(Supersymmetric) Grand Unification
Total Page:16
File Type:pdf, Size:1020Kb
J. Reuter SUSY GUTs Uppsala, 15.05.2008 (Supersymmetric) Grand Unification Jürgen Reuter Albert-Ludwigs-Universität Freiburg Uppsala, 15. May 2008 J. Reuter SUSY GUTs Uppsala, 15.05.2008 Literature – General SUSY: M. Drees, R. Godbole, P. Roy, Sparticles, World Scientific, 2004 – S. Martin, SUSY Primer, arXiv:hep-ph/9709356 – H. Georgi, Lie Algebras in Particle Physics, Harvard University Press, 1992 – R. Slansky, Group Theory for Unified Model Building, Phys. Rep. 79 (1981), 1. – R. Mohapatra, Unification and Supersymmetry, Springer, 1986 – P. Langacker, Grand Unified Theories, Phys. Rep. 72 (1981), 185. – P. Nath, P. Fileviez Perez, Proton Stability..., arXiv:hep-ph/0601023. – U. Amaldi, W. de Boer, H. Fürstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B260, (1991), 447. J. Reuter SUSY GUTs Uppsala, 15.05.2008 The Standard Model (SM) – Theorist’s View Renormalizable Quantum Field Theory (only with Higgs!) based on SU(3)c × SU(2)w × U(1)Y non-simple gauge group ν u h+ L = Q = uc dc `c [νc ] L ` L d R R R R h0 L L Interactions: I Gauge IA (covariant derivatives in kinetic terms): X a a ∂µ −→ Dµ = ∂µ + i gkVµ T k I Yukawa IA: u d e ˆ n ˜ Y QLHuuR + Y QLHddR + Y LLHdeR +Y LLHuνR I Scalar self-IA: (H†H)(H†H)2 J. Reuter SUSY GUTs Uppsala, 15.05.2008 The group-theoretical bottom line Things to remember: Representations of SU(N) i j 2 I fundamental reps. φi ∼ N, ψ ∼ N, adjoint reps. Ai ∼ N − 1 I SU(N) invariants: contract all indices i j j φiψ φiAi ψ ij φiξj ijkφiξj ηk ˆ ˜ I Symmetry properties: Young tableaux The (group-theoretical) essence of the SM: Y remember: Qel. = T3 + 2 c c c c QL uR dR LL eR Hd Hd νR (2, 3) 1 (1, 3) 4 (1, 3) 2 (2, 1)−1 (1, 1)2 (2, 1)1 (2, 1)−1 (1, 1)0 3 − 3 3 J. Reuter SUSY GUTs Uppsala, 15.05.2008 Loose Ends/Deficiencies of the Standard Model Incompleteness Theoretical Dissatisfaction I Electroweak Symmetry Breaking I 28 free parameters I Higgs boson I “strange” fractional I Origin of neutrino masses U(1) quantum numbers I Dark Matter: mDM ∼ 100 GeV I Hierarchy problem MH [GeV] 750 500 250 ∼ Λ2 Λ[GeV] 103 106 109 1012 1015 1018 2 2 2 mh = m0 + Λ × (loop factors) J. Reuter SUSY GUTs Uppsala, 15.05.2008 Supersymmetry Q ¡§¦ connects gauge and space-time symmetries ¢¡¤£¥¡§¦ | i | ¨ © ¥ i multiplets with equal-mass fermions and Q bosons J ⇒ SUSY is broken in Nature 1 1 stabilizes the hierarchy 2 0 800 m [GeV] 700 – Minimal Supersymmetric Standard 600 g˜ t˜2 u˜ , d˜ Model (MSSM) L R ˜ u˜R, d˜L b2 500 ˜ b1 – Charginos, Neutralinos, Gluino 400 0 