Selaginellaceae

Total Page:16

File Type:pdf, Size:1020Kb

Selaginellaceae Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1401 Spikemoss patterns Systematics and historical biogeography of Selaginellaceae STINA WESTSTRAND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9647-0 UPPSALA urn:nbn:se:uu:diva-300734 2016 Dissertation presented at Uppsala University to be publicly examined in Zootissalen, Evolutionsbiologiskt centrum, Villavägen 9, Uppsala, Friday, 30 September 2016 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Michael J. Donoghue (Department of Ecology and Evolutionary Biology, Yale University). Abstract Weststrand, S. 2016. Spikemoss patterns. Systematics and historical biogeography of Selaginellaceae. (Mosslummermönster. Systematik och historisk biogeografi hos Selaginellaceae). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1401. 50 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9647-0. Selaginellaceae, spikemosses, is a heterosporous plant family belonging to the lycophytes. With an estimated age of some 350 million years, the family is historically important as one of the oldest known groups of vascular plants. Selaginellaceae is herbaceous with a worldwide distribution. However, the majority of the ca. 750 species in the single genus Selaginella are found in the tropics and subtropics. This thesis aims at elucidating the systematics and historical biogeography of Selaginellaceae. The evolutionary relationships of the family were inferred from DNA sequence data (plastid and single-copy nuclear) of one-third of the species richness in the group. Attention was paid to cover the previously undersampled taxonomic, morphological, and geographical diversity. Morphological features were studied and mapped onto the phylogeny. The results show an overall well-supported phylogeny and even more complex morphological patterns than previously reported. Despite this, many clades can be distinguished by unique suites of morphological features. With the phylogeny as a basis, together with the thorough morphological studies, a new subgeneric classification with seven subgenera, representing strongly supported monophyletic groups, is presented for Selaginella. By mainly using gross morphological features, easily studied by the naked eye or with a hand lens, the intention is that the classification should be useful to a broader audience. During the work with species determinations, it was revealed that the correct name for an endemic Madagascan Selaginella species is S. pectinata Spring, not S. polymorpha Badré as previously proposed. The robust phylogeny of Selaginellaceae allowed for a historical biogeographical analysis of the group. A time-calibrated phylogeny, together with extant species distribution data, formed the basis. The results show pre-Pangean diversification patterns, Gondwanan vicariance, and more recent Cenozoic long-distance dispersals. The many inferred transoceanic dispersals during the last 50 million years are surprising considering Selaginella’s large megaspores that are thought to have a negative effect on dispersal. In conclusion, this thesis presents a well-founded hypothesis of the evolutionary history of Selaginellaceae including its phylogeny, morphology, and historical biogeography. The thesis forms a firm basis for further studies on Selaginellaceae in particular, and gives us a better understanding of early land plant evolution in general. Keywords: classification, historical biogeography, lycophytes, nomenclature, phylogeny, Selaginella, Selaginellaceae, systematics Stina Weststrand, Department of Organismal Biology, Systematic Biology, Norbyv. 18 D, Uppsala University, SE-75236 Uppsala, Sweden. © Stina Weststrand 2016 ISSN 1651-6214 ISBN 978-91-554-9647-0 urn:nbn:se:uu:diva-300734 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-300734) Till farmor Maj-Lis som visade mig naturen. Cover: “Spikemoss pattern”, by S. Weststrand List of papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Weststrand, S., Korall, P. Phylogeny of Selaginellaceae: There is value in morphology after all! Submitted to American Journal of Botany. II Weststrand, S., Korall, P. A subgeneric classification of Selaginella (Selaginellaceae). Submitted to American Journal of Botany. III Smith, A.R., Weststrand, S., Korall, P. 2016. Selaginella pectinata resurrected: The correct name for an unusual endemic spikemoss from Madagascar. American Fern Journal 106: 131–134. IV Weststrand, S., Korall, P. Historical biogeography of the heterospor- ous Selaginellaceae: A tale of pre-Pangean diversifications, Gond- wanan vicariance and Cenozoic long-distance dispersals. Manu- script. Paper III was reproduced with kind permission from the publisher. Note. To make clear that the nomenclatural novelties in Paper II are not val- idly published in this thesis, references to the place of publication of basio- nyms or replaced synonyms have been omitted. Contents Preface ............................................................................................................. 9 1. Introduction .............................................................................................. 11 1.1 Systematics ....................................................................................... 11 1.2 Historical biogeography .................................................................... 14 1.3 Selaginellaceae .................................................................................. 15 1.3.1 Morphology and reproduction ................................................... 18 1.3.2 Systematics ................................................................................ 