Optically Addressed Light Modulators Using an Organic Photovoltaic Layer Thomas Regrettier

Total Page:16

File Type:pdf, Size:1020Kb

Optically Addressed Light Modulators Using an Organic Photovoltaic Layer Thomas Regrettier Optically addressed light modulators using an organic photovoltaic layer Thomas Regrettier To cite this version: Thomas Regrettier. Optically addressed light modulators using an organic photovoltaic layer. Mi- cro and nanotechnologies/Microelectronics. Université de Strasbourg, 2017. English. NNT : 2017STRAD038. tel-02917964 HAL Id: tel-02917964 https://tel.archives-ouvertes.fr/tel-02917964 Submitted on 20 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE 269 MSII Laboratoire ICube UMR 7357 THÈSE présentée par : Thomas REGRETTIER Soutenue le : 8 décembre 2017 Pour obtenir le grade de : Docteur de l’Université de Strasbourg Discipline/ Spécialité: Sciences de l'Ingénieur, Électronique et Photonique Modulateurs de lumière à commande optique composés d'une couche photovoltaïque organique Optically addressed light modulators using an organic photovoltaic layer THÈSE dirigée par : M. HEISER Thomas Professeur, Université de Strasbourg, France RAPPORTEURS: M. NEYTS Kristiaan Professor, Ghent University, Belgium M. COLSMANN Alexander Doctor, Karlsruhe Institute of Technology (KIT), Germany AUTRES MEMBRES DU JURY: Mme. KACZMAREK Malgosia Professor, University of Southampton, United Kingdom M. ADAM Philippe Docteur, RDS Photonique, DGA/MRIS, France M. MERY Stéphane Chargé de recherche, IPCMS (CNRS), France Science is made up of so many things that appear obvious after they are explained. Frank Herbert, Dune Acknowledgments Acknowledgments I would like to express my appreciation to all of you who make our common work together possible. This thesis is part of a collaborative work between the University of Southampton and the University of Strasbourg. The UK-France PhD programme jointly managed by DSTL and DGA funded it. Thank you for providing such opportunities. I am delighted to welcome and thank the members of my jury particularly Kristiaan Neyts and Alexander Colsmann that accept to assess this manuscript. A special thought for Malgosia Kaczmarek with whom I look forward to continuing this work. I further wish to acknowledge the notable role of Giampaolo D'Alessandro and Christopher Burgess who have a different, but most of all, very interesting and inspiring ways of reasoning. I do not forget to thank the scientific workforce of Southampton, especially Matthew Proctor who welcomed me to this magnificent city, as well as Nina Podoliak, Andrew Acreman and Elena Mavrona. I apologize to the British readers if they feel offended, but I need to move on to a more subtle and elegant language. Je tiens à remercier Philippe Adam et Stéphane Méry, membres francophones de mon jury d'avoir montré de l'intérêt pour mon travail. Je tiens surtout à exprimer ma reconnaissance aux personnes qui m'ont encadré lors de mon passage au laboratoire, en commençant par le principal instigateur de ce projet, Thomas Heiser, sans qui rien n'aurait été possible. Tu as des qualités rares pour un encadrant, tu t'imposais, malgré un emploi du temps chargé, de suivre l'avancement de mes travaux de manière hebdomadaire, afin de me donner tes conseils et tu t'es toujours rendu disponible lorsque j'en avais besoin. 1 Acknowledgments Je dois aussi remercier Patrick Lévêque d'avoir pris sur son temps et de m'avoir très bien formé lorsque j'étais stagiaire. Pour finir une course de fond, l'important, c'est de donner la bonne impulsion au départ. Dans la même idée, je tiens à exprimer toute ma reconnaissance aux enseignants qui m'ont permis d'en arriver là. Pour m'avoir intéressé à la physique des composants, je remercie les professeurs Adele Carradò et Daniel Mathiot. Sans oublier tous les autres intervenants de la licence ESA et du master MNE, Denis Muller en tête, qui est une équipe pédagogique à lui tout seul. Un grand merci à mes camarades de promotion Nicolas Bresson, Hugo Machado, Jovan Nikolic et Jérémy Schlachter, je vous souhaite ce qu'il y a de meilleur pour le futur. J'ai aussi eu la chance d'intervenir à l'IUT de Schiltigheim durant ma thèse grâce à deux de mes anciens enseignants : Denis Montaner et Gérald Ferblantier. Je vous suis reconnaissant de m'avoir donné cette opportunité. Je remercie aussi le duo de choc composé de Jérémy Bartringer et de Nicolas Zimmerman qui m'a aidé à mettre en place des bancs de mesure ainsi que le reste de l'équipe administrative et technique du laboratoire : Marina Urban, Nicolas Colin, Stéphane Roques, Sébastien Schmitt et Florent Dietrich ("Liewer met de gläser ahnstosse àls met de käpf"). J'aimerais aussi remercier l'ensemble des gens avec qui j'ai pu avoir des discussions intéressantes et qui ont pu m'aider, d'une façon ou d'une autre, à débloquer des situations qui semblaient impossibles à résoudre. Je veux bien sûr parler de Nicolas Leclerc, Caroline Eckert, Rony Bechara, Frédéric Lincker, Sadiara Fall et Laure Biniek. J'aurai toujours une pensée pour mes collègues doctorants, qui ont été, ou sont encore en thèse au laboratoire : Laurent Osberger, Abdellatif Chelouche, Nacereddine Boubiche, Octavian Maciu, Maroua Garci, Olzhas Ibraikulov, Tianyan, Imane Malass, Peter Lienerth, Rémy Claveau et Fitsum Aweke. Pour finir, je souhaite remercier ma famille, ma mère, ainsi que mes deux sœurs Pauline et Marie, qui m'ont soutenu durant cette période. 