0 H± H ,A 0 χ˜ χ˜2± t˜1 Sleptons, Squarks, Sneutrinos 04 χ˜3 300 – R parity: discrete symmetry 200 ˜lL τ˜2 ν˜l 0 – LSP: Dark matter χ˜2 χ˜1± ˜ lR τ˜ h0 1 100 χ˜0 1 – Superpartners have identical gauge 0 quantum numbers J. Reuter SUSY GUTs Uppsala, 15.05.2008 Supersymmetry: Symmetry between fermions and bosons Q|bosoni = |fermioni Q|fermioni = |bosoni Effectively: SM particles have SUSY partners (e.g. fL,R → f˜L,R) SUSY: additional contributions from scalar fields: f˜L,R f˜L,R HH HH ¯ f˜L,R ! ˜ Z 1 1 Σf ∼ N λ2 d4k + + terms without quadratic div. H f˜ f˜ k2 − m2 k2 − m2 f˜L f˜R ˜ for Λ → ∞: Σf ∼ N λ2 Λ2 H f˜ f˜ J. Reuter SUSY GUTs Uppsala, 15.05.2008 ⇒ quadratic divergences cancel for N = N = N f˜L f˜R f 2 2 λf˜ = λf complete correction vanishes if furthermore mf˜ = mf Soft SUSY breaking: m2 = m2 + ∆2, λ2 = λ2 f˜ f f˜ f f+f˜ 2 2 ⇒ ΣH ∼ Nf λf ∆ + ... ⇒ correction stays acceptably small if mass splitting is of weak scale ⇒ realized if mass scale of SUSY partners < MSUSY ∼ 1TeV ⇒ SUSY at TeV scale provides attractive solution of hierarchy problem J. Reuter SUSY GUTs Uppsala, 15.05.2008 Anatomy of MSSM I Yukawa couplings ⇒ Superpotential: ˆ ˆ ˆ 2 W = Φ1Φ2Φ3 ≡ Φ1Φ2Φ3 =⇒ (φ1φ2) ,..., ψ1ψ2 φ3 I NB: part of scalar potential from gauge kinetic terms (light Higgs) I MSSM superpotential u c d c e c WMSSM = Y u QHu + Y d QHd + Y e LHd + µHuHd I Ignorance about SUSY breaking shows up as “soft-breaking terms”: Gaugino and sparticle masses, trilinear scalar potential terms I µ problem: EWSB demands µ ∼ O(100 GeV − 1 TeV) I Additional SUSY degrees of freedom modify vacuum polarization ⇒ Unification of gauge couplings possible J. Reuter SUSY GUTs Uppsala, 15.05.2008 (Gauge) Unification and the running of couplings J. Reuter SUSY GUTs Uppsala, 15.05.2008 (Gauge) Unification and the running of couplings Renormalization group (RG) running of gauge couplings: 3 41 19 dga ga SM Ba = 10 , − 6 , −7 = 2 Ba 33 d log µ 16π MSSM Ba = 5 , 1, −3 60 50 U(1) 40 -1 i 30 SU(2) α 20 Standard Model 10 SU(3) 0 102 104 106 108 1010 1012 1014 1016 1018 µ (GeV) J. Reuter SUSY GUTs Uppsala, 15.05.2008 (Gauge) Unification and the running of couplings Renormalization group (RG) running of gauge couplings: 3 41 19 dga ga SM Ba = 10 , − 6 , −7 = 2 Ba 33 d log µ 16π MSSM Ba = 5 , 1, −3 60 60 50 U(1) 50 MSSM U(1) 40 40 -1 -1 i 30 SU(2) i 30 SU(2) α α 20 20 Standard Model SU(3) 10 SU(3) 10 0 0 102 104 106 108 1010 1012 1014 1016 1018 102 104 106 108 1010 1012 1014 1016 1018 µ (GeV) µ (GeV) J. Reuter SUSY GUTs Uppsala, 15.05.2008 (Gauge) Unification and the running of couplings Renormalization