Artificial Intelligence Illuminated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NI\SI\ I-J!'.~!.:}',-~)N, Vifm:Nu\ National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665
https://ntrs.nasa.gov/search.jsp?R=19830020606 2020-03-21T01:58:58+00:00Z NASA Technical Memorandum 83216 NASA-TM-8321619830020606 DECISION-MAKING AND PROBLEM SOLVING METHODS IN AUTOMATION TECHNOLOGY W. W. HANKINS) J. E. PENNINGTON) AND L. K. BARKER MAY 1983 : "J' ,. (,lqir; '.I '. .' I_ \ i !- ,( ~, . L!\NGLEY F~I:~~~:r.. r~CH (TN! El~ L1B!(,!\,f(,(, NA~;I\ NI\SI\ I-J!'.~!.:}',-~)N, Vifm:nU\ National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665 TABLE OF CONTENTS Page SUMMARY ••••••••••••••••••••••••••••••••• •• 1 INTRODUCTION •• .,... ••••••••••••••••••••••• •• 2 DETECTION AND RECOGNITION •••••••••••••••••••••••• •• 3 T,ypes of Sensors Computer Vision CONSIGHT-1 S,ystem SRI Vision Module Touch and Contact Sensors PLANNING AND SCHEDULING ••••••••••••••••••••••••• •• 7 Operations Research Methods Linear Systems Nonlinear S,ystems Network Models Queueing Theory D,ynamic Programming Simulation Artificial Intelligence (AI) Methods Nets of Action Hierarchies (NOAH) System Monitoring Resource Allocation Robotics LEARNING ••••• ••••••••••••••••••••••••••• •• 13 Expert Systems Learning Concept and Linguistic Constructions Through English Dialogue Natural Language Understanding Robot Learning The Computer as an Intelligent Partner Learning Control THEOREM PROVING ••••••••••••••••••••••••••••• •• 15 Logical Inference Disproof by Counterexample Proof by Contradiction Resolution Principle Heuristic Methods Nonstandard Techniques Mathematical Induction Analogies Question-Answering Systems Man-Machine Systems -
AI-KI-B Heuristic Search
AI-KI-B Heuristic Search Ute Schmid & Diedrich Wolter Practice: Johannes Rabold Cognitive Systems and Smart Environments Applied Computer Science, University of Bamberg last change: 3. Juni 2019, 10:05 Outline Introduction of heuristic search algorithms, based on foundations of problem spaces and search • Uniformed Systematic Search • Depth-First Search (DFS) • Breadth-First Search (BFS) • Complexity of Blocks-World • Cost-based Optimal Search • Uniform Cost Search • Cost Estimation (Heuristic Function) • Heuristic Search Algorithms • Hill Climbing (Depth-First, Greedy) • Branch and Bound Algorithms (BFS-based) • Best First Search • A* • Designing Heuristic Functions • Problem Types Cost and Cost Estimation • \Real" cost is known for each operator. • Accumulated cost g(n) for a leaf node n on a partially expanded path can be calculated. • For problems where each operator has the same cost or where no information about costs is available, all operator applications have equal cost values. For cost values of 1, accumulated costs g(n) are equal to path-length d. • Sometimes available: Heuristics for estimating the remaining costs to reach the final state. • h^(n): estimated costs to reach a goal state from node n • \bad" heuristics can misguide search! Cost and Cost Estimation cont. Evaluation Function: f^(n) = g(n) + h^(n) Cost and Cost Estimation cont. • \True costs" of an optimal path from an initial state s to a final state: f (s). • For a node n on this path, f can be decomposed in the already performed steps with cost g(n) and the yet to perform steps with true cost h(n). • h^(n) can be an estimation which is greater or smaller than the true costs. -
2011-2012 ABET Self-Study Questionnaire for Engineering
ABET SELF-STUDY REPOrt for Computer Engineering July 1, 2012 CONFIDENTIAL The information supplied in this Self-Study Report is for the confidential use of ABET and its authorized agents, and will not be disclosed without authorization of the institution concerned, except for summary data not identifiable to a specific institution. Table of Contents BACKGROUND INFORMATION ................................................................................... 5 A. Contact Information ............................................................................................. 5 B. Program History ................................................................................................... 6 C. Options ................................................................................................................. 7 D. Organizational Structure ...................................................................................... 8 E. Program Delivery Modes ..................................................................................... 8 F. Program Locations ............................................................................................... 9 G. Deficiencies, Weaknesses or Concerns from Previous Evaluation(s) ................. 9 H. Joint Accreditation ............................................................................................... 9 CRITERION 1. STUDENTS ........................................................................................... 10 A. Student Admissions .......................................................................................... -
