Smg2010 Online Catalog.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification and Quantification of Pinitol in Selected Anti-Diabetic Medicinal Plants by an Optimized HPTLC Method * Indumathi, P
Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991 Research Paper Chemistry Identification and Quantification of Pinitol in Selected Anti-Diabetic Medicinal Plants by an Optimized HPTLC Method * Indumathi, P. ** Dr. Shubashini K. Sripathi *** Poongothai,G **** Sridevi V. *, **, ***, **** Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043, Tamilnadu, India ABSTRACT A high performance thin layer chromatography method was validated for the quantification of insulinomimetic pinitol in the extracts of anti diabetic plants. The alcoholic extract of selected anti diabetic plants was chromatographed on silica gel 60 F254 plates with CHCl3 :MeOH:H2O, 6:3.5:0.5 as mobile hase.p Detection and quantification was performed by densitometry scanning at λ=500 nm. The method provides a good resolution of pinitol from the ethanolic extract of dried leaves of selected plants. Pinitol was identified in ten indigenous medicinal plants Keywords : HPTLC, anti diabetic, Pinitol Introduction: silver nitrate solution. It was then placed in an oven for half Plants are an immediate source of medicines. In view of the an hour. Development of an orange brown spot for pinitol was large number of active principles produced by them one can noted and its Rf was recorded. only wonder at the incredibly vast reserves of ingredients that are still largely untapped. Numerous biomarkers are available Preparation of spray reagent - Ammoniacal silver nitrate for quantification of plant extracts which are potential candi - solution: dates of herbal formulations. Pinitol is an anti diabetic bio- A equal amounts of Tollen’s reagent I and II were mixed to- marker. -
03 30472Rsj081016 16
Researcher 2016;8(10) http://www.sciencepub.net/researcher Physicochemical properties of fresh and dried of feijoa fruit (Acca sellowiana) Sahar Kabiri1, Farzad Gheybi2, Maryam Jokar1, Shadi Basiri2 1-Department of Food science and technology, Islamic Azad University, Damghan, Iran 2- Assistant Professor, Food Science and Technology, Khorasan-e-Razavi Agricultural and Natural Resources Research and Education Center, Mashad - Iran [email protected] Abstract: The present investigation was carried out to analyze different physicochemical characteristics of fresh and dried feijoa fruit. The study reveals that the physical characteristics of fruit, that is, color, texture and density were significantly affected by hot air drying. The chemical parameters of fruit determined, total soluble solid (TSS), acidity, pH, moisture, ash content, carbohydrate, protein, fat, ascorbic acid, total phenol, flavonoids and iodine content also evaluated as chemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by drying so with the various nutritional benefits, the fresh and dried fruits could be recommended for commercial exploitation and preparation of different value added products. [Sahar Kabiri, Farzad Gheybi, Maryam Jokar, Shadi Basiri. Physicochemical properties of fresh and dried of feijoa fruit (Acca sellowiana). Researcher 2016;8(10):16-22]. ISSN 1553-9865 (print); ISSN 2163-8950 (online). http://www.sciencepub.net/researcher. 3. doi:10.7537/marsrsj081016.03. Keywords: feijoa; drying; composition; physical properties; chemical properties 1. Introduction Waterhouse et al. 2013; Taylor et al. 2007; Weston The feijoa (Acca sellowiana) also known as the 2010) Moreover, an antioxidant activity of feijoa plant Pineapple Guava and Guavasteen is an evergreen bush has been described (Vuotto et al., 2000) (Basile et al. -
H3.3 Macaronesian Inland Cliff
European Red List of Habitats - Screes Habitat Group H3.3 Macaronesian inland cliff Summary The perennial vegetation of crevices and ledges of cliff faces in Macaronesia away from coastal salt-spray is of very diverse character - some, for example, dominated by succulents, others rich in ferns and bryophytes characteristic of shaded situations - and it includes several hundreds of taxa endemic to the archipelagoes. The main threats are mountaineering and rock climbing, outdoor sports and leisure activities, and construction of infrastructures such as roads and motorways. Synthesis There is no evidence of significant past reductions, either in the last 50 years or historically, and also future prospects are good, as no serious threats are envisaged, besides touristic/leisure activities and putative faulty environmental impact assessments that may overlook this habitat as valuable. Reduction in quantity, reduction in quality and criteria of geographic distribution yield the Least Concern (LC) category. In spite of the LC category, conservation policy and management should restrict to the maximum any threat to or reduction of the habitat, as it has a very high conservation value, because of high endemism of species and communities with many local and regional variaties. Overall Category & Criteria EU 28 EU 28+ Red List Category Red List Criteria Red List Category Red List Criteria Least Concern - Least Concern - Sub-habitat types that may require further examination Four general subtypes can be distinguished based on species composition and different ecological conditions. However, at present, no data are available to carry out an individual assessment of each of them. In the future, if detailed plot sampling has been carried out, such an evaluation may be possible. -
