Cleaning up BC's Dirty Mining Industry

Total Page:16

File Type:pdf, Size:1020Kb

Cleaning up BC's Dirty Mining Industry Vol.35 No.1 | 2016 Published by the Wilderness Committee FREE REPORT Joe Foy The Quesnel Lake watershed risks and health impacts from BC's National Campaign have been looking at reducing the Director, supports an important component mining industry. pressure on mine dams. That sounds Wilderness Committee of the Fraser River sockeye salmon Tailings storage facilities like the like good news – but it isn’t. There @JoeFoyWild run. Fisheries managers are holding one at Mount Polley have become is now an increase in schemes that their breath, waiting to see what long- widespread throughout the province. involve dumping mine wastewater term impacts BC now has 98 into downstream rivers, lakes and the Mount Polley permitted tailings creeks, which are often important hen the tailings pond dam disaster will have ponds at 60 operating salmon habitat. Wbreached at BC's Mount Polley on the run. and closed mines.5 For example, the Gibraltar Mine, Mine in August 2014, it unleashed First Nation Many of them are the located near Williams Lake, was a torrent of mine waste and water. community size of a lake – multiple recently issued a temporary permit Much of this ended up pouring into members who kilometres across. to increase the release of mine one of the province's most important fish for salmon At the Highland tailings pond water up to 5.4 million salmon nurseries – Quesnel Lake. downstream Valley Copper mine cubic metres a year directly into the An estimated 8 million cubic of the spill are located between Logan Fraser River.7 metres of solid mine tailings concerned about Lake and Ashcroft, the And even at the now-reopened (enough to fill well over a half potential health impacts on the tailings pond is almost 10 kilometres Mount Polley Mine, a temporary million 25-tonne dump trucks) salmon, as well as on the people who in length, with a massive earthen dam permit has been issued to release were mixed in with the slurry that eat them.4 at either end.6 It sits perched above treated mine effluent into Quesnel spewed into the lake.1 Not surprisingly, the Mount Polley the Thompson River, a major tributary Lake – at a rate that could fill an Materials that make up Mount Mine disaster – the largest of its kind of the Fraser River and an important Olympic swimming pool in about Polley mine waste include arsenic, in Canadian history – has unleashed a salmon habitat in its own right. 2.5 hours.8 cobalt, copper, lead, manganese, torrent of widespread public concern Out of concern for the danger of Many now believe that the mercury, nickel, phosphorous and about the increasing environmental another mine dam bursting, managers province has reached an emergency vanadium.2 situation. At stake are the The cost to mine owner health and well being of the Imperial Metals to date has region's people and world been substantial – $70 million famous salmon runs. in rehabilitation, as well as a Read on to find out how year of lost production and we can work together to a huge drop in the stock clean up BC's dirty mining market following news of the industry. collapse.3 But not all losses Photo top: Highland Valley can be added up in dollars. Copper Mine west of Kamloops, Photos left to right: Hazeltine Creek, post-Mount Polley mine spill (ClayoquotAction.org), wild sockeye salmon (Dale Sanders). BC (Jeremy Sean Williams). odern open-pit mining The best way to prevent acid mine lot of things in modern society The reason for this is that tailings Minvolves the excavation of large drainage is to keep the potentially A are getting safer. From seatbelts dams are getting bigger – standing amounts of waste rock in order to acid-producing material from mixing and airbags in cars to safer aircraft taller than previous dams and holding extract the desired mineral ore, such with open air. Once air hits this type design and safer home appliances, back a larger amount of tailings as copper or gold. The ore is then of rock and the reactions begin, disaster rates are going down with mixed with water. crushed into finely ground tailings for acid mine drainage is very difficult each passing year. The average cost of each tailings processing, using various chemicals, and expensive to mitigate. Affected Sadly, that’s not the case when dam that fails is now well over $500 water and separating processes to communities are faced with the it comes to mine tailings dams. In million. extract the final product. long-term, high cost of treating mine fact, just the opposite is occurring – Mining companies often cannot In Canada, the average grades of drainage water, effluent discharge and large mine dams are getting more afford, or cannot get insurance mined copper are under one per the disposal