2 Acknowledgments À Sarah et à ma fille Liv : comme je n'ai jamais su exprimer mes sentiments aux gens qui comptent le plus dans ma vie, je préfère laisser ce travail aux personnes compétentes. Comme l'a si bien dit Jean d'Ormesson: "Tout le bonheur du monde est dans l'inattendu." 3 Contents Contents 1 Introduction ...................................................................................... 9 2 SCIENTIFIC BACKGROUND .................................................................... 14 2.1 Optically Addressed Spatial Light Modulators ....................................... 14 2.2 Liquid crystals .......................................................................................... 16 2.2.1 Propagation of light through a birefringent medium ...................... 16 2.2.2 Liquid crystalline state ..................................................................... 18 2.3 Alignment layer ........................................................................................ 19 2.3.1 Operating principle of LC devices ....................................................20 2.3.2 Liquid crystal devices driven by a DC field ...................................... 24 2.4 Photoconductive layer.............................................................................. 26 2.5 Organic semiconductors .......................................................................... 29 2.5.1 Overcoming the exciton high binding energy and small diffusion length in organic semiconductors ...................................................................30 2.6 Thesis in context ...................................................................................... 32 3 State of the art ................................................................................. 34 3.1 Bulk Semiconductor Crystals ................................................................... 34 3.1.1 Semi-Insulating GaAs (SI GaAs) ...................................................... 35 3.1.2 Silicon carbide (SiC) ......................................................................... 36 3.1.3 Photorefractive crystals .................................................................... 38 3.1.4 Lithium niobate (LiNbO3), a “photovoltaic substrate” .................... 38 3.2 Inorganic thin films ................................................................................ 40 3.2.1 Amorphous hydrogenated silicon .................................................... 41 3.2.2 Zinc Oxide (ZnO) .............................................................................. 42 3.3 Organic thin films .................................................................................... 43 3.3.1 PVK doped with TNF or C60 ............................................................. 44 4 Contents 3.4 Conclusion ............................................................................................... 47 4 Methods & materials ....................................................................... 48 4.1 Materials .................................................................................................. 48 4.1.1 P3HT ................................................................................................ 48 4.1.2 PC61BM ............................................................................................. 48 4.1.3 PEDOT:PSS ...................................................................................... 49 4.1.4 PEIE.................................................................................................. 50 4.1.5 E7 ....................................................................................................... 51 4.2 Organic OASLM Fabrication ................................................................... 52 4.3 Characterization
Recommended publications
  • Chapter 19: the New Crystallography in France
    CHAPTER 19 The New Gystallography in France 19.1. THE PERIOD BEFORE AUGUST 1914 At the time of Laue’s discovery, research in crystallography was carried onin France principally in two laboratories, those of Georges Friedel and of Frederic Wallerant, at the School of Minesin St. etienne and at the Sorbonne in Paris, respectively. Jacques Curie, it is true, also investigated crystals in his laboratory and, together with his brother Pierre, discovered piezoelectricity which soon found extensive appli- cation in the measurement of radioactivity; but he had few students and formed no school. Among the research of Georges Friedel that on twinning is universally known and accepted, as are his studies of face development in relation to the lattice underlying the crystal structure. Frederic Wallerant’s best known work was on polymorphism and on crystalline texture. In 1912 both Friedel and Wallerant were deeply interested in the study of liquid crystals, a form of aggregation of matter only recently discovered by the physicist in Karlsruhe, 0. Lehmarm. Friedel’s co-worker was Franc;ois Grandjean, Wallerant’s Charles Mauguin. Laue, Friedrich and Knipping’s publication immedi- ately drew their attention, and Laue’s remark that the diagrams did not disclose the hemihedral symmetry of zincblende prompted Georges Friedel to clarify, 2 June 1913, the connection between the symmetries of the crystal and the diffraction pattern. If the passage of X-rays, like that of light, implies a centre of symmetry, i.e. if nothing dis- tinguishes propagation in a direction Al3 from that along BA, then X-ray diffraction cannot reveal the lack of centrosymmetry in a crystal, and a right-hand quartz produces the same pattern as a left- hand one.