20 1.3.3 Why study Selaginellaceae? ...................................................... 21 2. Aims ......................................................................................................... 23 3. Materials and methods ............................................................................. 24 3.1 Studies of organisms ......................................................................... 24 3.2 Phylogenetic analyses ....................................................................... 26 3.3 Classification .................................................................................... 27 3.4 Historical biogeography .................................................................... 27 4. Results and discussion ............................................................................. 29 4.1 Paper I and II: Phylogeny and subgeneric classification of Selaginella ........................................................................................ 29 4.2 Paper III: Selaginella pectinata resurrected ...................................... 32 4.3 Paper IV: Historical biogeography of Selaginella ............................ 32 5. Concluding remarks ................................................................................. 34 6. Svensk sammanfattning ........................................................................... 35 6.1 Jättekort ............................................................................................. 35 6.2 Kort ................................................................................................... 35 6.3 Lång .................................................................................................. 36 6.3.1 Systematik ................................................................................. 36 6.3.2 Mosslumrar ............................................................................... 37 6.3.3 Avhandlingens fyra artiklar ....................................................... 39 7. Acknowledgements .................................................................................. 42 8. References ................................................................................................ 46 Abbreviations DNA deoxyribonucleic acid ICN International Code of Nomenclature for algae, fungi, and plants Ma million years ago nom. nov. nomen novum (new name) PCR polymerase chain reaction sp./spp. species (singular/plural) sp. nov. species nova (new species) subg. subgenus Preface During the last years I have been doing genealogy research. Not on my own family though, but rather on the plant family Selaginellaceae, spikemosses. I have been digging into the long history of these plants, a history starting some 350 million years ago in a world that looked very different to the world we see today. It has been challenging, but most of all fascinating to follow these plants from present to past, and back again. The work has involved several different activities, all grading into each other, within the broad field of plant systematics: field work, molecular lab work, morphological studies, phylogenetic analyses, taxonomy, nomenclature, and historical biogeograph- ical analyses. In this thesis, I present my work in four papers, all describing different aspects of the evolutionary patterns of spikemosses. 9 1. Introduction Nature can appear as an indistinguishable green mass, or it can be a place with well-known and named companions. Systematics provides us with the names, the structure, and the history of the organisms around us. For me, there is an intrinsic worth in knowing what I see when I go outside; it makes for richer and happier walks. In this section I will give you
Recommended publications
  • Contents Part III. the LAST FIFTY THOUSAND YEARS
    STATE OF MICHIGAN Insects ................................................................... 60 DEPARTMENT OF CONSERVATION Worms And Others ................................................ 61 P. J. Hoffmaster, Director The Pleasant Peninsulas .............................................62 Man and his Towns ......................................................69 THEY NEED NOT VANISH A DISCUSSION OF THE NATURAL RESOURCES In Conclusion .................................................................71 OF MICHIGAN Part III. THE LAST FIFTY THOUSAND YEARS "THE GOOD EARTH" Edited by HELEN M. MARTIN ir, sunlight, water, and soil are essential for the Acontinuance of life—plant, animal, and human life, from contributions by on the earth. Of these four basic requirements, the soil Shirley W. Allen, Geo. C. S. Benson, University of is most directly subject to the care and management of Michigan man. However, the soil has frequently been the object of man's most careless use and abuse. It is, therefore, Stannard B. Bergquist, L. R. Schoenmann, H. C. most fitting that the eminent soil scientist, A. F. Beeskaw, J. H. Kraemer, W. F. Morofsky, J. A. Porter, E. Gustafson, should begin his book on soils and soil C. Sackrider, Michigan State College management with: G. S. Mclntire, H. M. Martin, O. F. Poindexter, C. F. "During his existence upon the earth, man has depended upon Welch, Department of Conservation the soil, either directly or indirectly, for the production of the materials used by him for food and clothing and, in part, for the M. G. Adams, Stream Control Commission production of those used for fuel and shelter as well. Grains, Frank DuMond, Public Museum, Grand Rapids fruits, and vegetables that serve him as food grow directly on the soil. Cotton and flax yield materials that are made into Lynn Heatley, High School, Midland.