Protabase Record Display Datura Stramonium L
Protabase Record display www.prota.org Datura stramonium L. Protologue Sp. pl. 1: 179 (1753). Family Solanaceae Chromosome number 2n = 24 Vernacular names Thorn apple, green thorn apple, Jimson weed, Jamestown weed, devil’s apple, devil’s trumpet, stramonium (En). Pomme épineuse, stramoine, datura, feuille du diable, herbe du diable (Fr). Figueira do inferno, pomo espinhoso, erva dos bruxos, palha verde, estramonio (Po). Muranha (Sw). Origin and geographic distribution Datura stramonium is native to the Americas and has been introduced in many tropical, subtropical and even temperate regions. It is a naturalized weed in many African countries, but is probably seriously under-reported. Uses Datura stramonium and Datura metel L. have largely similar medicinal uses throughout the world. The most widely known use of Datura stramonium and of other Datura species is for relieving asthma, cough, tuberculosis and bronchitis by smoking the dried leaves, roots or flowers. ‘Asthma cigarettes’ have been shown to be very effective in some cases, but in other cases they had little or no effect. Cigarettes made with the leaves are also used to treat Parkinson’s disease. A decoction or infusion of leaves is given as a sedative to mental and schizophrenic patients. The leaves are applied as a dressing to cure rheumatic pain, swellings, wounds, gout, burns, ingrown toe-nails, fungal infections, tumours and ulcers. Dried pulverized leaves are dusted on wounds or applied after mixing the powder with fat or Vaseline. In DR Congo pounded fresh root and fresh leaves are soaked in water and the liquid is given in enema as an abortifacient. -
Approved Plant List 10/04/12
FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L -
Nightshade”—A Hierarchical Classification Approach to T Identification of Hallucinogenic Solanaceae Spp
Talanta 204 (2019) 739–746 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta Call it a “nightshade”—A hierarchical classification approach to T identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures ∗ Samira Beyramysoltan, Nana-Hawwa Abdul-Rahman, Rabi A. Musah Department of Chemistry, State University of New York at Albany, 1400 Washington Ave, Albany, NY, 12222, USA ARTICLE INFO ABSTRACT Keywords: Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both Hierarchical classification atropine and scopolamine are used clinically, but they are also important in a forensics context because they are Psychoactive plants abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which Seed species identifiction are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in Metabolome profiling both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as Direct analysis in real time-mass spectrometry ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow Chemometrics is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi- cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of having it be based on discrimination between species using a single flat classification model. Accordingly, the seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS) with minimal sample preparation required. -
An Overview of Plant Resources and Their Economic Uses in Nigeria
Global Advanced Research Journal of Agricultural Science (ISSN: 2315-5094) Vol. 4(2) pp. 042-067, February, 2015. Available online http://garj.org/garjas/index.htm Copyright © 2015 Global Advanced Research Journals Review An overview of plant resources and their economic uses in Nigeria *Kutama 1, A. S., 1Dangora, I. I., 1Aisha, W. 1Auyo, M. I., 2 Sharif, U. 3Umma, M, and 4Hassan, K. Y. 1Department of Biological Sciences, Federal University, Dutse. P.M.B 7156-Nigeria 2Department of Biological Sciences, College of Arts and Sciences, Kano 3Department of Biology, Kano University of Science &Technology , Wudil . 