    [Show full text]
  • 993 Friedel Memorial Lecture
    View Article Online / Journal Homepage / Table of Contents for this issue 993 FRIEDEL MEMORIAL LECTURE. By J. M. CRAFTS,Professor. THEtomb of Friedel at Montauban bears the inscription : CHARLESFRIEDEL nB A, Strasbourg le 12 Mars 1832 dkc6d6 B Montauban le 20 Avril 1899. Membrc de 1’Institut. “Le juste vivra par la foi La nihmoire du juste sera en b6n6diction.” So far as a tombstone can bear faithful witness to a life, this short description is true of a man who chose science for his occupation, and strove to do his duty towards God and man with keen observation of things temporal and a simple faith in things eternal. We, as members of the Chemical Society, are chiefly concerned with his contributions to science, but enumeration of these will not be com- plete unless it is said that high among his contributions to the advance- ment of science stands the influence of a very beautiful character and of a well-balanced judgment upon the men of his time, even extending beyond his own nation, and during the excited period after the French national disaster, serving as a connecting link between the scientific reasoning of his countrymen and the spread of philosophy abroad, The influence of individuals and of schools upon the patronage of the younger men for educational positions is peculiarly important in Published on 01 January 1900. Downloaded by University of Illinois at Chicago 23/10/2014 16:45:38. France. The destiny of a student of science depends greatly upon the leader whom he chooses to follow, and there is sufficient cohesion among the members of a school to make it an effective body.
    [Show full text]
  • La « Dynastie Friedel » : Une Grande Lignée De Scientifiques
    La « dynastie Friedel » : une grande lignée de scientifiques Olivier Hardouin Duparc ([email protected]) Laboratoire des Solides Irradiés (UMR CNRS-CEA-X), École polytechnique, 91128 Palaiseau Charles, Georges, Edmond, Jacques, Les origines, de signer allégeance à l’empereur Napoléon III en cas de succès l’orientèrent et plusieurs autres : résumer jusqu’à Charles Friedel (1832-1899) vers la faculté des sciences. Hésitant entre la « dynastie scientifique Friedel » Des Friedel alsaciens luthériens étaient la cristallographie avec Pasteur et la chimie est une gageure que je tente tanneurs de père en fils jusqu’à ce que, à la avec Charles-Adolphe Wurtz, il choisit néanmoins pour proposer faveur de la Révolution, l’un d’entre eux, Wurtz en 1854 tout en devenant attaché à au lecteur quelques jalons prénommé Jean-Jacques, devienne négociant la collection de minéralogie de l’École des introductifs à cette lignée si célèbre en cuir et épouse la fille d’un instituteur mines de Paris (Mines ParisTech), sans doute dans le monde de la chimie, de la calviniste et organiste (les recommandations en 1855, collection dont il fut nommé minéralogie, de la cristallographie, de Jean Calvin en la matière n’étaient plus conservateur en 1856. de la physique des solides considérées comme fondamentales). Ils Son premier travail concerne les diamants mirent leur fils Charles au prestigieux (1856). C.F. approfondit entre autres, la et de la plasticité des matériaux. Gymnase Jean Sturm de Strasbourg puis le connaissance de la chimie du silicium, basée Jacques Friedel se considérait marièrent à la fille du doyen de la faculté sur sa tétravalence (on disait tétratomicité), lui-même comme une « graine des sciences de Strasbourg, Georges montrant qu’elle était presque aussi riche de mandarin », au meilleur sens Duvernoy.