Adversarial Search
Artificial Intelligence CS 165A Oct 29, 2020 Instructor: Prof. Yu-Xiang Wang ® ExamplEs of heuristics in A*-search ® GamEs and Adversarial SEarch 1 Recap: Search algorithms • StatE-spacE diagram vs SEarch TrEE • UninformEd SEarch algorithms – BFS / DFS – Depth Limited Search – Iterative Deepening Search. – Uniform cost search. • InformEd SEarch (with an heuristic function h): – Greedy Best-First-Search. (not complete / optimal) – A* Search (complete / optimal if h is admissible) 2 Recap: Summary table of uninformed search (Section 3.4.7 in the AIMA book.) 3 Recap: A* Search (Pronounced “A-Star”) • Uniform-cost sEarch minimizEs g(n) (“past” cost) • GrEEdy sEarch minimizEs h(n) (“expected” or “future” cost) • “A* SEarch” combines the two: – Minimize f(n) = g(n) + h(n) – Accounts for the “past” and the “future” – Estimates the cheapest solution (complete path) through node n function A*-SEARCH(problem, h) returns a solution or failure return BEST-FIRST-SEARCH(problem, f ) 4 Recap: Avoiding Repeated States using A* Search • Is GRAPH-SEARCH optimal with A*? Try with TREE-SEARCH and B GRAPH-SEARCH 1 h = 5 1 A C D 4 4 h = 5 h = 1 h = 0 7 E h = 0 Graph Search Step 1: Among B, C, E, Choose C Step 2: Among B, E, D, Choose B Step 3: Among D, E, Choose E. (you are not going to select C again) 5 Recap: Consistency (Monotonicity) of heuristic h • A heuristic is consistEnt (or monotonic) provided – for any node n, for any successor n’ generated by action a with cost c(n,a,n’) c(n,a,n’) • h(n) ≤ c(n,a,n’) + h(n’) n n’ – akin to triangle inequality. -
Search Algorithms ◦ Breadth-First Search (BFS) ◦ Uniform-Cost Search ◦ Depth-First Search (DFS) ◦ Depth-Limited Search ◦ Iterative Deepening Best-First Search
9-04-2013 Uninformed (blind) search algorithms ◦ Breadth-First Search (BFS) ◦ Uniform-Cost Search ◦ Depth-First Search (DFS) ◦ Depth-Limited Search ◦ Iterative Deepening Best-First Search HW#1 due today HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3 Formulate — Search — Execute 1. Goal formulation 2. Problem formulation 3. Search algorithm 4. Execution A problem is defined by four items: 1. initial state 2. actions or successor function 3. goal test (explicit or implicit) 4. path cost (∑ c(x,a,y) – sum of step costs) A solution is a sequence of actions leading from the initial state to a goal state Search algorithms have the following basic form: do until terminating condition is met if no more nodes to consider then return fail; select node; {choose a node (leaf) on the tree} if chosen node is a goal then return success; expand node; {generate successors & add to tree} Analysis ◦ b = branching factor ◦ d = depth ◦ m = maximum depth g(n) = the total cost of the path on the search tree from the root node to node n h(n) = the straight line distance from n to G n S A B C G h(n) 5.8 3 2.2 2 0 Uninformed search strategies use only the information available in the problem definition Breadth-first search ◦ Uniform-cost search Depth-first search ◦ Depth-limited search ◦ Iterative deepening search • Expand shallowest unexpanded node • Implementation: – fringe is a FIFO queue, i.e., new successors go at end idea: order the branches under each node so that the “most promising” ones are explored first g(n) is the total cost -
Guru Nanak Dev University Amritsar
FACULTY OF ENGINEERING & TECHNOLOGY SYLLABUS FOR B.TECH. COMPUTER ENGINEERING (Credit Based Evaluation and Grading System) (SEMESTER: I to VIII) Session: 2020-21 Batch from Year 2020 To Year 2024 GURU NANAK DEV UNIVERSITY AMRITSAR Note: (i) Copy rights are reserved. Nobody is allowed to print it in any form. Defaulters will be prosecuted. (ii) Subject to change in the syllabi at any time. Please visit the University website time to time. 1 CSA1: B.TECH. (COMPUTER ENGINEERING) SEMESTER SYSTEM (Credit Based Evaluation and Grading System) Batch from Year 2020 to Year 2024 SCHEME SEMESTER –I S. Course Credit Course Title L T P No. Code s 1. CEL120 Engineering Mechanics 3 1 0 4 Engineering Graphics & Drafting 2. MEL121 3 0 1 4 Using AutoCAD 3 MTL101 Mathematics-I 3 1 0 4 4. PHL183 Physics 4 0 1 5 5. MEL110 Introduction to Engg. Materials 3 0 0 3 6. Elective-I 2 0 0 2 SOA- 101 Drug Abuse: Problem, Management 2 0 0 2 7. and Prevention -Interdisciplinary Course (Compulsory) List of Electives–I: 1. PBL121 Punjabi (Compulsory)OR 2 0 0 2. PBL122* w[ZYbh gzikph OR 2 0 0 2 Punjab History & Culture 3. HSL101* 2 0 0 (1450-1716) Total Credits: 20 2 2 24 SEMESTER –II S. Course Code Course Title L T P Credits No. 1. CYL197 Engineering Chemistry 3 0 1 4 2. MTL102 Mathematics-II 3 1 0 4 Basic Electrical &Electronics 3. ECL119 4 0 1 5 Engineering Fundamentals of IT & Programming 4. CSL126 2 1 1 4 using Python 5. -
