<<

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 10, OCTOBER 2019 ISSN 2277-8616 Calculation Of Eigen Values And Atomic Orbital Population Of Isomeric Benzodiazines By Density Functional Theory Method

M.B. Kalhans, A.K. Singh, N.B. Singh

Abstract: The concept of reactivity got advance treatment when Parr et al. published a paper on the application of density functional theory. In the present paper we have calculated the Eigen values and AOEP of the three isomeric Benzodiazines, which provided important results about the coordination trend of the said compounds.

Key words: Density Functional theory, Eigen value, AOEP, Coordination, Benzodiazines. ————————————————————

1. Introduction now by putting the value of potential of an in DFT emerged as an important tool in quantum molecules IP, we get electron affinity of that atom in the calculations. In DFT1 the function (r) and molecule as EA = 2 -IP (5) the external potential V(r) are used to describe the of an atom or a molecule. According to Koopman’s theorem the I and A are simply the ( ) ( ) ∫ ( ) ( ) (1) where F( )=T( ) + V ( ), T( ) is the electronic kinetic eigen value of HOMO and LUMO respectively with change ee in sign.9 energy function and Vee( ) is the electron - electron interaction energy function. The minimization of the total energy, subject to the condition that the total number of 2. Methodology/Experimental electron is fixed, i.e. The multipole model has been used to calculate the ∫ ( ) (2) molecular electrostatic potential for magnetic neglect of Equation (2), gives an Euler- Lagrange equation of the diatomic overlap like functions and the definitions for all the multiples for the 4s charge distribution that rise with form, 10-12 an s-p-d have been listed . ( ) ( ) ( ) (3) ( ) where the Lagrange multiplier is the chemical potential2 The Hamiltonian from of Schrodinger wave equation is Hartree-Fock introduced a solution for ab-initio which has ( ) been used for DFT3 to add a classical two centre potential So, a general equation can be written in the following form. with a damping function for short distances to DFT ( ) Hamiltomian. The solution of equation (3) to the Eigen function is that which when operated ground state density. The ground state energy is by an operator generates the same function multiplied by a determined by using this equation, Parr, etal.4 defined the constant. This constant is known as Eigen value of that electro negativity as the negative value of chemical particular function. For a general square matrix A of order n, potential viz. the corresponding equation satisfied by the Eigen values is

( ) (4) ( ) ( ) when a nth order determinant is expanded it gives a Although, Pearson was first to give the hard & soft polynomial in whose highest power is . This concept the first unambiguous definition was given by 5 characteristic polynomial has n roots for , so a square Parr and Pearson. With the help of DFT we have matrix of order n has n eigen values.10 The eigen values of developed a method to evaluate the electron affinity of an 6,7 different molecular orbitals of the sample compounds as atom in a molecule. Density Functional theory provides a calculated by MNDO method are given in table 1&2. quantum mechanical justification for . A concept used intutively for long time and validates 8 Table 1 Eigen values of various molecular orbitals of Sanderson’s postulates that when two or more isomeric Benzodiazines combine to form a molecule their gets Molecular Cinnoline Quinoxaline Quinazoline equalized and unique electronegativity exists everywhere in Orbital a molecule, C9=N10 ( ) -40.69117 -40.23188 -40.59563 C9=N10 ( ) -35.35357 -35.55180 -35.15218 C8=N7 ( ) -31.16657 -30.73839 -31.2288 C8=N7 ( ) -28.53501 -28.75524 -28.55443 ______C2=C1 ( ) -27.96398 -27.69129 -27.71341 C2=C1 ( ) -22.95965 -23.01170 -22.87588 C =C ( ) -22.32593 -22.50071 -22.31768  M B Kalhans and N B Singh: Department of Chemistry, Bareilly 3 4 College Bareilly, U.P., India-243005 C3=C4 ( ) -21.52821 -20.95032 -21.53817

 A K Singh: Department of , Bareilly College Bareilly, U.P., C5=C6 ( ) -19.14658 -18.85743 -19.03011 India-243005 C5=C6 ( ) -17.91998 -18.4006 -18.31557 C5-N10 ( ) -17.43101 -17.49555 -17.40303 1922 IJSTR©2019 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 10, OCTOBER 2019 ISSN 2277-8616