group (RG) running of gauge couplings: 3 41 19 dga ga SM Ba = 10 , − 6 , −7 = 2 Ba 33 d log µ 16π MSSM Ba = 5 , 1, −3 60 60 50 U(1) 50 MSSM U(1) 40 40 -1 -1 i 30 SU(2) i 30 SU(2) α α 20 20 Standard Model SU(3) 10 SU(3) 10 0 0 102 104 106 108 1010 1012 1014 1016 1018 102 104 106 108 1010 1012 1014 1016 1018 µ (GeV) µ (GeV) ¯ ¯ √ a X Y a λGM 24 2G X¯ Y¯ X λa g 2 A = g Aa = √ X¯ Y¯ 2 2 a=1 X X X √ σ 2W a Y Y Y 2 −2 −2 0 g − √ B −2 2 15 +3 0 +3 J. Reuter SUSY GUTs Uppsala, 15.05.2008 The prime example: (SUSY) SU(5) SU(5) −→ SU(3)c × SU(2)w × U(1)Y −→ SU(3)c × U(1)em MX MZ SU(5) has 52 − 1 = 24 generators: 24 → (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (3, 2) 5 ⊕ (3, 2)− 5 | {z } | {z } | {z } 3 3 β W B | {z } | {z } Gα X,Y X,¯ Y¯ J. Reuter SUSY GUTs Uppsala, 15.05.2008 The prime example: (SUSY) SU(5) SU(5) −→ SU(3)c × SU(2)w × U(1)Y −→ SU(3)c × U(1)em MX MZ SU(5) has 52 − 1 = 24 generators: 24 → (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (3, 2) 5 ⊕ (3, 2)− 5 | {z } | {z } | {z } 3 3 β W B | {z } | {z } Gα X,Y X,¯ Y¯ ¯ ¯ √ a X Y a λGM 24 2G X¯ Y¯ X λa g 2 A = g Aa = √ X¯ Y¯ 2 2 a=1 X X X √ σ 2W a Y Y Y 2 −2 −2 0 g − √ B −2 2 15 +3 0 +3 2 1 α(MZ ) 7 SUSY: sw(MZ ) = + ≈ 0.231 5 αs(MZ ) 15 New Gauge Bosons Two colored EW doublets: ¯ ¯ 4 1 (X, Y ), (X, Y ) with charges ± 3 , ± 3 J. Reuter SUSY GUTs Uppsala, 15.05.2008 Quantum numbers q λ12 3 Y 1 I Hypercharge: 2 = 5 2 Y = 3 diag(−2, −2, 3, 3, 3) Quantized hypercharges are fixed by non-Abelian generator I Weak Isospin: T1,2,3 = λ9,10,11/2 3 1 1 1 I Electric Charge: Q = T + Y/2 = diag(− 3 , − 3 , − 3 , 1, 0) I Prediction for the weak mixing angle (with RGE running): −1 2 α (MZ ) = 128.91(2), αs(MZ ) = 0.1176(20), sw(MZ ) = 0.2312(3) 2 23 α(MZ ) 109 non-SUSY: sw(MZ ) = + ≈ 0.207 134 αs(MZ ) 201 J. Reuter SUSY GUTs Uppsala, 15.05.2008 Quantum numbers q λ12 3 Y 1 I Hypercharge: 2 = 5 2 Y = 3 diag(−2, −2, 3, 3, 3) Quantized hypercharges are fixed by non-Abelian generator I Weak Isospin: T1,2,3 = λ9,10,11/2 3 1 1 1 I Electric Charge: Q = T + Y/2 = diag(− 3 , − 3 , − 3 , 1, 0) I Prediction for the weak mixing angle (with RGE running): −1 2 α (MZ ) = 128.91(2), αs(MZ ) = 0.1176(20), sw(MZ ) = 0.2312(3) 2 23 α(MZ ) 109 non-SUSY: sw(MZ ) = + ≈ 0.207 134 αs(MZ ) 201 2 1 α(MZ ) 7 SUSY: sw(MZ ) = + ≈ 0.231 5 αs(MZ ) 15 New Gauge Bosons Two colored EW doublets: ¯ ¯ 4 1 (X, Y ), (X, Y ) with charges ± 3 , ± 3 J. Reuter SUSY GUTs Uppsala, 15.05.2008 2 Exercise 10: SUSY GUTs and sin θW The renormalization group equations for the coupling constants gi, i = 1, 2, 3 are given by: 2 dαi αi = bi .