Lecture Notes
Lecture Notes Ganesh Ramakrishnan August 15, 2007 2 Contents 1 Search and Optimization 3 1.1 Search . 3 1.1.1 Depth First Search . 5 1.1.2 Breadth First Search (BFS) . 6 1.1.3 Hill Climbing . 6 1.1.4 Beam Search . 8 1.2 Optimal Search . 9 1.2.1 Branch and Bound . 10 1.2.2 A∗ Search . 11 1.3 Constraint Satisfaction . 11 1.3.1 Algorithms for map coloring . 13 1.3.2 Resource Scheduling Problem . 15 1 2 CONTENTS Chapter 1 Search and Optimization Consider the following problem: Cab Driver Problem A cab driver needs to find his way in a city from one point (A) to another (B). Some routes are blocked in gray (probably be- cause they are under construction). The task is to find the path(s) from (A) to (B). Figure 1.1 shows an instance of the problem.. Figure 1.2 shows the map of the united states. Suppose you are set to the following task Map coloring problem Color the map such that states that share a boundary are colored differently.. A simple minded approach to solve this problem is to keep trying color combinations, facing dead ends, back tracking, etc. The program could run for a very very long time (estimated to be a lower bound of 1010 years) before it finds a suitable coloring. On the other hand, we could try another approach which will perform the task much faster and which we will discuss subsequently. The second problem is actually isomorphic to the first problem and to prob- lems of resource allocation in general. -
Lecture 9: Games I
Lecture 9: Games I CS221 / Spring 2018 / Sadigh Course plan Search problems Markov decision processes Constraint satisfaction problems Adversarial games Bayesian networks Reflex States Variables Logic "Low-level intelligence" "High-level intelligence" Machine learning CS221 / Spring 2018 / Sadigh 1 • This lecture will be about games, which have been one of the main testbeds for developing AI programs since the early days of AI. Games are distinguished from the other tasks that we've considered so far in this class in that they make explicit the presence of other agents, whose utility is not generally aligned with ours. Thus, the optimal strategy (policy) for us will depend on the strategies of these agents. Moreover, their strategies are often unknown and adversarial. How do we reason about this? A simple game Example: game 1 You choose one of the three bins. I choose a number from that bin. Your goal is to maximize the chosen number. A B C -50 50 1 3 -5 15 CS221 / Spring 2018 / Sadigh 3 • Which bin should you pick? Depends on your mental model of the other player (me). • If you think I'm working with you (unlikely), then you should pick A in hopes of getting 50. If you think I'm against you (likely), then you should pick B as to guard against the worst case (get 1). If you think I'm just acting uniformly at random, then you should pick C so that on average things are reasonable (get 5 in expectation). Roadmap Games, expectimax Minimax, expectiminimax Evaluation functions Alpha-beta pruning CS221 / Spring 2018 / Sadigh 5 Game tree Key idea: game tree Each node is a decision point for a player. -
An English-Persian Dictionary of Algorithms and Data Structures
An EnglishPersian Dictionary of Algorithms and Data Structures a a zarrabibasuacir ghodsisharifedu algorithm B A all pairs shortest path absolute p erformance guarantee b alphab et abstract data typ e alternating path accepting state alternating Turing machine d Ackermans function alternation d Ackermanns function amortized cost acyclic digraph amortized worst case acyclic directed graph ancestor d acyclic graph and adaptive heap sort ANSI b adaptivekdtree antichain adaptive sort antisymmetric addresscalculation sort approximation algorithm adjacencylist representation arc adjacencymatrix representation array array index adjacency list array merging adjacency matrix articulation p oint d adjacent articulation vertex d b admissible vertex assignmentproblem adversary asso ciation list algorithm asso ciative binary function asso ciative array binary GCD algorithm asymptotic b ound binary insertion sort asymptotic lower b ound binary priority queue asymptotic space complexity binary relation binary search asymptotic time complexity binary trie asymptotic upp er b ound c bingo sort asymptotically equal to bipartite graph asymptotically tightbound bipartite matching -
