Analysis of the Offshore Wind Energy Industry Ccrreeaattiinngg Tthhee Cclleeaann Eenneerrggyy Eeccoonnoommyy Analysis of the Offshore Wind Energy Industry

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Offshore Wind Energy Industry Ccrreeaattiinngg Tthhee Cclleeaann Eenneerrggyy Eeccoonnoommyy Analysis of the Offshore Wind Energy Industry CREATING THE CLEAN ENERGY ECONOMY Analysis of the Offshore Wind Energy Industry CCrreeaattiinngg tthhee CClleeaann EEnneerrggyy EEccoonnoommyy Analysis of the Offshore Wind Energy Industry Primary Authors Jennifer Todd is an Economic Development Associate at IEDC. Jess Chen is a Research Fellow and a PhD candidate at American University. Frankie Clogston is an IEDC Consultant and a PhD candidate at Johns Hopkins University. Primary Editors Liz Thorstensen, Vice President of Knowledge Management & Economic Development Practice, Tye Libby, Associate, Knowledge Management and Development Acknowledgements IEDC is grateful to the Rockefeller Brothers Fund for its generous support of this research project. Special thanks Lauren Avioli, Emily Brown, and Patrick McHugh for research support, and Mishka Parkins, who provided technical assistance for the creative design of the report. © Copyright 2013 International Economic Development Council This report was made possible by a grant from the Rockefeller Brothers Fund. International Economic Development Council IEDC is the world's largest membership organization serving the economic development profession, with over 4,500 members, and a network of over 25,000 economic development professionals and allies. From public to private, rural to urban, and local to international, our members represent the entire range of economic development experience. IEDC is dedicated to helping economic developers do their job more effectively and raising the profile of the profession. When we succeed, our members create more high-quality jobs, develop more vibrant communities, and generally improve the quality of life in their regions. The issue of sustainability has been designated a strategic priority by the IEDC Board of Directors. Further, sustainability and policy responses to climate change are growing issues for our members. Through a range of services, including: conferences, training courses, webinars, publications, research and technical assistance efforts, we are striving to be on the cutting edge of understanding the opportunities and challenges stemming from sustainability, climate change and economic transformation. For more information about IEDC visit www.iedconline.org Paul Krutko, FM President and Chief Executive Officer, Ann Arbor SPARK Chairman of the IEDC Board Jay C. Moon, CEcD, FM President and CEO, Mississippi Manufacturers Association Immediate Past Chairman of the IEDC Board Jeffrey A. Finkle, CEcD President & CEO International Economic Development Council International Economic Development Council 734 15th Street NW / Suite 900 Washington, DC 20005 www.iedconline.org | Phone: (202) 223-7800 | Fax: (202) 223-4745 TABLE OF CONTENTS Introduction to Offshore Wind Energy ....................................................................................................... 4 Job Creation Potential of Offshore Wind Energy ............................................................................... 7 The State of the U.S. Offshore Wind Market .................................................................................... 15 Hurdles and Solutions: Offshore Wind Energy Market ........................................................................ 55 Supply Side Issues – How to Overcome High Costs .......................................................................... 56 Demand Side Issues – Finding or “Making” the Market ................................................................... 71 The Regulatory and Policy Environment .............................................................................................. 74 Political Hurdles ........................................................................................................................................ 78 Hydroelectricity: Parallels to the Offshore Wind Industry ............................................................... 83 Appendix ......................................................................................................................................................... 91 INTERNATIONAL ECONOMIC DEVELOPMENT COUNCIL 3 INTRODUCTION TO OFFSHORE WIND ENERGY Offshore wind power offers an inexhaustible energy source and, in the U.S., is located close to major population centers where demand for energy is highest. To date, this market has been insufficiently tapped. The U.S. has yet to produce a single megawatt (MW) of energy from an offshore wind source. The success of the domestic onshore wind industry foreshadows some of the potential of offshore wind. This chapter hopes to spur action that will unlock this potential. The first section discusses the benefits of offshore wind energy in detail as well as hurdles to market development. The final section proposes tactics that can help overcome these hurdles. The Importance of Offshore Wind Energy to Economic Development There is evidence that offshore wind energy will create new jobs and economic investment. Offshore wind generates more jobs per megawatt than onshore wind and other fossil fuels due to the labor associated with manufacturing, operating, and servicing the wind farms. As the European Wind Energy Association (EWEA) states, the offshore wind industry has an “additional employment effect” due to the higher cost of installing, operating, and maintaining offshore wind turbines than land-based ones.1 It is also likely that offshore wind job creation will come at a time and to those places where it is particularly needed. As the U.S. Department of Energy (DOE) indicates, many of the jobs for the new offshore industry will potentially be located in economically depressed ports and shipyards. These locations will serve