    [Show full text]
  • Origines Et Chronique De La Famille Bois-Friedel
    1 Origines et chronique de la famille BOIS-FRIEDEL 2 LES ANCETRES DE LA FAMILLE BOIS – FRIEDEL Origines et chronique de la famille Bois-Friedel Avant – propos °°°°°°°° Les récits qui suivent visent à mettre un peu de chair autour de ce squelette qu’est un arbre généalogique , mais ne le remplacent pas . Nos informations sont en effet très inégales en précision et en intérêt suivant les branches et les périodes . Il ne faudra donc pas s’étonner si nous nous attardons sur certains personnages et mentionnons à peine les autres . Les quatre lignées que nous suivrons font apparaître un trait essentiel du 19ème siècle . Vers 1880 , chacune d’elles est bien fixée depuis des siècles respectivement dans la Drôme , le Gard , à Strasbourg et à Mulhouse . En 1889 le mariage d’Henri Bois et Lucie Friedel achève de les réunir , illustrant une nouvelle mobilité sociale et géographique . Ce travail étant collectif , qu’on nous pardonne s’il est parfois décousu ou répétitif . °°°°°°°° 3 LES ANCETRES D’HENRI BOIS Les ancêtres paternels d’Henri BOIS sont originaires de la Drôme , un petit village à une dizaine de kilomètres de la Motte-Chalançon : ARNAYON (26470) . C’est une région aride , encore aujourd’hui : à 1000 m. d’altitude , entre la Serre Malivert et la Montagne de Serre-Longue , l’on débouche sur une petite commune sans véritable chef-lieu , dispersée entre plusieurs hameaux et lieux-dits . Au centre , sur une colline , à l’écart , une église catholique et son cimetière , un petit temple protestant , et la mairie . Le patronyme BOIS y reste fréquent , comme en témoignent les tombes du petit cimetière et les nombreuses lignées qui nous seraient plus ou moins apparentées : les ancêtres BOIS étaient de petits paysans éleveurs de moutons et de chèvres , et cultivaient l’épeautre , céréale du pauvre .
    [Show full text]
  • Crystallography News British Crystallographic Association
    Crystallography News British Crystallographic Association Issue No. 106 September 2008 ISSN 1467-2790 Annual Meeting Loughborough 2009 p6-9 Beamline I19 at Diamond p10 ISIS Second Target Station p11 The Spallation Neutron Source p12 Andrew Richard Lang FRS p14 Crystallography News September 2008 Contents From the President. 2 Council Members. 3 BCA Administrative From the Editor . 4 Office, David Massey, Northern Networking Puzzle Corner and Corporate Members. 5 Events Ltd. 1 Tennant Avenue, AGM Loughborough 2009. 6 College Milton South, East Kilbride, Glasgow G74 5NA Scotland, UK Timetable, AGM Loughborough 2009 . 8 Tel: + 44 1355 244966 Fax: + 44 1355 249959 e-mail: [email protected] Beamline I19 at Diamond. 10 CRYSTALLOGRAPHY NEWS is published quarterly (March, June, ISIS Second Target Station. 11 September and December) by the British Crystallographic Association, and printed by William Anderson and Sons Ltd, Glasgow. Text should The Spallation Neutron Source. 12 preferably be sent electronically as MSword documents (any version - .doc, .rtf or .txt files) or else on a PC disk. Diagrams and figures are most Andrew Richard Lang FRS. 14 welcome, but please send them separately from text as .jpg, .gif, .tif, or .bmp files. Items may include technical articles, news about people (e.g. ACA Meeting Knoxville. 15 awards, honours, retirements etc.), reports on past meetings of interest to crystallographers, notices of future meetings, historical reminiscences, York 2008. 17 letters to the editor, book, hardware or software reviews. Please ensure that items for inclusion in the December News from the Groups. 21 2008 issue are sent to the Editor to arrive before 25th October 2008.
