Cleaning up BC's Dirty Mining Industry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Toxicological Effects of the Mount Polley Tailings Impoundment Breach on Freshwater Amphipods
THE TOXICOLOGICAL EFFECTS OF THE MOUNT POLLEY TAILINGS IMPOUNDMENT BREACH ON FRESHWATER AMPHIPODS RAEGAN D. PLOMP Bachelor of Science, University of Lethbridge, 2017 A thesis submitted in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in BIOLOGICAL SCIENCES Department of Biological Sciences University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Raegan Plomp, 2019 THE TOXICOLOGICAL EFFECTS OF THE MOUNT POLLEY TAILINGS IMPOUNDMENT BREACH ON FRESHWATER AMPHIPODS RAEGAN D. PLOMP Date of Defence: September 6, 2019 Dr. G. Pyle Professor Ph.D. Supervisor Dr. S. Wiseman Associate Professor Ph.D. Thesis Examination Committee Member Dr. R. Laird Associate Professor Ph.D. Thesis Examination Committee Member Dr. Laura Chasmer Assistant Professor Ph.D. Internal External Examiner Department of Geography Dr. T. Russell Associate Professor Ph.D. Chair, Thesis Examination Committee ii Abstract The bioavailability and toxicity of metals to amphipods is influenced by exposure route and co-toxic mechanisms. Metal bioavailability was studied in amphipods at sites affected by the 2014 Mount Polley Mining Corporation tailings impoundment breach. The area around the lake was also subjected to wildfire in 2017. Bioavailability was more correlated with sediment than waterborne metal concentrations with Cu correlating well with distance from the breach. Copper-sediment bioavailability to amphipods in combination with wildfire runoff was studied resulting in non-additive toxicity. Hyalella azteca exposed to Cu-enriched sediment with fire extract (FE) experienced a more-than- additive effect on survival and amphipod whole-body Cu concentration but no significant reduction in growth or acetylcholinesterase activity compared to the Cu-contaminated sediment or FE alone, respectively. -
^ Geology of the Mount Polley Intrusive Complex
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Disclaimer: While every effort has been taken to ensure the accuracy of the information in this map, the ! ! ! ! ! data are provided on an 'as-is' basis, without any warranty, guarantee or representation of any kind, ! XY ! ! whether expressed or implied. It is the responsibility of the user to check the facts before entering any ! ! ! ! financial or other commitment based upon this information. ! ! ! ! ! ! ! 32 ! ! ! Map 1. Geology of Mount Polley Intrusive Complex (pre-mining, except Cariboo-Bell zones) ! ! ! ! ! ! ! ! ! ! ! ! ! ! 31 ! ! ! Map 3. Gold Mineralization ! Map 2. Copper Mineralization ! ! 591,000 592,000 593,000 594,000 591,000 592,000 593,000 594,000 ! ! 591,000 592,000 593,000 594,000 0 0 0 0 ! ! ! 0 0.6% Copper 0 0 0 ! 0.6 g/t Gold ! ! 21 0 0 0 0 ! ! ! ! ! , , , , ! ! 6 6 6 6 ! ! ! ! D 2 2 2 2 ! ! ! ! D 8 8 8 8 , , , , ! ! ! D ! D ! D 5 5 5 5 ! D D ! D D D ! 0.3% Copper 0.3 g/t Gold ! ! ! D D Pit outline ! ! ! Quesnel terrane ! ! ! ! D D ! f ! ! D 65 ! D ! 0.1% Copper 0.1 g/t Gold ! 1 0 0 ! EJbc D 10 ! Stikine terrane Planned pit0 ! 0 0 ! ! 0 0 ! , , ! LT ! ! rp 6 km D 6 Limit of elevated Cu, Limit of elevated Cu, ! ! 2 2 ! ! ! 8 8 ! , , Au mineralization Au mineralization ! ! 5 D 5 ! ! ! D EJt D ! ! D D 85 ! ff 86 ! ! LTrJNbc ! ! ! ! 0 Pit outline Pit outline ! Prince 00 73 ! ! 1 ! ! D ! ! ! f ! George 0 0 0 0 ! ! 0 0 0 0 ! 85 ! ! ! LTrpkm 0 0 0 0 ! ! f , , , , ! ! Planned pit ! 5 5 5 5 ! Planned pit ! ! ! ! ! ! 2 2 2 2 ! ! f ! ! D ! ! ! 8 8 8 8 ! ! ! ! ^ , , , , ! Map Area 53 D 5 5 5 5 ! LTrJNbc ! ! ! ! ! D D D ! D D D ! ! D D LTrpbx2 P o l l e y L a k e P o l l e y L a k e ! ! ! ! ! D . -
Dionisio Point Excavations
1HE• Publication of the Archaeological Society of Vol. 31 , No. I - 1999 Dionisio Point Excavations ARCHAEOLOGICAL SOCIETY OF &MIDDEN BRITISH COLUMBIA Published four times a year by the Archaeological Society of British Columbia Dedicated to the protection of archaeological resot:Jrces and the spread of archaeological knowledge. Editorial Committee Editor: Heather Myles (274-4294) President Field Editor: Richard Brolly (689-1678) Helmi Braches (462-8942) arcas@istar. ca [email protected] News Editor: Heather Myles Publications Editor: Robbin Chatan (215-1746) Membership [email protected] Sean Nugent (685-9592) Assistant Editors: Erin Strutt [email protected] erins@intergate. be.ca Fred Braches Annual membership includes I year's subscription to [email protected] The Midden and the ASBC newsletter, SocNotes. Production & Subscriptions: Fred Braches ( 462-8942) Membership Fees I SuBSCRIPTION is included with ASBC membership. Individual: $25 Family: $30 . Seniors/Students: $I 8 Non-members: $14.50 per year ($1 7.00 USA and overseas), Send cheque or money order payable to the ASBC to: payable in Canadian funds to the ASBC. Remit to: ASBC Memberships Midden Subscriptions, ASBC P.O. Box 520, Bentall Station P.O. Box 520, Bentall Station Vancouver BC V6C 2N3 Vancouver BC V6C 2N3 SuBMISSIONs: We welcome contributions on subjects germane ASBC on Internet to BC archaeology. Guidelines are available on request. Sub http://home.istar.ca/-glenchan/asbc/asbc.shtml missions and exchange publications should be directed to the appropriate editor at the ASBC address. Affiliated Chapters Copyright Nanaimo Contact: Rachael Sydenham Internet: http://www.geocities.com/rainforest/5433 Contents of The Midden are copyrighted by the ASBC. -