    [Show full text]
  • RI Equisetopsida and Lycopodiopsida.Indd
    IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants.
    [Show full text]
  • WRA Species Report
    Family: Selaginellaceae Taxon: Selaginella braunii Synonym: Lycopodioides braunii (Baker) Kuntze Common Name: arborvitae fern Selaginella braunii fo. hieronymi Alderw. Braun's spike-moss Selaginella hieronymi Alderw. Chinese lace-fern spike-moss Selaginella vogelii Mett. treelet spike-moss Questionaire : current 20090513 Assessor: Assessor Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Assessor WRA Score 7 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- Low substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 n 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or
    [Show full text]
  • Introduction to Botany. Lecture 29
    Kingdom Vegetabilia: plants Introduction to Botany. Lecture 29 Alexey Shipunov Minot State University November 12th, 2010 Shipunov BIOL 154.29 Kingdom Vegetabilia: plants Outline 1 Kingdom Vegetabilia: plants Bryophyta: mosses Pteridophyta: ferns and allies Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Life cycle of mosses (picture from the board) Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Three main groups (subphyla) Hepaticae—liverworts. Three classes, most primitive are Haplomitriopsida. Body has dorsal and ventral parts, sporogon bag-like, without columella, spores with elaters. Bryophytina—true mosses. Six classes, most important are Sphagnopsida (peat mosses), Polytrichopsida (haircap mosses) and Bryopsida. Body radial, sporogon long, with columella, spores without elaters. Anthocerotophytina—hornworts. One class. Body flattened, sporogon long, green, with columella and stomata, spores with elaters. Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Haplomitrium gibbsiae, primitive liverwort Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Elaters of liverworts (Lepidozia sp.) Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Sphagnum sp. (Bryophyta, Sphagnopsida) with sporogons Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Dawsonia
    [Show full text]
  • General View of a Small Patch of Phylloglossum Plants. As Is Normal
    . Fig. 1- General view of a small patch of Phylloglossum plants. As is normal in most populations there are many more sterile plants than fertile and a great range of sizes of plants are found. The 5-cent coin is about 2 cm in diameter and provides a convenient scale. 28 Phylloglossum Miniature Denizen of the North /. E. Braggins, Auckland Phylloglossum drummondii, first described by Kunze, a German botanist, in 1843, is a very small plant related to the lycopodiums or club mosses. In addition to New Zealand it is found in Western Australia, Tasmania, and Victoria. There is only one species of Phylloglossum, and because of its small size and habit of growing in low sedge and scrub it is not often detected. Furthermore it has a short growing season when it is above ground (May-June till September-October), and few botanists know it in the field. The description in Allan's Flora of New Zealand tells us that it is "... a plant up to 5 cm long, rarely more; leaves linear, acute, usually few, seldom more than 10, about 2 cm long". The stalk or peduncle of the fruiting part is described as 3-4 cm long, with a strobilus (sport-bearing part) about 7 mm long. The generic description having already said that the strobilus was terminal and roots scanty, we have some idea what the plant may look like, though words cannot convey adequately the appearance of this unusual little plant (Fig. 1). In New Zealand Phylloglossum is often regarded as a typical kauri and burnt-over scrubland plant.