as fabrication and staging areas for manufacture, installation, and 1 European Wind Energy Association. (2009, January). Wind at Work: Wind energy and job creation in the EU, p. 22. Retrieved from: http://www.ewea.org/fileadmin/ewea_documents/documents/publications/Wind_at_work_FINAL.pdf INTERNATIONAL ECONOMIC DEVELOPMENT COUNCIL 4 maintenance of offshore wind turbines.2 These areas can particularly stand to gain jobs in a new offshore wind industry, since they have experienced a double blow from the downturn in manufacturing and the recent recession. Summary of Hurdles and Solutions The development of offshore wind energy is not without significant hurdles. Hurdles can be grouped under four categories. Supply-side hurdles are related to the high capital, operating, and financing costs of offshore wind projects. This creates a demand-side hurdle in which high costs are passed on to the purchaser of the offshore wind energy, thereby reducing demand. In addition, there are regulatory and policy hurdles due to the lengthy and complicated permitting process for offshore wind projects. Larger political hurdles surround the future of energy policy and government subsidies in the midst of economic recovery. Yet, these hurdles can be tackled over time through a coordinated strategy and action by multiple stakeholders. Section 3 of this report discusses in detail the strategies that economic developers can pursue to engage these stakeholders and kick start the offshore wind energy market. The table below presents a brief summary of the primary hurdles to offshore wind energy and their potential solutions. 2 U.S. Department of Energy. (2011, February). A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States, Retrieved from http://www1.eere.energy.gov/windandhydro/pdfs/national_offshore_wind_strategy.pdf. INTERNATIONAL ECONOMIC DEVELOPMENT COUNCIL 5 Hurdles to Development and Solutions Regulatory and Supply-side Demand-side Political policy 1) Invest in turbine 1) Support “carve- 1) Streamline the 1) Align R&D (such as outs” for offshore approval process communication incubator) wind 2) Improve strategies 2) Assist in regional 2) Structure incentives coordinated 2) Use proactive grid planning in RPS review growth strategies 3) Identify synergies 3) Provide production 3) Support tax credit in a recession with existing incentives (i.e. ITC) programs 3) Engage and industries (i.e. oil 4) Establish respond to and marine- government opposition based) procurement stakeholders 4) Create stimulus program 4) Public education for ship-building to garner 5) Support financing understanding streams for and support for investors offshore wind 6) Identify/retool existing businesses in supply chain 7) Provide workforce training with local partners 8) Attract FDI and forge foreign partnerships INTERNATIONAL ECONOMIC DEVELOPMENT COUNCIL 6 JOB CREATION POTENTIAL OF OFFSHORE WIND ENERGY Table 1 summarizes some of the most widely referenced projections for job growth in the offshore wind industry in Europe and the United States through 2020 and/or through 2030. No doubt, job projection numbers vary and are always being updated. Therefore a primary purpose of Table 1 is to show the range of projections by industry expert, thereby establishing a barometer for the employment potential of the industry and a benchmark for analysis. INTERNATIONAL ECONOMIC DEVELOPMENT COUNCIL 7 Table 1: Economic Development and Job Creation Projections in Europe and the United States Jobs/ By Place Source # of Jobs Capacity MW Year Europe EWEA 2009 215,637 300GW 7 2030 Europe EWEA 2011 169,500 40GW 42 2020 Europe EWEA 2011 300,000 150GW 20 2030 Institute for Public Policy Research United Kingdom 2009 70,000 32GW 22 2020 United Kingdom renewableUK 2011 45,000 18GW 25 2020 United Kingdom Carbon Trust 2008 40,000-70,000 29GW 14-24 2020
Recommended publications
  • Applications of Systems Engineering to the Research, Design, And
    Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5000-52616 December 2011 Contract No. DE -AC36-08GO28308 Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems Authors: K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers Prepared under Task No. WE11.0341 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report NREL/TP-5000-52616 1617 Cole Boulevard Golden, Colorado 80401 December 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Energy from the Wind Student Guide
    2019-2020 Energy From the Wind Student Guide INTERMEDIATE Introduction to Wind Wind Average Wind Speed at 80 Meters Altitude Wind is moving air. You cannot see air, but it is all around you. You cannot see the wind, but you know it is there. Faster than 9.5 m/s (faster than 21.3 mph) 7.6 to 9.4 m/s (17 to 21.2 mph) You hear leaves rustling in the trees. You see clouds moving 5.6 to 7.5 m/s (12.5 to 16.9 mph) across the sky. You feel cool breezes on your skin. You witness 0 to 5.5 m/s (0 to 12.4 mph) the destruction caused by strong winds such as tornadoes and hurricanes. Wind has energy. Wind resources can be found across the country. Science and technology are providing more tools to accurately predict when and where the wind will blow. This information is allowing people to use wind on small and large scales. Wind is an increasingly important part of the United States’ energy portfolio. Data: National Renewable Energy Laboratory The Beaufort Scale BEAUFORT SCALE OF WIND SPEED BEAUFORT At the age of 12, Francis Beaufort joined the NUMBER NAME OF WIND LAND CONDITIONS WIND SPEED (MPH) British Royal Navy. For more than twenty years 0 Calm Smoke rises vertically Less than 1 he sailed the oceans and studied the wind, Direction of wind shown by smoke drift which was the main power source for the 1 Light air 1 - 3 Navy’s fleet. In 1805, he created a scale to rate but not by wind vanes Wind felt on face, leaves rustle, ordinary the power of the wind based on observations 2 Light breeze 4 - 7 of common things around him rather than wind vane moved by wind Leaves and small twigs in constant instruments.