C6-C7 ( ) -16.34090 -16.39579 -16.16300 C4-C5 ( *) Cinnoline > Quinoxaline > Quinazoline C2-C3 ( ) -15.55134 -15.53271 -15.79203 C6-C1 ( *) Quinoxaline > Quinazoline > Cinnoline C6-C1 ( ) -15.27805 -15.10767 -15.19151 C2-C3 ( *) Quinoxaline > Cinnoline > Quinazoline C4-C5 ( ) -14.92990 -14.81914 -14.82875 C6-C7 ( *) Quinoxaline > Quinazoline > Cinnoline C8-C9 ( ) -14.49950 -14.75112 -14.50674 C5-N10 ( *) Quinoxaline > Quinazoline > Cinnoline C3-H13 ( ) -13.49403 -15.15271 -13.45650 C5=C6 ( *) Quinazoline > Quinoxaline > Cinnoline C2-H12 ( ) -13.12603 -13.06695 -13.07328 C5=C6 ( *) Quinoxaline > Quinazoline > Cinnoline C1-H11 ( ) -12.97643 -12.64006 -12.81449 C3=C4 ( *) Quinoxaline > Quinazoline > Cinnoline C4-H14 ( ) -11.93268 -11.80837 -11.63203 C3=C4 ( *) Quinoxaline > Quinazoline > Cinnoline C7-H15 ( ) -11.55628 -11.32440 -11.17478 C2=C1 ( *) Quinoxaline > Quinazoline > Cinnoline C8-H16 ( ) -10.17351 -10.01415 -1021052 C2=C1 ( *) Quinoxaline > Quinazoline > Cinnoline Non Bonding -9.77652 -9.94285 -10.16667 C8=N7 ( *) Quinoxaline > Quinazoline > Cinnoline Non Bonding C8=N7 ( *) Quinoxaline > Quinazoline > Cinnoline (HOMO) -9.61188 -9.58517 -9.59238 C9=N10 ( *) Quinoxaline > Quinazoline > Cinnoline C8-H16 ( *) C9=N10 ( *) Cinnoline > Quinazoline > Quinoxaline (LUMO) -0.96512 -0.89793 -0.93332

C7-H15 ( *) -0.59148 -0.51607 -0.54831 Atomic orbital electron population represents the density of C -H ( *) 0.50114 0.61658 0.54737 4 14 in various orbitals of an atom in bonded state. The C1-H17 ( *) 1.48370 1.54366 1.54079 C2-H12 ( *) 2.34501 2.36171 2.33507 contribution of electrons in each occupied C3-H13 ( *) 2.45123 2.41780 2.50609 are calculated by using the population analysis method of 11,12 C8-C9 ( *) 2.65779 2.61653 2.59285 Mulliken. AOEP values of different molecular orbitals of C4-C5 ( *) 2.86364 2.76806 2.70496 Pyran and its derivatives are calculated by MNDO C6-C1 ( *) 2.89090 3.03143 2.90210 technique Table 3 & 4. C -C ( *) 3.18178 3.26181 3.07949 2 3 C6-C7 ( *) 3.28935 3.51931 3.35538 C5-N10 ( *) 3.53234 3.64588 3.55611 Table 3 AOEP values of different molecular orbitals of C5=C6 ( *) 3.70356 3.85895 3.99514 benzodiazines C5=C6 ( *) 4.24907 4.32597 4.31216 Molecular Orbital Cinnoline Quinoxaline Quinazoline