Uninformed Search Strategies
Chapter 1 Uninformed Search Strategies Exercise 1.1 Given the search problem defined by the following graph, where A is the initial state and L is the goal state and the cost of each action is indicated on the corresponding edge E 2 L 1 3 4 3 1 B 1 A 2 G 1 I 1 1 3 3 2 2 D 1 C F 1 H Solve the search problem using the following search strategies: 1. breadth-first with elimination of repeated states 2. uniform-cost with elimination of repeated states 3. depth-first with elimination of repeated states 1 Answer of exercise 1.1 Breadth-first search with elimination of repeated states. 1 A 2 3 4 B E F 5 6 C A F G H D IF L Uniform-cost search with elimination of repeated states. 1 A c=1 c=3 c=3 2 5 6 B E F c=2 c=4 3 7 C A F G H c=6 c=6 c=3 4 8 9 D G I c=9 B F LI In case of ties, nodes have been considered in lexicographic order. 2 Depth-first search with elimination of repeated states. 1 A 2 5 B E F 3 6 C A F G 4 7 D H 8 B G I 9 F I L 3 Exercise 1.2 You have three containers that may hold 12 liters, 8 liters and 3 liters of water, respectively, as well as access to a water faucet. You canfill a container from the faucet, pour it into another container, or empty it onto the ground. -
Prathyusha Engineering College Lecture Notes
PRATHYUSHA ENGINEERING COLLEGE LECTURE NOTES Course code : CS8691 Name of the course : ARTIFICIAL INTELLIGENCE Regulation : 2017 Course faculty : Dr.KAVITHA.V.R PRATHYUSHA ENGINEERING COLLEGE Department of Computer Science and Engineering VI Semester (EVEN 2019-20) CS8691ARTIFICIAL INTELLIGENCE OBJECTIVES: To understand the various characteristics of Intelligent agents To learnthe different search strategies in AI To learn to represent knowledge in solving AI problems To understand the different ways of designing software agents To know about the various applications of AI. UNIT IINTRODUCTION 09 Introduction–Definition -Future of Artificial Intelligence –Characteristics of Intelligent Agents–Typical Intelligent Agents –Problem Solving Approach to Typical AI problems. UNIT II PROBLEM SOLVING METHODS 9 Problem solving Methods -Search Strategies-Uninformed -Informed -Heuristics -Local Search Algorithms and Optimization Problems -Searching with Partial Observations -Constraint Satisfaction Problems –Constraint Propagation -Backtracking Search -Game Playing -Optimal Decisions in Games –Alpha -Beta Pruning - Stochastic Games UNIT IIIKNOWLEDGE REPRESENTATION 9 First Order Predicate Logic –Prolog Programming –Unification –Forward Chaining-Backward Chaining – Resolution –Knowledge Representation -Ontological Engineering-Categories and Objects –Events -Mental Events and Mental Objects -Reasoning Systems for Categories -Reasoning with Default Information UNIT IV SOFTWARE AGENTS 9 Architecture for Intelligent Agents –Agent communication –Negotiation -
Minimax Search • Alpha-Beta Search • Games with an Element of Chance • State of the Art
Foundations of AI 6. Adversarial Search Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard & Luc De Raedt & Bernhard Nebel 1 Contents • Game Theory • Board Games • Minimax Search • Alpha-Beta Search • Games with an Element of Chance • State of the Art 2 Games & Game Theory • When there is more than one agent, the future is not anymore easily predictable for the agent • In competitive environments (when there are conflicting goals), adversarial search becomes necessary • Mathematical game theory gives the theoretical framework (even for non-competitive environments) • In AI, we usually consider only a special type of games, namely, board games, which can be characterized in game theory terminology as – Extensive, deterministic, two-player, zero-sum games with perfect information 3 Why Board Games? • Board games are one of the oldest branches of AI (Shannon, Turing, Wiener, and Shanon 1950). • Board games present a very abstract and pure form of competition between two opponents and clearly require a form on “intelligence”. • The states of a game are easy to represent. • The possible actions of the players are well defined. • Realization of the game as a search problem • The world states are fully accessible • It is nonetheless a contingency problem, because the characteristics of the opponent are not known in advance. Note: Nowadays, we also consider sport games 4 Problems • Board games are not only difficult because they are contingency problems, but also because the search trees can become astronomically large. • Examples: – Chess: On average 35 possible actions from every position, 100 possible moves 35100 nodes in the search tree (with “only” approx.