    [Show full text]
  • Jeffrey Grybowski
    JEFFREY GRYBOWSKI PROFILE Mr. Grybowski is the Chief Executive Officer of Deepwater Wind, where he manages the company’s portfolio of offshore wind and transmission projects. He has been intimately involved in the development of Deepwater Wind’s path-breaking Block Island Wind Farm since its inception in 2008. Mr. Grybowski has been at the forefront of shaping the commercial structures and government policies necessary to support offshore wind in the U.S. He plays a key role in the development of federal and state policies governing the leasing, permitting, and commercialization of offshore wind and transmission projects. Through the advancement of the Block Island Wind Farm, Mr. Grybowski has been a leader in establishing the commercial framework for standing up a new renewable energy industry in the United States. EXPERIENCE Deepwater Wind, LLC, Providence, RI Chief Executive Officer Hinckley, Allen & Snyder, LLP, Providence, RI • Partner, Corporate and Business Law Group • Chair of the Green Law Group Office of the Governor of the State of Rhode Island Chief of Staff, Deputy Chief of Staff, and Policy Director (2003 - 2007) Sullivan & Cromwell, New York, NY Associate, Complex corporate and business law Chambers of Chief Judge Ronald Lagueux, U.S. District Court for the District of RI Judicial Clerk (1998 – 1999) EDUCATION University of North Carolina at Chapel Hill School of Law Juris Doctor with High Honors, 1998 Order of the Coif North Carolina Law Review, Publication Editor Brown University A.B. with Honors in Public Policy, 1993 CHRIS VAN BEEK PROFILE Chris serves as President, where he is responsible for Technology, Operations, Project Management, Construction and Permitting.
    [Show full text]
  • Position of Respondent Annual Investment Level in the U.S. Renewable Energy Sector
    Position of Respondent Annual Investment Level in the U.S. Renewable Energy Sector Expectations for Renewable Energy Finance in 2021-2024 Energy Expectations for Renewable 33 Financing Vehicles Used for Renewable Energy Developer Survey Position of Respondent Expectations for Renewable Energy Finance in 2021-2024 Energy Expectations for Renewable 34 Total Revenue of U.S. Renewable Energy Business Total Capacity of Company’s Renewable Energy Installations over the Past Three Years Expectations for Renewable Energy Finance in 2021-2024 Energy Expectations for Renewable 35 Renewable Energy Technologies Developed by Each Company Over the Past Three Years Expectations for Renewable Energy Finance in 2021-2024 Energy Expectations for Renewable 36 Authors Maheen Ahmad, Program Manager Lesley Hunter, Vice President of Programs About ACORE The American Council on Renewable Energy is a national nonprofit organization that unites finance, policy and technology to accelerate the transition to a renewable energy economy. For more information, please visit www.acore.org. $1T 2030: The American Renewable Investment Goal On June 19, 2018, ACORE and a coalition of its financial institution members announced the launch of a new campaign that aims to reach $1 trillion in U.S. private sector investment in renewable energy and enabling grid technologies by 2030. Through $1T 2030: The American Renewable Investment Goal, leading energy financiers have now come together in a coordinated effort to accelerate the investment and deployment of renewable power. The campaign leverages the network of ACORE members and supporters, highlighting a combined set of commonsense policy reforms and distinct market drivers that are necessary to reach this ambitious goal.