C3=C4 ( *) 4.28730 4.38460 4.36757 C9=N10 ( ) 1.17679 1.17705 1.17448 C3=C4 ( *) 4.45307 4.57272 4.51670 C9=N10 ( ) 0.95111 0.94514 0.94921 C =C ( *) 2 1 4.71201 4.8806 4.84665 C8=N7 ( ) 0.95744 0.96150 0.95392 C8=N7 ( ) 1.00221 0.98088 0.98429 C2=C1 ( *) 4.86613 5.00987 4.93245 C2=C1 ( ) 1.18020 1.18096 1.18064 C8=N7 ( *) 4.999744 5.59738 5.31008 C2=C1 ( ) 0.94774 0.95023 0.94921 C8=N7 ( *) 5.58004 5.61110 5.60773 C3=C4 ( ) 0.97387 0.97351 0.97485 C9=N10 ( *) 5.75393 5.84933 5.77466 C3=C4 ( ) 0.97883 0.98984 0.99744 N9=N10 ( *) 7.44508 6.80485 6.95897 C5=C6 ( ) 1.18168 1.18097 1.18101 C5=C6 ( ) 0.98773 0.98660 0.98597 Table 2 Sequence of eigen values of different isomeric C5-N10 ( ) 0.93758 0.93714 0.93629 Benzodiazines C6-C7 ( ) 0.99403 0.98981 0.977 C -C ( ) 1.17659 1.17707 1.17888 M.O. Sequence 2 3 C6-C1 ( ) 0.92757 0.92823 0.93206 C9=N10 ( ) Quinoxaline > Quinazoline > Cinnoline C4-C5 ( ) 0.97814 0.97830 0.97957 C9=N10 ( ) Quinazoline > Cinnoline > Quinoxaline C8-C9 ( ) 0.96615 0.98091 0.98652 C8=N7 ( ) Quinoxaline > Cinnoline > Quinazoline C3-H13 ( ) 1.20038 1.19054 1.18579 C8=N7 ( ) Cinnoline > Quinazoline > Quinoxaline C2-H12 ( ) 0.95980 0.95413 0.94697 C2=C1 ( ) Quinoxaline > Quinazoline > Cinnoline C1-H11 ( ) 0.92090 0.91418 0.95684 C2=C1 ( ) Quinazoline > Cinnoline > Quinoxaline C4-H14 ( ) 1.01519 1.01162 0.96627 C3=C4 ( ) Quinazoline > Cinnoline > Quinoxaline C7-H15 ( ) 1.16473 1.19050 1.17463 C3=C4 ( ) Quinoxaline > Cinnoline > Quinazoline C8-H16 ( ) 0.94124 0.92501 0.95378 C5=C6 ( ) Quinoxaline > Quinazoline > Cinnoline Non Bonding 0.94728 0.92501 0.95378 C5=C6 ( ) Cinnoline > Quinoxaline > Quinazoline Non Bonding 1.00263 1.01167 0.95739 C5-C10 ( ) Quinazoline > Cinnoline > Quinoxaline C8-H16 ( *) 1.18223 1.60380 1.20516 C6-C7 ( ) Quinazoline > Cinnoline > Quinoxaline C7-H15 ( *) 0.94115 1.07072 0.91154 C2-C3 ( ) Quinoxaline > Cinnoline > Quinazoline C4-H14 ( *) 0.98091 1.30237 0.97290 C6-C1 ( ) Quinoxaline > Quinazoline > Cinnoline C1-H11 ( *) 0.98305 1.04554 0.90370 C4-C1 ( ) Quinoxaline > Quinazoline > Cinnoline C2-H12 ( *) 1.21722 1.21541 1.62662 C8-C9 ( ) Cinnoline > Quinazoline > Quinoxaline C3-H13 ( *) 1.00446 0.99625 1.41441 C3-H13 ( ) Quinoxaline > Quinazoline > Cinnoline C8-C9 ( *) 0.91934 0.91838 0.97196 C2-H12 ( ) Quinoxaline > Quinazoline > Cinnoline C4-C5 ( *) 0.99656 0.97209 1.10904 C1-H11 ( ) Quinoxaline > Quinazoline > Cinnoline C6-C1 ( *) 1.63810 1.21540 1.23643 C4-H14 ( ) Quinazoline > Quinoxaline > Cinnoline C2-C3 ( *) 1.03838 0.94179 0.96361 C7-H15 ( ) Quinazoline > Quinoxaline > Cinnoline C6-C7 ( *) 1.30354 0.97289 0.96490 C8-H16 ( ) Quinoxaline > Cinnoline > Quinazoline C5-N10 ( *) 1.03483 0.97208 0.91873 Non Bonding -I Cinnoline > Quinoxaline > Quinazoline C =C ( *) 1.63343 1.60385 1.01562 Non Bonding –II 5 6 Quinoxaline > Quinazoline > Cinnoline (HOMO) C =C ( *) 1.06965 1.08583 1.08706 C -H ( *) Quinoxaline > Quinazoline > Cinnoline 5 6 8 16 C =C ( *) 1.26041 1.28713 1.28397 Quinoxaline > Quinazoline > Cinnoline 3 4 C7-H15 ( *) C =C ( *) 1.02653 1.04558 1.10463 Quinoxaline > Quinazoline > Cinnoline 3 4 C4-H14 ( *) C =C ( *) 2 1 0.88925 0.87860 0.89071 C1-H11 ( *) Quinoxaline > Quinazoline > Cinnoline C2-H12 ( *) Quinoxaline > Quinazoline > Cinnoline C2=C1 ( *) 0.89359 0.89344 0.89216 C3-H13 ( *) Quinazoline > Cinnoline > Quinoxaline C8=N7 ( *) 0.89162 0.89345 0.89354 C8-C9 ( *) Cinnoline > Quinoxaline > Quinazoline C8=N7 ( *) 0.87661 0.87858 0.87606 1923 IJSTR©2019 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 10, OCTOBER 2019 ISSN 2277-8616