4 Department of Biology, Sa’adatu Rimi College of Education, Kano Accepted 17 February, 2015 Nigeria is an agrarian country blessed with almost uncountable number of plant species; in water, on land e.t.c. Plants are and remain the indispensable gift of nature given to mankind whose uses were discovered by man even before civilization. This paper reviews some important aspects of plants which include their origin, classification, morphology, as well as economic uses especially in the Nigerian context. It is pertinent therefore that students, researchers as well as readers who are interested in plants would find this paper very educative as it explore majority of plant species and their economic uses in Nigeria. Keyword: plant species, economic uses, taxonomy, morphology, Nigeria. INTRODUCTION Evolution of Plant Over 350 million years ago, the first living organism which mosses, hornworts and liverworts. The bryophytes which resembled a plant appeared. It was the blue - green algae represented the basal group in the evolutionary history of (Cyanophyceae) which lived in the sea and can still be plants may have set the stage for the colonization of the found in many water bodies today. -
Feijoa Sellowiana Guava1 Edward F
Fact Sheet ST-249 November 1993 Feijoa sellowiana Guava1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Feijoa sellowiana, or Pineapple Guava, is a gray-green evergreen shrub or tree (depending on pruning) which produces small, tasty fruit in late summer and early fall (Fig. 1). The plants can be pruned to form a hedge or a small tree and will withstand several degrees below freezing. It is native to South America. The plant is not used nor is it commonly available in the eastern U.S. GENERAL INFORMATION Scientific name: Feijoa sellowiana Pronunciation: fay-JOE-uh sell-oh-wee-AY-nuh Figure 1. Young Guava. Common name(s): Guava, Feijoa, Pineapple Guava Family: Myrtaceae USDA hardiness zones: 8 through 11 (Fig. 2) Foliage Origin: not native to North America Uses: fruit tree; hedge; screen; specimen; no proven Leaf arrangement: opposite/subopposite (Fig. 3) urban tolerance Leaf type: simple Availability: generally available in many areas within Leaf margin: entire its hardiness range Leaf shape: elliptic (oval); ovate Leaf venation: pinnate DESCRIPTION Leaf type and persistence: evergreen Leaf blade length: 2 to 4 inches; less than 2 inches Height: 10 to 15 feet Leaf color: green Spread: 10 to 15 feet Fall color: no fall color change Crown uniformity: irregular outline or silhouette Fall characteristic: not showy Crown shape: round; spreading; upright Crown density: dense Growth rate: medium Texture: medium 1. This document is adapted from Fact Sheet ST-249, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: November 1993. -
080057-13.020.Pdf
' ttolaq orlo{4snquo g Japunselou aas ereq peJeplsuoJlou are slueld ssaql '(€986I 'selBr\\ tnq eloo3) Er.rolcl^pu" eITBrsnVqlnoS rllnoS ,teN ur pezllErnl€uosle sr DUDlqog 'pernbar sr oluts sqt ur Suurnccosetcads aqt;o ,rerAerFcrluc p'elFllsnV Iuetsei&ur spee,{\FtueuuoJl^ue snoues'eluoJeqol IeuualodJql e^EqJo'JrE setcedsouotqog stq El?l eseql.Joemlelcueruou oq1 Sutp:t8el uolsnJuotpeltalel osp suorle8qsolul 'tII€IsnV roqunc (tg6I) frad Jo (986I ) u3arg f,q:og pelunoccelou uxut Bunueserda:aseql Jo o^{l 'Je,re,troq',&eq8te;E urelsod\ ur perncJo ouolqog go salcadsaeJqt tEqt pal€clput SoJCpuE.IoqlnE lslu "l,t\uD eq1,{q suorte,uesqoplerd r?rlullsnvurelsa/(\ uI Je) o4r4srp g'sor:eds puorase 3o oruasa:d aql pep.rore.r(L86I) tu:e4 pue (5861)uear9 q8noqlP'(t66I uuoC't66I u,ti\olg? soru?t'q's9861 'oiruls 'B 'DuDqDg e1oo3 3 a) ullEllsnv ur 8ur:rncco se 3o sercedseuo pezluSocer,{lpraue8 o^€q sasnsusJpu€ sr?Jo[IuPITEISnv luaJeu pJqsllqEtsa,{11nj uaeq lou sEq aBeJspulpezll?JnlEu 'ell€rsnv ,{uuurrog erntulcueuroutf,eJ]oc eql ol peJnpoJlulsdnoJ3 luuld :eq1ofuPtu uI sV ?ll€Jlsnv ur pezrlurnl€ueuroraq e^pq ol eeeouptJlu€JltJV utJqlnosJo e:ouaB3o raqrunue;o a\to st DuolqDg uournpoJtul 'pessnssrposlE sl ErlerlsnVujelse/i\ ulse]f,adsouolqpBpezIIEJntuuol I.,!\PCJe>l(lIV)Dptr|s gpue IMSCJe>lt2qJltlp'g seu"u eqt Jo uorl€crlddrsrrupuerdsaprrn aq; pept,torderu uxq esaql:o1 sdeuruoDnqlJlslp pu€ fol V sr,\^e'IID(J'I)DloL[lqu re.^l,.,'q}re) ( J rurng),solrqr7 gpuu Buerd5( JpuV)r?rt gloo^{S o11olusn?uoB ;pezrusoce:e.IE EXu1 eeJql pu? pe.,'rol^atsI uIlEJlsnVuJe1se16 ut tzttrlqrg 3o salceds ',(]OOd p?zrluJuuueqt ;o .{urouoxrl eqI Z6Z-|8Z :(Z) El DtsltttN eIIEJtsnVuralsol\A ul Sutunc:o (eeeceptJl)DuDlqog;osarceds pezllurnlvu aqtJo /rdel^ej cltuouoxBl V C I'3uIuuD1,14 1g'tqcsdal lreJlsqY 'Err{v qlnos u^\oJ adr] 'clnlllsul 's€1,,luoruorlll] 'LX Btg 3rE^trd In)rrrnlo8IEUontN uinrrrqriH uoldluo). -
Aeonium Webb & Berthelot in Gibraltar