    [Show full text]
  • Selaginellaceae: Traditional Use, Phytochemistry and Pharmacology
    MS Editions BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS 19 (3): 247 - 288 (2020) © / ISSN 0717 7917 / www.blacpma.ms-editions.cl Revisión | Review Selaginellaceae: traditional use, phytochemistry and pharmacology [Selaginellaceae: uso tradicional, fitoquímica y farmacología] Fernanda Priscila Santos Reginaldo, Isabelly Cristina de Matos Costa & Raquel Brandt Giordani College of Pharmacy, Pharmacy Department. University of Rio Grande do Norte, Natal, RN, Brazil. Contactos | Contacts: Raquel Brandt GIORDANI - E-mail address: [email protected] Abstract: Selaginella is the only genus from Selaginellaceae, and it is considered a key factor in studying evolution. The family managed to survive the many biotic and abiotic pressures during the last 400 million years. The purpose of this review is to provide an up-to-date overview of Selaginella in order to recognize their potential and evaluate future research opportunities. Carbohydrates, pigments, steroids, phenolic derivatives, mainly flavonoids, and alkaloids are the main natural products in Selaginella. A wide spectrum of in vitro and in vivo pharmacological activities, some of them pointed out by folk medicine, has been reported. Future studies should afford valuable new data on better explore the biological potential of the flavonoid amentoflavone and their derivatives as chemical bioactive entities; develop studies about toxicity and, finally, concentrate efforts on elucidate mechanisms of action for biological properties already reported. Keywords: Selaginella; Natural Products; Overview. Resumen: Selaginella es el único género de Selaginellaceae, y se considera un factor clave en el estudio de la evolución. La familia logró sobrevivir a las muchas presiones bióticas y abióticas durante los últimos 400 millones de años.
    [Show full text]
  • An Approach to the Problem of Taxonomy and Classification in the Study of Sporae Dispersae
    AN APPROACH TO THE PROBLEM OF TAXONOMY AND CLASSIFICATION IN THE STUDY OF SPORAE DISPERSAE D. C. BHARDWAJ Birbal~i Institute of Palaeobotany, Lucknow ABSTRACT ( 1950 ) system, the American workers prefer The present state of disagreement among spore that of Schopf, Wilson and Bentall's ( 1944), workers with regard to the taxonomy and classi• in Germany, an amplification of Ibrahim's fication of Sporae dispersae has been reviewed. ( 1933) system is mostly in vogue and the The taxonomic categories for Sporae dispersae have Russian workers classify according to Nau• been defined and practicability of organ-genus concept over the form-genus concept for the circum• mova's (1937) system. This tendency to scription of spore taxa has been discussed. stick to one or the other of these systems, none of which excels the others, has uncons• ciously led to thwart the evolution of one such INTRODUCTION system of classification for the Sporae dis• persae which may be universally followed. Of late, in view of the greater applied use of DETAILEDand pollen,studyrecoveredof the dispersedfrom sedimen•spores Sporae dispersae in coal and oil prospecting, tary strata, dates back to Reinsch the need for a universally accepted standard ( 1881) when he described some of them from system of classification for these is being coals of the Carboniferous age. Thereafter, increasingly felt so that assimilation of data for several decades, these dispersed micro• from all over the world can be more easily remains attracted occasional attention of achieved. palaeobotanists
    [Show full text]
  • Comparative Transcriptome Analysis Suggests Convergent Evolution Of
    Alejo-Jacuinde et al. BMC Plant Biology (2020) 20:468 https://doi.org/10.1186/s12870-020-02638-3 RESEARCH ARTICLE Open Access Comparative transcriptome analysis suggests convergent evolution of desiccation tolerance in Selaginella species Gerardo Alejo-Jacuinde1,2, Sandra Isabel González-Morales3, Araceli Oropeza-Aburto1, June Simpson2 and Luis Herrera-Estrella1,4* Abstract Background: Desiccation tolerant Selaginella species evolved to survive extreme environmental conditions. Studies to determine the mechanisms involved in the acquisition of desiccation tolerance (DT) have focused on only a few Selaginella species. Due to the large diversity in morphology and the wide range of responses to desiccation within the genus, the understanding of the molecular basis of DT in Selaginella species is still limited. Results: Here we present a reference transcriptome for the desiccation tolerant species S. sellowii and the desiccation sensitive species S. denticulata. The analysis also included transcriptome data for the well-studied S. lepidophylla (desiccation tolerant), in order to identify DT mechanisms that are independent of morphological adaptations. We used a comparative approach to discriminate between DT responses and the common water loss response in Selaginella species. Predicted proteomes show strong homology, but most of the desiccation responsive genes differ between species. Despite such differences, functional analysis revealed that tolerant species with different morphologies employ similar mechanisms to survive desiccation. Significant functions involved in DT and shared by both tolerant species included induction of antioxidant systems, amino acid and secondary metabolism, whereas species-specific responses included cell wall modification and carbohydrate metabolism. Conclusions: Reference transcriptomes generated in this work represent a valuable resource to study Selaginella biology and plant evolution in relation to DT.