of treatment sludge – all accident prone. to cover the costs of tailings dam cent. This means that for every tonne of it harmful to fish. A recent report has shown that the failures. As a result, the economic of copper extracted, over 99 tonnes The least expensive strategy for rate of serious tailings dam failures is and ecological impacts could be of waste material (made up of finely preventing acid mine drainage is to increasing. Half of serious tailings dam permanent and non-recoverable, or ground and often toxic "tailings") submerge the waste rock or tailings failures in the last 70 years occurred in the recovery – if ever possible – is must also be removed. under water in a tailings “lake” held the 20 years between 1990 and 2009. funded by taxpayers.10 Waste material from a mine may back by dams, to prevent exposure to contain acid-producing sulphides, oxygen and to provide water for mine heavy metals or other contaminants. operations. This strategy for avoiding Therefore, after it is removed it must acid drainage depends on keeping be properly stored to avoid polluting the water cover and dam structures the surrounding environment. This intact…forever.9 waste material, and the exposed As major mine dam failures become bedrock walls from which it is more common worldwide, people excavated, is the source of most of are seeing these massive structures the heavy metals pollution caused by as accidents waiting to happen. mining in BC. In BC, there is an increased call for If improperly secured, mine waste the industry to clean up its act and contaminants can leach out into store mine waste using much less surface and groundwater causing water, which reduces the risk of a serious pollution that can last for catastrophic failure or leakage of generations. harmful materials. Atlin r e iv Liard R T aku Ri ver Fort Dease Nelson Lake r ive e R Significant BC Metal Mines ikin St Red Chris Mine Status r r e e v v i i Operating R R y a ut l Under Construction k n s i Briti I F sh Care & Maintenance (temporarily closed) Columbia Kerr-Sulphurets-Mitchell (KSM) M Closed ine Fort St Photo: Gibraltar Copper-Molybdenum Mine tailings pond John (Jeremy Sean Williams). Proposed - Permitting / Environmental Assessment Stewart Williston Peace River Exploration Lake r e iv Dawson Rejected R ss r Creek a ve N Ri Smit a hers Prince een Rupert Sk Terrace Kitimat Prince George o River ak 0 100 200 km ch e N Mt Robso Photo: Grizzly bear, Chilko Lake n (Joe Foy). Quesnel Gibraltar Mine Mt Polley Mine Williams Lake New F r r Prosper e ity a Golden Mine s iv e R C r o l um n o s mp bi R ho a i T v Kamloops R e iv Lillooet r e Ajax r Campbell Mine River Powell Highland Mt W River Valley ashington Mine Copper Mine Britannia R Mine Kelowna ay ten oo Nelson Cranbrook Vancouver K Catface Fandora Chilliw Mine Mine ack Photo: Highland Valley Copper Mine tailings pond (Jeremy Sean Williams). Victoria examples of mine disasters and tailings dam nfortunately, there are many The company began a small open- cid mine drainage occurs when breaches that have had devastating effects on communities and watersheds pit copper mine near the Tsolum U sulphur-bearing ore is exposed around the world. Here are just a handful of the major mine dam failures that have A River, which it ran for just three years. occurred in recent years: to air and water. The resulting acidic Mining ended completely in 1966. water then leaches toxic heavy metals November 5, 2015 – Samarco Iron Mine, Brazil Copper began to leach but wasn’t When two dams holding mine waste collapsed, over 60 million cubic metres of such as copper, zinc, cadmium and discovered until 1985, and by 2000 other minerals from the ore. If not water, tailings, iron and other waste materials poured into the Rio Doce River and the Tsolum River was declared dead. down to the Atlantic Ocean, more than 500 km away. The disaster buried the small captured and treated, such discharges The fisheries had declined by up to can be extremely toxic to fish and historic town of Bento Rodrigues under mud. At least 11 people died and more than 14 90 per cent. 600 were displaced. The water supply of17 more than 250,000 people along the river other aquatic life. The cause? Acid mine drainage For instance, an increase in copper was interrupted due to contamination. from the long-gone company's August 5, 2015 – Gold King Mine, USA of as little as two to eight parts per abandoned mine. BC taxpayers billion above natural stream levels Over 11,350 cubic metres of acid mine water began spilling from this abandoned pumped $4.5 million into the mine in Colorado, after a cleanup crew supervised by the US Environmental impairs a salmon’s ability to smell, desperate fight to bring the Tsolum which makes it harder to avoid Protection Agency accidentally caused a breach in a mine portal.