    [Show full text]
  • As Part of the RPS Proceeding, Staff and NYSERDA Prepared a Cost
    EXPRESS TERMS - SAPA No.: 03-E-0188SA19 The Commission is considering whether to adopt, modify, or reject, in whole or in part, potential modifications to the Renewable Portfolio Standard (RPS) program, including base forecast, goals, tier allocations, annual targets and schedule of collections. The base forecast of electricity usage in New York State against which the RPS goals are applied is currently the forecast contained in the 2002 New York State Energy Plan. The Commission is considering updating the base forecast using a 2007 forecast of electricity usage in New York State developed in Case 07-M-0548, the Energy Efficiency Portfolio Standard (EEPS) proceeding. The Commission is also considering updating the base forecast using a post-EEPS forecast of electricity usage in New York State, also developed in the EEPS proceeding, incorporating successful deployment of the targeted levels of energy efficiency planned in the EEPS case into the forecast. The current goal of the RPS program is to increase New York's usage of renewable resources to generate electricity to 25% by 2013. The Commission is considering whether to increase the goal to 30% by 2015 or to otherwise adjust the goal. The RPS program targets are currently divided into tiers. If the Commission modifies the base forecast or the goal, the Commission will consider whether the targets by tier should be adjusted proportionally or on some other basis. The Commission is also considering whether the annual targets should be modified to account for such changes to the RPS program. The Commission is also considering whether the schedule of collections should be modified to account for such changes to the RPS program, to specify collection levels beyond 2013 necessary to fund contracts extending beyond 2013, and to fund maintenance resources and administrative costs not yet accounted for in the current schedule of collections.
    [Show full text]
  • U.S. Offshore Wind Power Economic Impact Assessment
    U.S. Offshore Wind Power Economic Impact Assessment Issue Date | March 2020 Prepared By American Wind Energy Association Table of Contents Executive Summary ............................................................................................................................................................................. 1 Introduction .......................................................................................................................................................................................... 2 Current Status of U.S. Offshore Wind .......................................................................................................................................................... 2 Lessons from Land-based Wind ...................................................................................................................................................................... 3 Announced Investments in Domestic Infrastructure ............................................................................................................................ 5 Methodology ......................................................................................................................................................................................... 7 Input Assumptions ............................................................................................................................................................................................... 7 Modeling Tool ........................................................................................................................................................................................................
    [Show full text]
  • Public Acceptance of Offshore Wind Power: Does Perceived Fairness Of
    This article was downloaded by: [University of Delaware] On: 14 December 2012, At: 05:49 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Environmental Planning and Management Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/cjep20 Public acceptance of offshore wind power: does perceived fairness of process matter? Jeremy Firestone a , Willett Kempton a , Meredith Blaydes Lilley b & Kateryna Samoteskul a a School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 204 Robinson Hall, Newark, DE, 19716, USA b Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawaii, 2525 Correa Road, HIG Room 238, Honolulu, HI, 96822, USA Version of record first published: 14 Dec 2012. To cite this article: Jeremy Firestone , Willett Kempton , Meredith Blaydes Lilley & Kateryna Samoteskul (2012): Public acceptance of offshore wind power: does perceived fairness of process matter?, Journal of Environmental Planning and Management, 55:10, 1387-1402 To link to this article: http://dx.doi.org/10.1080/09640568.2012.688658 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • US Offshore Wind Energy
    U.S. Offshore Wind Energy: A Path Forward A Working Paper of the U.S. Offshore Wind Collaborative October 2009 Contributing Authors Steven Clarke, Massachusetts Department of Energy Resources Fara Courtney, U.S. Offshore Wind Collaborative Katherine Dykes, MIT Laurie Jodziewicz, American Wind Energy Association Greg Watson, Massachusetts Executive Office of Energy and Environmental Affairs and Massachusetts Technology Collaborative Working Paper Reviewers The Steering Committee and Board of the U.S. Offshore Wind Collaborative owe a debt of gratitude to the following individuals for their careful and thoughtful review of this Working Paper and for offering their invaluable comments and suggestions. Walter Cruikshank, U.S. Department of the Interior Soren Houmoller, 1st Mile (DK) Chris Jenner, RPS Group (UK) Jim Manwell, University of Massachusetts Walt Musial, ex officio, National Renewable Energy Laboratory Bonnie Ram, Energetics USOWC Board of Directors Jack Clarke, Mass Audubon Steve Connors, Massachusetts Institute of Technology John Hummer, Great Lakes Commission Laurie Jodziewicz, American Wind Energy Association Jim Lyons, Novus Energy Partners Jeff Peterson, New York State Energy Research and Development Authority John Rogers, Union of Concerned Scientists Mark Sinclair, Clean Energy States Alliance Greg Watson, Massachusetts Executive Office of Energy and Environmental Affairs and Massachusetts Technology Collaborative Walt Musial, ex officio, National Renewable Energy Laboratory Cover: The Middelgrunden offshore wind farm in