    [Show full text]
  • Desiccation Tolerance: Phylogeny and Phylogeography
    Desiccation Tolerance: Phylogeny and Phylogeography BioQUEST Workshop 2009 Resurrection Plants Desiccation tolerant Survive dehydration Survive in dormant state for extended time period Survive rehydration Xerophyta humilis, from J. Farrant web site (http://www.mcb.uct.ac.za/Staff/JMF/index.htm) Figure 2. Selaginella lepidophylla http://en.wikipedia.org/wiki/ File:Rose_of_Jericho.gif Desiccation Issues Membrane integrity Protein structure Generation of free radicals Rascia, N, La Rocca, N. 2005 Critical Reviews in Plant Sciences Solutions Repair upon hydration Prevent damage during dehydration Production/accumulation of replacement solutes Inhibition of photosynthesis http://www.cbs.dtu.dk/staff/dave/roanoke/elodeacell.jpg Evolution of Desiccation Tolerance From Oliver, et al 2000. Plant Ecology Convergent Evolution Among Vascular Plants From Oliver, et al 2000. Plant Ecology Desiccation Tolerance in Vascular Plants Seeds Pollen Spores Osmotic stress Desertification 40% of Earth’s surface 38% of population Low productivity Lack of water Depletion of soil Loss of soil Delicate system Using Evolutionary Relationships to Identify Genes for Crop Enhancement If desiccation sensitive plants have retained genes involved in desiccation tolerance, perhaps expression of those genes can be genetically modified to enhance desiccation tolerance. Expression patterns in dehydratingTortula and Xerophyta Michael Luth Xerophyta humilis, from J. Farrant web site (http://www.mcb.uct.ac.za/Staff/JMF/index.htm) ? Methods Occurrence data for Anastatica hierochuntic: o Downloaded from the Global Biodiversity Information Facility (gbif.org). o Of 127 available occurrence points, only 68 were georeferenced with latitude and longitude information. Environmental layers: Precipitation and temperature from the IPCC climate dataset Niche Modeling: Maximum Entropy (Maxent) Maxent principle is to estimate the probability distribution such as the spatial distribution of a species.