Recommended publications
  • The Toxicological Effects of the Mount Polley Tailings Impoundment Breach on Freshwater Amphipods
    THE TOXICOLOGICAL EFFECTS OF THE MOUNT POLLEY TAILINGS IMPOUNDMENT BREACH ON FRESHWATER AMPHIPODS RAEGAN D. PLOMP Bachelor of Science, University of Lethbridge, 2017 A thesis submitted in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in BIOLOGICAL SCIENCES Department of Biological Sciences University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Raegan Plomp, 2019 THE TOXICOLOGICAL EFFECTS OF THE MOUNT POLLEY TAILINGS IMPOUNDMENT BREACH ON FRESHWATER AMPHIPODS RAEGAN D. PLOMP Date of Defence: September 6, 2019 Dr. G. Pyle Professor Ph.D. Supervisor Dr. S. Wiseman Associate Professor Ph.D. Thesis Examination Committee Member Dr. R. Laird Associate Professor Ph.D. Thesis Examination Committee Member Dr. Laura Chasmer Assistant Professor Ph.D. Internal External Examiner Department of Geography Dr. T. Russell Associate Professor Ph.D. Chair, Thesis Examination Committee ii Abstract The bioavailability and toxicity of metals to amphipods is influenced by exposure route and co-toxic mechanisms. Metal bioavailability was studied in amphipods at sites affected by the 2014 Mount Polley Mining Corporation tailings impoundment breach. The area around the lake was also subjected to wildfire in 2017. Bioavailability was more correlated with sediment than waterborne metal concentrations with Cu correlating well with distance from the breach. Copper-sediment bioavailability to amphipods in combination with wildfire runoff was studied resulting in non-additive toxicity. Hyalella azteca exposed to Cu-enriched sediment with fire extract (FE) experienced a more-than- additive effect on survival and amphipod whole-body Cu concentration but no significant reduction in growth or acetylcholinesterase activity compared to the Cu-contaminated sediment or FE alone, respectively.
    [Show full text]
  • ^ Geology of the Mount Polley Intrusive Complex
    ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Disclaimer: While every effort has been taken to ensure the accuracy of the information in this map, the ! ! ! ! ! data are provided on an 'as-is' basis, without any warranty, guarantee or representation of any kind, ! XY ! ! whether expressed or implied. It is the responsibility of the user to check the facts before entering any ! ! ! ! financial or other commitment based upon this information. ! ! ! ! ! ! ! 32 ! ! ! Map 1. Geology of Mount Polley Intrusive Complex (pre-mining, except Cariboo-Bell zones) ! ! ! ! ! ! ! ! ! ! ! ! ! ! 31 ! ! ! Map 3. Gold Mineralization ! Map 2. Copper Mineralization ! ! 591,000 592,000 593,000 594,000 591,000 592,000 593,000 594,000 ! ! 591,000 592,000 593,000 594,000 0 0 0 0 ! ! ! 0 0.6% Copper 0 0 0 ! 0.6 g/t Gold ! ! 21 0 0 0 0 ! ! ! ! ! , , , , ! ! 6 6 6 6 ! ! ! ! D 2 2 2 2 ! ! ! ! D 8 8 8 8 , , , , ! ! ! D ! D ! D 5 5 5 5 ! D D ! D D D ! 0.3% Copper 0.3 g/t Gold ! ! ! D D Pit outline ! ! ! Quesnel terrane ! ! ! ! D D ! f ! ! D 65 ! D ! 0.1% Copper 0.1 g/t Gold ! 1 0 0 ! EJbc D 10 ! Stikine terrane Planned pit0 ! 0 0 ! ! 0 0 ! , , ! LT ! ! rp 6 km D 6 Limit of elevated Cu, Limit of elevated Cu, ! ! 2 2 ! ! ! 8 8 ! , , Au mineralization Au mineralization ! ! 5 D 5 ! ! ! D EJt D ! ! D D 85 ! ff 86 ! ! LTrJNbc ! ! ! ! 0 Pit outline Pit outline ! Prince 00 73 ! ! 1 ! ! D ! ! ! f ! George 0 0 0 0 ! ! 0 0 0 0 ! 85 ! ! ! LTrpkm 0 0 0 0 ! ! f , , , , ! ! Planned pit ! 5 5 5 5 ! Planned pit ! ! ! ! ! ! 2 2 2 2 ! ! f ! ! D ! ! ! 8 8 8 8 ! ! ! ! ^ , , , , ! Map Area 53 D 5 5 5 5 ! LTrJNbc ! ! ! ! ! D D D ! D D D ! ! D D LTrpbx2 P o l l e y L a k e P o l l e y L a k e ! ! ! ! ! D .