    [Show full text]
  • Dades Històriques Sobre Els Cristalls
    COMMENTED CHRONOLOGY OF CRYSTALLOGRAPHY AND STRUCTURAL CHEMISTRY MIQUEL ÀNGEL CUEVAS-DIARTE1 AND SANTIAGO ALVAREZ REVERTER2 1GRUP DE CRISTAL·LOGRAFIA. UNIVERSITAT DE BARCELONA. C/MARTÍ AND FRANQUÈS S/N 08028 BARCELONA. SPAIN. 2 GRUP D'ESTRUCTURA ELECTRÒNICA. UNIVERSITAT DE BARCELONA. C/MARTÍ I FRANQUÈS 1-11, 08028 BARCELONA. SPAIN. Crystal comes from the Greek κρύσταλλος (krystallos), that means “ice”, from κρύος (kruos), "icy cold” or “frost” (VIII BC). The Greeks used the word krýstallos with a second meaning that designated "rock crystal", a variety of quartz. –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– On the occasion of the International Year of Crystallography, and of the centennial of the award of Nobel prizes related with the discovery of X-ray diffraction, the Library of Physics and Chemistry (Biblioteca de Física i Química) of the University of Barcelona organized in 2014 an exhibition on the historical evolution and the bibliographic holdings of these two closely related subjects. This chronology, far from being comprehensive, provided the conceptual basis for the exhibition, collecting dates, authors and main achievements. This summary is in part based on the following sources (a term in blue contains a link to the cited source): La Gran Aventura del Cristal. J. L. Amorós, ed. Universidad Complutense de Madrid, 1978. Historical Atlas of Crystallography, ed. J. Lima-de-Faria, The International Union of Crystallography, Dordrecht-Boston-London: Kluwer Academic Publishers, 1990. A través del cristal, M. Martínez Ripoll, J. A. Hermoso, A. Albert, eds., Chapter 2: "Una historia con claroscuros plagada de laureados Nobel". M. Martínez Ripoll, Madrid: CSIC, 2014. Early Days of X-Ray Crystallography. A. Authier. Oxford University Press, 2013.
    [Show full text]
  • La Cristallographie En 2014
    2014 Année Internationale de la Cristallographie Pascale Launois Journées du LPS, 11-12/02/2013 ONU – Union Internationale de Cristallographie Association Française de Cristallographie Comité de pilotage pour coordonner et promouvoir des évènements en 2014 [email protected] 20 janvier 2014 Journée inaugurale au siège de l’UNESCO à Paris CE DONT JE VAIS VOUS PARLER ● Le cristal : qu’est-ce que c’est ? De l’antiquité au début du 20ème siècle… ● La diffraction des rayons X : les avancées majeures de 1912 et 1913 ! Qu’est-ce que la diffraction ? Et l’espace réciproque ?? ● La cristallographie au 20ème siècle, au présent et au futur Quelques grandes découvertes ● Diffraction au LPS et dans le groupe « Rayons X » ● La cristallographie dans notre vie quotidienne REMERCIEMENTS ● Jean-Louis Hodeau, Voyage dans le cristal… et stylo « magique » ! ● René Guinebretierre, Histoire de la découverte de diffraction par les cristaux ● Tous les membres du groupe « Rayons X » Le cristal Qu’est-ce que c’est ? De l’antiquité au début du 20ème siècle… LE CRISTAL Les cristaux géants de la grotte de Naïca, au Mexique Découverte en 1999 LE CRISTAL Krystallos désigne la glace en grec Strabon (64 av JC- ca 24, géographe grec) nomme « krystallos » (glace) le quartz, minéral transparent. Le nom de quartz a été donné à la gangue accompagnant les filons métalliques, par les mineurs saxons, à la fin du moyen-âge. Cristallographie : terme introduit en 1723, par le savant Maurice-Antoine Capeller (1685-1769). Au cours du 18ème siècle le terme de cristal remplace celui de pierre angulaire. LE CRISTAL et l’antiquité Les 5 solides platoniciens Platon (philosophe grec, 428-348 av.