    [Show full text]
  • (Lycopodiaceae) in the State of Veracruz, Mexico
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.8 (1): 114-137, 2015 Research article Distribution and conservation status of Phlegmariurus (Lycopodiaceae) in the state of Veracruz, Mexico Samaria Armenta-Montero1, César I. Carvajal-Hernández1, Edward A. Ellis1 and Thorsten Krömer1* 1Centro de Investigaciones Tropicales, Universidad Veracruzana, Casco de la Ex Hacienda Lucas Martín, Privada de Araucarias S/N. Col. Periodistas, C.P. 91019, Xalapa, Veracruz, Mexico *Corresponding author. Email: [email protected] Abstract The fern and lycophyte flora of Mexico contains 13 species in the genus Phlegmariurus (Lycopodiaceae; club moss family), of which nine are found in the state of Veracruz (P. cuernavacensis, P. dichotomus, P. linifolius, P. myrsinites, P. orizabae, P. pithyoides, P. pringlei, P. reflexus , P. taxifolius). They are located primarily in undisturbed areas of humid montane, pine-oak and tropical humid forests, which are all ecosystems threatened by deforestation and fragmentation. The objective of this study was to evaluate and understand the distribution and conservation status of species of this genus in the state of Veracruz, Mexico. Using Maxent, probability distributions were modeled based on 173 herbarium specimens (25% from recent collections by the authors and/or collaborators), considering factors such as climate, elevation and vegetation cover. Additionally, anthropogenic impacts on the original habitat of each species were analyzed in order to assign threatened categories based on IUCN classifications at regional levels. Results show that potential distributions are located in the montane regions of the central and southern parts of the state. All nine Phlegmariurus species in Veracruz were found to be in some category of risk, with P.
    [Show full text]
  • Chians in Nova Scotia,. by J. \V. DAWSON, LL.D., F.R.S
    440 Dawson-New Oarboniferous Batmchians of Nova Scotia. ART. XLVIII.-On a Recent Di~covery of Oarbo?Jifero1.l.s Batra­ chians in Nova Scotia,. by J. \V. DAWSON, LL.D., F.R.S. 1. General Remarks. THE erect Sigillarire enclosed in the f!andstone overlying coal-group 15 of Section XV, Division 4 of the SOIl.th Joggins section, are perhaps the most remarkable repositories ever dis­ covered of the remains of Paleozoic land animals. As I have shown in discussing their character in my memoirs on the South Joggins Coal FOl'mation,* and my "Acadian Geology," some of these trees became em bedded in sandy deposits, and being rendered hollow by decay of their inner bark and the crumbling of their woody axes, remained for a long time as open holes or pits, gradually filling with vegetable debris and the wash of rains and land floods. They thus became places of habitation for land snails and millepedes, and pit-falls into which the smaller batrachians, prowling for prey among the undergrowth of the coal forest, fell and were unable to extri­ cate themselves. In this way the successive layers of deposit became stored with skeletons of batrachians which they have retained in an admirable st.ate of preservation. Onlrone sandstone at the Joggins is known to contain these reptiliferous trees, though erect Sigillarire are known at. more than sixty different levels, and many of these erect stumps have been broken up in the hope of making such discoveries. In the past summer, however, shells of Pupa vetustu were found bv Mr.
    [Show full text]
  • Maine's Endangered and Threatened Plants
    University of Southern Maine USM Digital Commons Maine Collection 1990 Maine's Endangered and Threatened Plants Maine State Planning Office Follow this and additional works at: https://digitalcommons.usm.maine.edu/me_collection Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Forest Biology Commons, Forest Management Commons, Other Forestry and Forest Sciences Commons, Plant Biology Commons, and the Weed Science Commons Recommended Citation Maine State Planning Office, "Maine's Endangered and Threatened Plants" (1990). Maine Collection. 49. https://digitalcommons.usm.maine.edu/me_collection/49 This Book is brought to you for free and open access by USM Digital Commons. It has been accepted for inclusion in Maine Collection by an authorized administrator of USM Digital Commons. For more information, please contact [email protected]. BACKGROUND and PURPOSE In an effort to encourage the protection of native Maine plants that are naturally reduced or low in number, the State Planning Office has compiled a list of endangered and threatened plants. Of Maine's approximately 1500 native vascular plant species, 155, or about 10%, are included on the Official List of Maine's Plants that are Endangered or Threatened. Of the species on the list, three are also listed at the federal level. The U.S. Fish and Wildlife Service. has des·ignated the Furbish's Lousewort (Pedicularis furbishiae) and Small Whorled Pogonia (lsotria medeoloides) as Endangered species and the Prairie White-fringed Orchid (Platanthera leucophaea) as Threatened. Listing rare plants of a particular state or region is a process rather than an isolated and finite event.
    [Show full text]