    [Show full text]
  • Dionisio Point Excavations
    1HE• Publication of the Archaeological Society of Vol. 31 , No. I - 1999 Dionisio Point Excavations ARCHAEOLOGICAL SOCIETY OF &MIDDEN BRITISH COLUMBIA Published four times a year by the Archaeological Society of British Columbia Dedicated to the protection of archaeological resot:Jrces and the spread of archaeological knowledge. Editorial Committee Editor: Heather Myles (274-4294) President Field Editor: Richard Brolly (689-1678) Helmi Braches (462-8942) arcas@istar. ca [email protected] News Editor: Heather Myles Publications Editor: Robbin Chatan (215-1746) Membership [email protected] Sean Nugent (685-9592) Assistant Editors: Erin Strutt [email protected] erins@intergate. be.ca Fred Braches Annual membership includes I year's subscription to [email protected] The Midden and the ASBC newsletter, SocNotes. Production & Subscriptions: Fred Braches ( 462-8942) Membership Fees I SuBSCRIPTION is included with ASBC membership. Individual: $25 Family: $30 . Seniors/Students: $I 8 Non-members: $14.50 per year ($1 7.00 USA and overseas), Send cheque or money order payable to the ASBC to: payable in Canadian funds to the ASBC. Remit to: ASBC Memberships Midden Subscriptions, ASBC P.O. Box 520, Bentall Station P.O. Box 520, Bentall Station Vancouver BC V6C 2N3 Vancouver BC V6C 2N3 SuBMISSIONs: We welcome contributions on subjects germane ASBC on Internet to BC archaeology. Guidelines are available on request. Sub­ http://home.istar.ca/-glenchan/asbc/asbc.shtml missions and exchange publications should be directed to the appropriate editor at the ASBC address. Affiliated Chapters Copyright Nanaimo Contact: Rachael Sydenham Internet: http://www.geocities.com/rainforest/5433 Contents of The Midden are copyrighted by the ASBC.
    [Show full text]
  • DRAFT Dam Safety Review Mount Polley Mine, Likely British Columbia
    AMEC Earth & Environmental a division of AMEC Americas Limited 2227 Douglas Road, Burnaby, BC Canada V5C 5A9 Tel +1 (604) 294-3811 Fax +1 (604) 294-4664 www.amec.com DRAFT DAM SAFETY REVIEW Mount Polley Mine Likely, British Columbia Submitted to: Imperial Metals Corporation 200 – 580 Hornby Street Vancouver, BC Submitted by: AMEC Earth & Environmental Limited Burnaby, BC November 2006 AMEC File: VM00448 AMEC010565_0001 Imperial Metals Corporation Dam Safety Review Mt. Polley Mine - Tailings Storage Facility November 2006 – DRAFT REPORT TABLE OF CONTENTS SUMMARY III 1.0 INTRODUCTION .............................................................................................................. 1 2.0 BACKGROUND ............................................................................................................... 4 2.1 General ...................................................................................................................... 4 2.2 Relevant Documentation to DSR ............................................................................... 5 2.3 Existing Dam Safety Program .................................................................................... 5 2.3.1 Dam Safety Inspections ................................................................................. 5 2.3.2 Dam Safety Review ........................................................................................ 5 2.4 Water Balance ........................................................................................................... 5 3.0 DAM
    [Show full text]
  • Tailings Dam Spills at Mount Polley & Mariana Summary