    [Show full text]
  • Aristocratic Culture and the Pursuit of Science: the De Broglies in Modern France
    Aristocratic Culture and the Pursuit of Science: The De Broglies in Modern France Isis 1997 Nye, Mary Jo Department of History, Oregon State University Originally published by: The University of Chicago Press on behalf of The History of Science Society and can be found at: http://www.jstor.org/action/showPublication?journalCode=isis Citation: Nye, M. J. (1997, September). Aristocratic Culture and the Pursuit of Science: The De Broglies in Modern France. Isis, 88(3), 397-421. Available from JSTOR website: http://www.jstor.org/stable/236150 Aristocratic Culture and the Pursuit of Science The De Broglies in Modern France By Mary Jo Nye* ABSTRACT Louis de Broglie received the Nobel Prize in Physics in 1929 following experimental confirmationof his theory of the wave properties of the electron. De Broglie was an anomaly among twentieth-centuryphysicists: he was a prince by birthwho would become the seventh duc de Broglie. What did it mean to be an aristocratin an age of science? This essay explores aristocraticculture in France in the early twentieth century and examines the family life, education, scientific practices, and social values of Louis de Broglie, his brotherMaurice, who was a distinguishedexperimental physicist, and their sister Pauline, who became a well-known novelist and literary scholar after her scientific interests were discouraged. DE BROGLIE IS A FAMILIARNAME in the history of quantumphysics, identified with the original theory of the wave nature of the electron and with the equation X = hlmv, in which the wavelength X is associated with Planck's quantum of action constant h and the electron's momentum mv.
    [Show full text]
  • TOURNAL MINERALOGICAL SOCIETY of AMERICA 329 Since
    TOURNALMINERALOGICAL SOCIETY OF AMERICA 329 since these are almost identical geometrically. The oriented inter- growths, by unmixing or otherwise, in some sulphide minerals also take place on those planes in which the atomic arrangement and spacing are almost alike, both minerals sharing the structural plane at the contact.36 Selective incrustations of the crystallization kind have been found only in nature and the origin of both these and the colloidal particle kind doesnot appear to have been previously recognized. The nearestapproach to an experimental example is in an observa- tion by Kreutz3Tthat parallelgrowths of NaNOs seemedto be more perfect and easy to obtain on the (110) form of barytocalcitethan on (001). ACKNOWLEDGMENT The writer takes this opportunity to express his gratitude to Mr. Herbert P. Whitlock for his courtesy in placing the facilities of the Department of Mineralogy in the American Museum of Natural History at his disposal and for assistancein the study of the crystallography of certain of the specimensdescribed. MEMORIAL OF GEORGES FRIEDEL J. D. H. DoNNev, The Johns Hopkins University. Another giant among crystallographershas passedaway. Georges Friedel our distinguished honorary life fellow died at Strasbourg, France,on December11, 1933.He was born at Mulhouse, France, on July 19, 1865.He was the son of the great French chemist and mineralogist, Charles Friedel (1832-1399)and the father of Ed- mond Friedel (1895- ), the third of a dynasty of scientists. GeorgesFriedel was graduated from the Paris Schoolof Mines, where he was the enthusiastic disciple of Ernest Mallard. He had a doublecareer: in the French Bureau of Mines, he reachedthe high office of Inspecteur gdnAraldes Mines; at the same time he was en- gagedin teaching and research,first at the Saint-Etienne School of Mines, Iater at the University of Strasbourg where he was ap- pointed the head of the Mineralogical fnstitute.
    [Show full text]
  • The Lie Theoretical Structure of Liquid Crystal Dynamics
    THE LIE THEORETICAL STRUCTURE OF LIQUID CRYSTAL DYNAMICS Tudor S. Ratiu Section de Mathématiques and Bernoulli Center Ecole Polytechnique Fédérale de Lausanne, Switzerland François Gay-Balmaz and Cesare Tronci Lie Theory and Mathematical Physics, CRM Montreal May 19-23, 2014 1 PLAN OF THE PRESENTATION Liquid crystal dynamics: two models Affine Euler-Poincaré reduction Geometry of non-visocous Ericksen-Leslie nematodynamics Nonviscous Eringen micropolar model Eringen implies Ericksen-Leslie In the variational formulation, the terms modeling dissipation have been eliminated. Reason: want to understand the geometric nature of these equations. The dissipative terms are added later. Think: Euler versus Navier-Stokes. Lie Theory and Mathematical Physics, CRM Montreal May 19-23, 2014 2 LIQUID CRYSTALS Tutorial: http://dept.kent.edu/spie/liquidcrystals/ by B. Senyuk Liquid crystal: state of matter between crystal and isotropic liq- uid. Liquid behavior: high fluidity, formation and coalescence of droplets. Crystal behavior: anisotropy in optical, mechanical, elec- trical, magnetic properties. Long-range orientational order in their molecules and sometimes translational or positional order. Many phases; differ by their structure and physical properties. History: Friedrich Reinitzer (1857 Prague – 1927 Graz) botanist and chemist. In 1888 he accidentaly discovered a strange behavior of cholesteryl benzoate that would later be called “liquid crystal". Work continued by physicist Otto Lehmann (1855 Konstanz – 1922 Karlsruhe), the “father" of liquid crystal technology. The discovery received plenty of attention at the time but due to no practical use the interest dropped soon. Lehmann was nominated 10 times (1913-22) for the Nobel Prize; never got it. Lie Theory and Mathematical Physics, CRM Montreal May 19-23, 2014 3 Georges Friedel (1865 Mulhouse – 1933 Strasbourg) mineralogist and crystallographer; in 1922 first classification of liquid crystals.