Comunicaciones 1 HE GENUS AEONIUM WEBB & BERTHELOT IN GIBRALTAR Brian M. Lamb /Conservador del Gibraltar Botanic Gardens The genus Aeonium Webb & Berthelot belongs to the family Crassulaceae often refered to as the Houseleek family. Some 32 species are endemic to the Canary Islands, two to the Cape Verde Islands, two to Madeira, one to Morocco and possibly today three on the other side of Africa from northem Kenya through to Arabia. The three species that can be seen in Gibraltar are: A. undulatum native to Gran Canaria A. haworthii native to Tenerife A. arboreum native to Morocco. The two Canarian Aeoniums have almost certainly been introduced by man, probably during the latter part of the 19th century, particularly A. ~indulatumwhich is usually only found as a cultivated plant grown only on a small scale. However, A. haworthii is to be found in a number of places in Gibraltar, as naturalised colonies growing from pockets or fissures in the limestone rock, particularly on the eastem side, southwards from Catalan Bay, while on the westem side a sizeable colony exists below Bleak House and a small one is now forming near Camp Bay, growing in association with native Sedum. A. haworthii seems to be quite a popular patio and verandah plant, as it is not a giant growing species, and has lovely red edged glaucous leaves. The flower colour is variable, from white or pale yellow through to rose-pink. The seeds ofAeonium are very small, as with most members of the family Crassulacease, produced in great abundance, and are easily distributed by the wind. -
Vicariance, Climate Change, Anatomy and Phylogeny of Restionaceae
Botanical Journal of the Linnean Society (2000), 134: 159–177. With 12 figures doi:10.1006/bojl.2000.0368, available online at http://www.idealibrary.com on Under the microscope: plant anatomy and systematics. Edited by P. J. Rudall and P. Gasson Vicariance, climate change, anatomy and phylogeny of Restionaceae H. P. LINDER FLS Bolus Herbarium, University of Cape Town, Rondebosch 7701, South Africa Cutler suggested almost 30 years ago that there was convergent evolution between African and Australian Restionaceae in the distinctive culm anatomical features of Restionaceae. This was based on his interpretation of the homologies of the anatomical features, and these are here tested against a ‘supertree’ phylogeny, based on three separate phylogenies. The first is based on morphology and includes all genera; the other two are based on molecular sequences from the chloroplast genome; one covers the African genera, and the other the Australian genera. This analysis corroborates Cutler’s interpretation of convergent evolution between African and Australian Restionaceae. However, it indicates that for the Australian genera, the evolutionary pathway of the culm anatomy is much more complex than originally thought. In the most likely scenario, the ancestral Restionaceae have protective cells derived from the chlorenchyma. These persist in African Restionaceae, but are soon lost in Australian Restionaceae. Pillar cells and sclerenchyma ribs evolve early in the diversification of Australian Restionaceae, but are secondarily lost numerous times. In some of the reduction cases, the result is a very simple culm anatomy, which Cutler had interpreted as a primitively simple culm type, while in other cases it appears as if the functions of the ribs and pillars may have been taken over by a new structure, protective cells developed from epidermal, rather than chlorenchyma, cells. -
Aloe Scientific Primer International Aloe Science Council
The International Aloe Science Council Presents an Aloe Scientific Primer International Aloe Science Council Commonly Traded Aloe Species The plant Aloe spp. has long been utilized in a variety of ways throughout history, which has been well documented elsewhere and need not be recounted in detail here, particularly as the purpose of this document is to discuss current and commonly traded aloe species. Aloe, in its various species, can presently and in the recent past be found in use as a decorative element in homes and gardens, in the creation of pharmaceuticals, in wound care products such as burn ointment, sunburn protectant and similar applications, in cosmetics, and as a food, dietary supplements and other health and nutrition related items. Recently, various species of the plant have even been used to weave into clothing and in mattresses. Those species of Aloe commonly used in commerce today can be divided into three primary categories: those used primarily in the production of crude drugs, those used primarily for decorative purposes, and those used in health, nutritional and related products. For reference purposes, this paper will outline the primary species and their uses, but will focus on the species most widely used in commerce for health, nutritional, cosmetic and supplement products, such as aloe vera. Components of aloe vera currently used in commerce The Aloe plant, and in particular aloe vera, has three distinct raw material components that are processed and found in manufactured goods: leaf juice; inner leaf juice; and aloe latex. A great deal of confusion regarding the terminology of this botanical and its components has been identified, mostly because of a lack of clear definitions, marketing, and other factors.