    BY JUDITH MARSHALL August 2018 Tailings dam spills at Download the Mount Polley & Mariana full report at: corporatemapping.ca/ CHRONICLES OF DISASTERS FORETOLD tailings-disasters Summary THIS PAPER EXPLORES THE MANY PARALLELS between the tailings dam spills at the Mount Polley mine in British Columbia (BC), Canada, and the Samarco mine in Mariana, Minas Gerais, Brazil. The Mount Polley disaster took place in August 2014, when the dam holding toxic waste from the copper and gold mine collapsed, creating the largest environ- mental disaster in Canada’s mining history. It was not long after — in November of the following year — that the largest mine disaster in Latin American history took place in Mariana, Brazil, when an even larger reservoir of waste collapsed at the Samarco iron mine. TOP: AERIAL VIEW OF MOUNT POLLEY MINE SITE, JULY 24, 2014 PRIOR TO THE DAM BREACH. BOTTOM: AFTER THE AUGUST 4, 2014 DAM BREACH. BY JESSE ALLEN, USING LANDSAT DATA FROM THE U.S. GEOLOGICAL SURVEY. — VISIBLE EARTH, NASA The enormity of tailings ponds Despite their name, tailings ponds are often more like lakes — many square kilometres in size, held in by dams that may be from 40 to more than 100 metres high. “Tailings” refers to the chemical-laden waste rock left behind from the processing of ore: in milling and separating ore from marketable minerals, a huge quantity of waste rock is ground to the consistency of sand and ends up mixed with a tremendous amount of water into a “slurry,” which is then piped into a tailings pond. The solids settle to the bottom of the pond and also form “tail- ings beaches” that become an important buffer between a pond’s embankment (waste rock set 2 SUMMARY — TAILINGS DAM SPILLS AT MOUNT POLLEY AND MARIANA up to hold in solids) and the water.
    [Show full text]
  • Fieldnotes 2021-2022
    FIELDNOTES 2021 – 2022 Pacific Science Field Operations Cover illustration: Copper Rockfish (Sebastes caurinus) in an old growth kelp forest covered in Proliferating Anemones (Epiactis prolifera). Queen Charlotte Strait, BC. Photo credit: Pauline Ridings, Fisheries and Oceans Canada. FIELDNOTES 2021 - 2022: DFO Pacific Science Field Operations TABLE OF CONTENT . INTRODUCTION 1 . DFO PACIFIC SCIENCE 2 . SCHEDULED FIELD OPERATIONS: 2021—2022 3 . DID YOU KNOW? 5 . REPORTING RESULTS 6 . ANNEX A PACIFIC SCIENCE ORGANIZATION 7 . ANNEX B FACT SHEET SERIES: 2020—2021 DFO Pacific Science Field Operations 12 . ANNEX C DATASETS PUBLISHED: 2020—2021 18 FIELDNOTES 2021 - 2022: DFO Pacific Science Field Operations INTRODUCTION Fisheries and Oceans Canada (DFO) conducts research and undertakes monitoring surveys of the marine and freshwater environment in support of sustainable fisheries, healthy aquatic ecosystems and living resources, and safe and effective marine services. In an effort to effectively inform and ensure Canadians feel engaged in the delivery of its science mandate, DFO produces Fieldnotes, an annual compendium of planned science field operations in the North Pacific and Arctic oceans, as well as in the coastal and interior waters of British Columbia and Yukon. Fieldnotes aims to: . inform Canadians of research and monitoring programming scheduled for the COVID-19 coming year; . promote the sharing of key information and data in a coordinated, timely, open and One year into the global pandemic, DFO transparent manner in order to encourage remains committed to delivering innovative dialogue and collaboration; science and services to Canadians. provide a platform from which to build and Following the suspension of scientific field nurture fundamentally more inclusive, trust- and respect-based relationships with all operations in the spring of 2020, DFO has Canadians; since resumed much of its field programming.