C9=N10 ( *) 0.88111 0.87380 0.86219 value is at quinoxaline and lowest is at quinazoline for C =N ( *) 0.86823 0.87389 0.87969 9 10 C5=C10 ( ), molecular orbitals, the highest eigen value is for quinazoline and lowest is at quinoxaline. The above Table 4 Sequence of AOEP’s in Cinnoline, Quinoxaline discussion about the reactivity and stability of various and Quinazoline molecular orbitals of the three isomeric benzodiazines M.O. Sequence shows that out of 46 molecular orbitals of these compounds C9=N10 ( ) Quinoxaline > Cinnoline > Quinazoline 28 molecular orbitals of cinnoline has maximum stability C9=N10 ( ) Cinnoline > Quinazoline > Quinoxaline and 30 molecular orbitals of quinoxaline has minimum C =N ( ) Quinoxaline > Cinnoline > Quinazoline 8 7 stability. C8=N7 ( ) Cinnoline > Quinazoline > Quinoxaline C2=C1 ( ) Quinoxaline > Quinazoline > Cinnoline C2=C1 ( ) Quinoxaline > Quinazoline > Cinnoline C3=C4 ( ) Quinazoline > Cinnoline > Quinoxaline C3=C4 ( ) Quinazoline > Quinoxaline > Cinnoline C5=C6 ( ) Cinnoline > Quinazoline > Quinoxaline C5=C6 ( ) Cinnoline > Quinoxaline > Quinazoline C5-C10 ( ) Quinazoline > Cinnoline > Quinoxaline C6-C7 ( ) Cinnoline > Quinoxaline > Quinazoline C2-C3 ( ) Quinazoline > Quinoxaline > Cinnoline C6-C1 ( ) Quinazoline > Cinnoline > Quinoxaline C4-C1 ( ) Quinoxaline > Cinnoline > Quinazoline C8-C9 ( ) Quinazoline > Quinoxaline > Cinnoline C3-H13 ( ) Cinnoline > Quinoxaline > Quinazoline C2-H12 ( ) Cinnoline > Quinoxaline > Quinazoline Conclusion: C1-H11 ( ) Cinnoline > Quinoxaline > Quinazoline The reactivity and stability of various molecular orbitals in C4-H14 ( ) Cinnoline > Quinoxaline > Quinazoline cinnoline quinoxaline and quinazolines show that out of 46 C7-H15 ( ) Quinoxaline > Quinazoline > Cinnoline molecular orbitals of these isomeric compounds 28 C8-H16 ( ) Quinazoline > Cinnoline > Quinoxaline C -H ( *) Quinoxaline > Quinazoline > Cinnoline molecular orbitals of cinnoline has maximum stability and 8 16 30 molecular orbitals of quinoxaline has minimum stability C7-H15 ( *) Quinoxaline > Cinnoline > Quinazoline C4-H14 ( *) Quinoxaline > Cinnoline > Quinazoline since stability is inversely proportional to reactivity, C1-H11 ( *) Quinoxaline > Cinnoline > Quinazoline therefore on the basis of eigen values quinoxaline should C2-H12 ( *) Quinazoline > Cinnoline > Quinoxaline be more reactive and cinnoline should be least reactive. C3-H13 ( *) Quinazoline > Cinnoline > Quinoxaline Further, on comparing HOMO in the three C8-C9 ( *) Quinazoline > Cinnoline > Quinoxaline isomeric benzodiazines we find the following sequence. C -C ( *) Quinazoline > Cinnoline > Quinoxaline 4 5 C6-C1 ( *) Cinnoline > Quinazoline > Quinoxaline C2-C3 ( *) Cinnoline > Quinoxaline > Quinazoline Quinoxaline > Quinazoline > Cinnoline C6-C7 ( *) Cinnoline > Quinoxaline > Quinazoline - 9.505 -9.592 -9.611 C5-N10 ( *) Cinnoline > Quinoxaline > Quinazoline C5=C6 ( *) Cinnoline > Quinoxaline > Quinazoline