    [Show full text]
  • Ericksen-Leslie Equations
    NEMATODYNAMICS MODELS Tudor S. Ratiu School of Mathematics Shanghai Jiao Tong University, China François Gay-Balmaz, CNRS, ENS, Paris Cesare Tronci, University of Surrey, Guildford Levi Civita Lecture, October 6, 2016 1 PLAN OF THE PRESENTATION Liquid crystal dynamics: two models Euler-Poincaré reduction Affine Euler-Poincaré reduction Euler-Poincaré formulation for liquid crystal dynamics Eringen implies Ericksen-Leslie Analytical results All models are conservative: the terms modeling dissipation have been eliminated. The reason is that we want to understand the geometric nature of these equations. The dissipative terms can be added later. Think: Euler versus Navier-Stokes. Levi Civita Lecture, October 6, 2016 2 LIQUID CRYSTALS Tutorial: http://dept.kent.edu/spie/liquidcrystals/ by B. Senyuk Liquid crystal: state of matter between crystal and isotropic liquid. Liquid behavior: high fluidity, formation and coalescence of droplets. Crystal behavior: anisotropy in optical, mechanical, electrical, magnetic properties. Long-range orientational order in their molecules and sometimes translational or positional order. Many phases; differ by their structure and physical properties. History: Friedrich Reinitzer (1857 Prague – 1927 Graz) botanist and chemist. In 1888 he accidentaly discovered a strange behavior of cholesteryl benzoate that would later be called “liquid crystal". Work continued by physicist Otto Lehmann (1855 Konstanz – 1922 Karlsruhe), the “father" of liquid crystal technology. The discovery received plenty of attention at the time but due to no practical use the interest dropped soon. Lehmann was nominated 10 times (1913-22) for the Nobel Prize; never got it. Levi Civita Lecture, October 6, 2016 3 Georges Friedel (1865 Mulhouse – 1933 Strasbourg) mineralogist and crystallog- rapher; in 1922 first classification of liquid crystals.
    [Show full text]
  • Some Reflections on Defects in Liquid Crystals
    Some reflections on defects in liquid crystals: From Amerio to Zannoni and beyond Timothy J. Sluckin Mathematical Sciences, University of Southampton Highfield, Southampton SO17 1BJ, U.K. ∗ and Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy Submitted June 28 2018 Accepted July 11 2018 Abstract Dedicated to Claudio Zannoni on the occasion of his 70th birthday. I discuss some aspects of the history of dislocations, disclinations, and defects in liq- uid crystals, virtual and otherwise, placing Claudio Zannoni in the grand tradition of Italian science. Key Words: Liquid Crystals; Zannoni; Defects; Orcid ID: 0000-0002-9163-0061 Published in Liquid Crystals 2018, DOI: 10.1080/02678292.2018.1500652 ∗permanent address 1 1 Introduction In the summer of 1998, shortly after the death of Sir Charles Frank, David Dunmur, in his capacity as editor of Liquid Crystals Today, asked me to write a short biographical piece on Sir Charles, whom I had known slightly when I was a young scientist in Bristol. The effort of writing that article [1] led me into collaborative work with David and also Horst Stegemeyer on the history of liquid crystals [2, 3]. I was thus, almost certainly, diverted from more serious scientific study. If I had doubts as to whether this was a sensible route, they were magnified when Epifanio Virga suggested to me at one of his quite excellent meetings in Cortona that I would fall, so to speak, between two stools, respected neither as a good historian nor as a good mathematician. But by then the die was cast, although I now fear that Virga was on the right track.
    [Show full text]