    [Show full text]
  • The Bacterial Community of Quesnel Lake Sediments Impacted by A
    www.nature.com/scientificreports OPEN The bacterial community of Quesnel Lake sediments impacted by a catastrophic mine tailings spill Received: 14 September 2018 Accepted: 31 December 2018 difer in composition from those at Published: xx xx xxxx undisturbed locations – two years post-spill I. Hatam1, E. L. Petticrew2, T. D. French2,3, P. N. Owens3, B. Laval4 & S. A. Baldwin1 The West Basin of Quesnel Lake (British Columbia, Canada) sufered a catastrophic disturbance event in August 2014 when mine tailings and scoured natural material were deposited into the lake’s West Basin due to an impoundment failure at the adjacent Mount Polley copper-gold mine. The deposit covered a signifcant portion of the West Basin foor with a thick layer of material. Since lake sediments host bacterial communities that play key roles in the geochemical cycling in lacustrine environments, it is important to understand which groups inhabit the newly deposited material and what this implies for the ecological function of the West Basin. Here we report a study conducted two years post- spill, comparing the bacterial communities from sediments of both disturbed and undisturbed sites. Our results show that sediments from disturbed sites difered in physical and chemical properties than those in undisturbed sites (e.g. higher pH, particle size and Cu concentration). Furthermore, bacterial communities from the disturbed sites appeared to be legacy communities from the tailings impoundment, with metabolic potential revolving mainly around the cycling of S and metals, whereas the ones from the undisturbed sites were associated with the cycling of N. Mining and mineral processing produce large quantities of waste material.
    [Show full text]
  • He University of Northern British Columbia's Quesnel River
    WELCOME TO QRRC than 2.5 million chinook QUESNEL WATERSHED OFFERS: The QRRC is a world- and coho salmon and • the Quesnel, Cariboo and the Horsefly Rivers, and a multitude of small class research centre rainbow trout fry annually. lakes and streams; that provides a setting for Strong community pressure • a variety of biogeoclimatic zones and sub-zones within the area; • the 6,060 hectare Cariboo River Protected Area; he University of Northern collaboration involving to save the facility upon • anadromous salmonids such as Chinook, Coho, sockeye, and pink salmon; researchers from UNBC its closure in 1995 and the • non-anadromous fish such as rainbow trout, bull trout, dolly varden and and other kokanee; TBritish Columbia’s Quesnel River awarding of • other fish species such as burbot, mountain whitefish, northern provincial, an endowment pikeminnow, longnose dace, peamouth chub, redside shiner, and suckers; national and fund for • the Cariboo Mountains and its varied wildlife, including grizzly and black Research Centre (QRRC) is ideally bear, wolverine, cougar, lynx, caribou, elk, moose, deer, mountain goat, international Landscape beaver, martin, weasel, waterfowl, raptors and dozens more species of situated for both land and aquatic universities, Ecology by birds; government • historical large-scale hydraulic placer mining such as the Bullion Pit which Forest Renewal is 120 metres deep, 3 kilometres long, and where >9 million cubic metres of based research and university agencies, BC in 2002 gravel were hydraulically removed into the Quesnel River; other Students studying carbon levels in the soil near Likely. resulted in the • current open pit and placer mining operations; • active forest harvesting and management by major licencees; education.
    [Show full text]
  • Kootenay Lake Fertilization Experiment, Years 11 and 12(2002 and 2003)
    KOOTENAY LAKE FERTILIZATION EXPERIMENT, YEARS 11 AND 12(2002 AND 2003) by E. U. Schindler, K. I. Ashley, R. Rae, L. Vidmanic, H. Andrusak, D. Sebastian, G. Scholten, P. Woodruff, F. Pick, L. M. Ley and P. B. Hamilton. Fisheries Project Report No. RD 114 2006 Fish and Wildlife Science and Allocation Ministry of Environment Province of British Columbia Major Funding by Fish and Wildlife Compensation Program - Columbia Basin Fisheries Project Reports frequently contain preliminary data, and conclusions based on these may be subject to change. Reports may be cited in publications but their manuscript status (MS) must be noted. Please note that the presentation summaries in the report are as provided by the authors, and have received minimal editing. Please obtain the individual author's permission before citing their work. KOOTENAY LAKE FERTILIZATION EXPERIMENT, YEARS 11 AND 12 (2002 AND 2003) by E. U. Schindler1, K. I. Ashley2, R. Rae3, L. Vidmanic4, H. Andrusak5, D. Sebastian6, G. Scholten6, P. Woodruff7, F. Pick8, L. M. Ley9 and P. B. Hamilton9. 1 Fish and Wildlife Science and Allocation Section, Ministry of Environment, Province of BC, 401-333 Victoria St., Nelson, BC, V1L 4K3 2 Department of Civil Engineering, University of British Columbia, 2324 Main Mall, Vancouver, B.C. V6T 1W5 3 Sumac Writing & Editing, 9327 Milne RD, Summerland, BC V0H 1Z7 4 Limno-Lab Ltd., 506-2260 W.10th Ave., Vancouver, BC V6K 2H8 5 Redfish Consulting Ltd., 5244 Hwy 3A, Nelson, BC, V1L 6N6 6 Aquatic Ecosystem Science Section, Biodiversity Branch Ministry of Environment, Province of BC PO Box 9338 STN PROV GOVT, Victoria, BC, V8W 9M2 7 Biological Contractor, BC Conservation Foundation, 206-17564 56th Ave., Surrey, BC, V3S 4X5 8 University of Ottawa, Department of Biology, Ottawa, ON, K1N 6N5 9 Canadian Museum of Nature, P.
