecialReportGTL:ProgressandProspects:FinancialCommitments Brighten.OilandGasJournal.99(11),58. Wesenberg, M.H., 2006. Gas Heated Steam Reformer Modeling. PhD dissertation, ChemicalEngineering, Norwegian UniversityofScienceandTechnology,Trondheim, Norway. Wilhelm,D.J.,Simbeck,D.R.,KarpA.D.,DickensonR.L.,2001.SyngasProductionfor GastoLiquids Applications: Technologies, Issues and Outlook. Fuel Processing Technology.71,139148. Wu,T.,Huang,Z.,Zhang,W.,Fang,J.,Qi,Y.,2007.PhysicalandChemicalProperties of GTLDiesel Fuel Blends and Their Effects on Performance and Emissions of a MulticylinderDICompressionIgnitionEngine.EnergyandFuels.21,19081914. Yagi, F., Kanai, R., Wakamatsu, S., Kajiyama, R., Suehiro, Y., et al., 2005. DevelopmentofSynthesisGasProductionCatalystandProcess.CatalysisToday.104, 26. Zhang, J., Zhu, X., 2000. Simultaneous Optimization Approach for Heat Exchanger NetworkRetrofitwithProcessChanges.IndustrialEngineeringChemistryResearch.39, 49634973.

90

Zhang,N.,2000.NovelModelingandDecompositionforOverallRefineryOptimization andDebottlenecking.PhDdissertation,ChemicalEngineering,UniversityofManchester InstituteofScienceandTechnology,Manchester,England.

91

VITA Name: BupingBao

Address: ArtieMcFerrinDepartmentofChemicalEngineering TexasA&MUniversity CollegeStation,TX778433136

Emailaddress: [email protected]

Education: B.S.,ChemicalEngineering,2006 ZhejiangUniversity,Hangzhou,P.R.China M.S.,ChemicalEngineering,2008 TexasA&MUniversity