    [Show full text]
  • Wind Energy in NY State
    2010 New York State Wind Energy Study Final Report Source: Milian, Chris; www.photosfromonhigh.com Submitted by: Christina Hoerig Kimballe Campbell Daniel Grew Nicole Gumbs Happiness Munedzimwe Sandeep George Jun Wan Timothy Komsa Karl Smolenski Tyler Coatney Cornell University II Table of Contents Table of Contents .................................................................................................................II List of Figures .................................................................................................................... VI List of Tables ..................................................................................................................... VII 1 Executive Summary ................................................................................................. VIII 2 Introduction ................................................................................................................10 3 New York State Present Energy Supply/Demand ....................................................14 3.1 New York Energy Background ............................................................................14 3.2 Current NYS Wind Power ...................................................................................16 3.3 Near Term Growth of New York State Wind Power .............................................17 3.4 Progress of Other Renewables in New York State ..............................................19 3.5 Power Demand in Tompkins County ...................................................................19
    [Show full text]
  • Wind Powering America Fy08 Activities Summary
    WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category).
    [Show full text]
  • Clean Energy from America's Oceans
    Clean Energy from America’s Oceans Permitting and Financing Challenges to the U.S. Offshore Wind Industry Michael Conathan and Richard Caperton June 2011 Introduction and summary For 87 days in the spring and summer of 2010, an undersea gusher of oil continuously reminded Americans of the toll energy development can take on our oceans. Approximately 3,500 oil rigs and platforms were operating in U.S. waters at the time of the BP disaster. There were also over 1,000 wind turbines generating clean, renewable electricity off the coastlines of northwestern Europe. But not a single windmill yet turns in the strong, abundant winds that abound off our shores. Clearly wind power cannot immediately replace the energy we still must generate from the oil and gas produced on the outer continental shelf. But America’s unwillingness to clear the way for permitting a proven, commercially scalable, clean source of energy is a major black eye for a nation that purports to be a leader in technological development. Denmark constructed the first offshore wind facility in in 1991. In the intervening two decades 10 other countries installed offshore wind farms—eight nations in northern Europe, plus Japan and China (see chart). Nations embracing wind energy Current offshore wind capacity in megawatts, Europe, China, and the United States Europe Offshore wind capacity (United Kingdom, Denmark, The China United States in megawatts (MW) Netherlands, Belgium, Germany, Sweden, Ireland, Finland, Norway)1 Installed 2,946 1022 0 Under construction 3,000 2,3003 0 Permitted 19,000 13,6004 4885 Total 24,946 MW 16,002 MW 488 MW Note: One megawatt roughly equates to the amount of electricity needed to power 300 American homes.
    [Show full text]
  • FERC Approval Release 5-19
    FOR IMMEDIATE RELEASE Contact: Frank Maisano, (202) 828-5864, c: (202) 997-5932 [email protected] FERC Action Will Enable Offshore Transmission, Reduce Congestion First–of-Kind Offshore Backbone Project will Deliver Clean Energy, Jobs, Reliability WASHINGTON, DC – The Federal Energy Regulatory Commission (FERC) approved a filing that greatly enhances transmission development to support America's renewable energy needs, which will also reduce expensive transmission congestion in the Mid-Atlantic states. FERC's order provides a boost to new transmission projects like the Atlantic Wind Connection that require large sums of capital that are totally at risk. The Atlantic Wind Connection investment will create thousands of offshore wind development jobs and expand reliability and national security through improvements in the electric grid. "This is an important and significant step forward to build the interstate electric super highway necessary for offshore wind to reach scale," said Robert Mitchell, CEO of Atlantic Grid Development, the project's developer. "The Atlantic Wind Connection project will allow thousands of megawatts of clean power to efficiently connect to the PJM transmission grid, while spurring the creation of thousands of clean energy jobs and improving the reliability and security of the power grid in the Mid-Atlantic. We are gratified and appreciate that the Commissioners recognize the important benefits this project will provide in furthering the efficient and timely development of offshore wind in New Jersey, Delaware, Maryland and Virginia.” AWC originally filed its petition with FERC regarding its backbone transmission project in December. Announced in October, the AWC project is the super highway for potential offshore wind energy along the Mid-Atlantic coast.
    [Show full text]