    [Show full text]
  • State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2016
    State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2016 Peter C. Chandler, Stephanie A. King and Jennifer Boldt (Editors) Fisheries & Oceans Canada Institute of Ocean Sciences 9860 West Saanich Rd. Sidney, B.C. V8L 4B2 Canada 2017 Canadian Technical Report of Fisheries and Aquatic Sciences 3225 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique.
    [Show full text]
  • Eocene Paleo-Physiography and Drainage Directions, Southern Interior Plateau, British Columbia1
    215 Eocene paleo-physiography and drainage directions, southern Interior Plateau, British Columbia1 Selina Tribe Abstract: A map of reconstructed Eocene physiography and drainage directions is presented for the southern Interior Plateau region, British Columbia south of 53°N. Eocene landforms are inferred from the distribution and depositional paleoenvironment of Eocene rocks and from crosscutting relationships between regional-scale geomorphology and bedrock geology of known age. Eocene drainage directions are inferred from physiography, relief, and base level elevations of the sub-Eocene unconformity and the documented distribution, provenance, and paleocurrents of early Cenozoic fluvial sediments. The Eocene landscape of the southern Interior Plateau resembled its modern counterpart, with highlands, plains, and deeply incised drainages, except regional drainage was to the north. An anabranching valley system trending west and northwest from Quesnel and Shuswap Highlands, across the Cariboo Plateau to the Fraser River valley, contained north-flowing streams from Eocene to early Quaternary time. Other valleys dating back at least to Middle Eocene time include the North Thompson valley south of Clearwater, Thompson valley from Kamloops to Spences Bridge, the valley containing Nicola Lake, Bridge River valley, and Okanagan Lake valley. During the early Cenozoic, highlands existed where the Coast Mountains are today. Southward drainage along the modern Fraser, Chilcotin, and Thompson River valleys was established after the Late Miocene. Résumé : Cet article présente une carte reconstituée de la géographie physique et des directions de drainage, à l’Éocène, pour la région du plateau intérieur de la Colombie-Britannique, au sud du 53e parallèle Nord. Les formes de terrain à l’Éocène sont déduites de la distribution et du paléoenvironnement de déposition des roches de l’Éocène et à partir de relations de recoupement entre la géomorphologie à l’échelle régionale et la géologie du socle, d’âge connu.
    [Show full text]
  • Eutsuk Lake Rainbow Trout: Biology, Population Significance and Fishery Management
    Eutsuk Lake Rainbow Trout: Biology, Population Significance and Fishery Management prepared by: Joseph S. De Gisi Box 2518 Smithers, BC V0J 2N0 for: BC Parks Skeena District Box 5000 Smithers, BC V0J 2N0 December 2002 Eutsuk Lake Rainbow Trout Table of Contents List of Figures.....................................................................................................................iii List of Tables ......................................................................................................................iii List of Appendices..............................................................................................................iv 1. Introduction..................................................................................................1 1.1. Document Organization ..........................................................................................2 1.2. Concepts and Definitions.........................................................................................2 2. Sources and Methods ...................................................................................5 2.1. Occurrence of the Large Lake Piscivore Ecotype ..................................................5 2.2. Life History of British Columbia Piscivorous Rainbow Trout ..............................5 2.2.1. Eutsuk Lake Fish Population and Habitat Datasets.............................................5 2.2.1.1. Lake Survey 1982.........................................................................................5 2.2.1.2. Angling
    [Show full text]