which also indicates that Quinoxaline has highest ability of C5=C6 ( *) Quinazoline > Quinoxaline > Cinnoline coordination and cinnoline has lowest ability of C =C ( *) Quinoxaline > Quinazoline > Cinnoline 3 4 coordination. C3=C4 ( *) Quinazoline > Quinoxaline > Cinnoline C =C ( *) 2 1 Quinazoline > Cinnoline > Quinoxaline References C2=C1 ( *) Cinnoline > Quinoxaline > Quinazoline [1] R.G. Parr and Yang Weitao, Density Functional C =N ( *) Quinazoline > Quinoxaline > Cinnoline 8 7 theory of Atoms and molecules (Oxford University C8=N7 ( *) Quinoxaline > Cinnoline > Quinazoline C9=N10 ( *) Cinnoline > Quinoxaline > Quinazoline Press) 1994. C9=N10 ( *) Quinazoline > Quinoxaline > Cinnoline [2] F. De Proft, W. Langenacker and P. Geerlings, J. Phys. Chem., 97,1826(1993). Results & Discussion [3] J. Juveeka, J. Creny, P. Hobza and H. Valdes, J. Analysis of the eigen values of the various molecular Phys. Chem., A, 111, 1146(2007). orbitals in three isomeric benzodiazines reveals that for [4] R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, J. Chem. Phys., 68, 3801(1978). bond of C9=N10 the highest eigen value is for quinoxaline and lowest is for cinnoline. Since eigen value and stability [5] R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., of a molecular orbital are reciprocal to each other, therefore 105, 7512(1983). C =N ( ) molecular orbital of quinoxaline is least stable [6] P. P. Singh, F. A. Pasha and H. K. Srivastava, 9 10 QSAR & Combi. Sci., 22(8), 843(2003). and of cinnoline is most stable. For bond between C9=N10 the highest eigen value is at quinazoline and lowest is at [7] P. P. Singh, F.A. Pasha and H. K. Srivastava, Indian J. Chem. Bulletin, 43B, 983(2004). quinoxaline. In C8=N7 ( ) the highest eigen value is at quinoxaline and lowest eigen value is at quinzaoline where [8] R. T. Aanderson, Chemical Bonds and Bond as for C =N ( ) the highest value is at cinnoline. For C =C Energy, Academic Press, New York, p-79(1976). 8 7 2 1 [9] R. G. Pearson, Acc. Chem. Res., 26, 250(1993). ( ) the highest eigen value is at quinoxaline and lowest [10] A. H. C. Hom, J. H. Liv and T. Clark, Theor. Chem. eigen value is at cinnoline and for it is quinazoline which Acc., 114, 159(2005). has highest eigen value and quinoxaline has the lowest. [11] A. H. C. Hom, J. H. Liv and T. Clark, Theor. Chem. C =C ( ), quinoxaline has the lowest and quinzoline has 3 4 Acc., 117, 461(2007). the highest eigen value and for C3=C4 ( ), the highest eigen

1924 IJSTR©2019 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 10, OCTOBER 2019 ISSN 2277-8616

[12] A Golbraikh, E. Muratov. D. Fouvches and D. Tropsha, J. of Chemical Inf. Model, 54(1), 1( 2014). [13] Charlie Harper, Introductors to Mathematical Physics, Prentice Hall of India Pvt. Ltd. (1995). [14] Ira N. Levine, 5th Edition Prentice Hall, New Jersey, p.p. 665, (2000). [15] Z. Zhon and R.G. Parr., J. Am. Chem. Soc., 112, 5720(1990).

1925 IJSTR©2019 www.ijstr.org