DRAFT Dam Safety Review Mount Polley Mine, Likely British Columbia
AMEC Earth & Environmental a division of AMEC Americas Limited 2227 Douglas Road, Burnaby, BC Canada V5C 5A9 Tel +1 (604) 294-3811 Fax +1 (604) 294-4664 www.amec.com DRAFT DAM SAFETY REVIEW Mount Polley Mine Likely, British Columbia Submitted to: Imperial Metals Corporation 200 – 580 Hornby Street Vancouver, BC Submitted by: AMEC Earth & Environmental Limited Burnaby, BC November 2006 AMEC File: VM00448 AMEC010565_0001 Imperial Metals Corporation Dam Safety Review Mt. Polley Mine - Tailings Storage Facility November 2006 – DRAFT REPORT TABLE OF CONTENTS SUMMARY III 1.0 INTRODUCTION .............................................................................................................. 1 2.0 BACKGROUND ............................................................................................................... 4 2.1 General ...................................................................................................................... 4 2.2 Relevant Documentation to DSR ............................................................................... 5 2.3 Existing Dam Safety Program .................................................................................... 5 2.3.1 Dam Safety Inspections ................................................................................. 5 2.3.2 Dam Safety Review ........................................................................................ 5 2.4 Water Balance ........................................................................................................... 5 3.0 DAM -
Tailings Dam Spills at Mount Polley & Mariana Summary
BY JUDITH MARSHALL August 2018 Tailings dam spills at Download the Mount Polley & Mariana full report at: corporatemapping.ca/ CHRONICLES OF DISASTERS FORETOLD tailings-disasters Summary THIS PAPER EXPLORES THE MANY PARALLELS between the tailings dam spills at the Mount Polley mine in British Columbia (BC), Canada, and the Samarco mine in Mariana, Minas Gerais, Brazil. The Mount Polley disaster took place in August 2014, when the dam holding toxic waste from the copper and gold mine collapsed, creating the largest environ- mental disaster in Canada’s mining history. It was not long after — in November of the following year — that the largest mine disaster in Latin American history took place in Mariana, Brazil, when an even larger reservoir of waste collapsed at the Samarco iron mine. TOP: AERIAL VIEW OF MOUNT POLLEY MINE SITE, JULY 24, 2014 PRIOR TO THE DAM BREACH. BOTTOM: AFTER THE AUGUST 4, 2014 DAM BREACH. BY JESSE ALLEN, USING LANDSAT DATA FROM THE U.S. GEOLOGICAL SURVEY. — VISIBLE EARTH, NASA The enormity of tailings ponds Despite their name, tailings ponds are often more like lakes — many square kilometres in size, held in by dams that may be from 40 to more than 100 metres high. “Tailings” refers to the chemical-laden waste rock left behind from the processing of ore: in milling and separating ore from marketable minerals, a huge quantity of waste rock is ground to the consistency of sand and ends up mixed with a tremendous amount of water into a “slurry,” which is then piped into a tailings pond. The solids settle to the bottom of the pond and also form “tail- ings beaches” that become an important buffer between a pond’s embankment (waste rock set 2 SUMMARY — TAILINGS DAM SPILLS AT MOUNT POLLEY AND MARIANA up to hold in solids) and the water. -
Fieldnotes 2021-2022
FIELDNOTES 2021 – 2022 Pacific Science Field Operations Cover illustration: Copper Rockfish (Sebastes caurinus) in an old growth kelp forest covered in Proliferating Anemones (Epiactis prolifera). Queen Charlotte Strait, BC. Photo credit: Pauline Ridings, Fisheries and Oceans Canada. FIELDNOTES 2021 - 2022: DFO Pacific Science Field Operations TABLE OF CONTENT . INTRODUCTION 1 . DFO PACIFIC SCIENCE 2 . SCHEDULED FIELD OPERATIONS: 2021—2022 3 . DID YOU KNOW? 5 . REPORTING RESULTS 6 . ANNEX A PACIFIC SCIENCE ORGANIZATION 7 . ANNEX B FACT SHEET SERIES: 2020—2021 DFO Pacific Science Field Operations 12 . ANNEX C DATASETS PUBLISHED: 2020—2021 18 FIELDNOTES 2021 - 2022: DFO Pacific Science Field Operations INTRODUCTION Fisheries and Oceans Canada (DFO) conducts research and undertakes monitoring surveys of the marine and freshwater environment in support of sustainable fisheries, healthy aquatic ecosystems and living resources, and safe and effective marine services. In an effort to effectively inform and ensure Canadians feel engaged in the delivery of its science mandate, DFO produces Fieldnotes, an annual compendium of planned science field operations in the North Pacific and Arctic oceans, as well as in the coastal and interior waters of British Columbia and Yukon. Fieldnotes aims to: . inform Canadians of research and monitoring programming scheduled for the COVID-19 coming year; . promote the sharing of key information and data in a coordinated, timely, open and One year into the global pandemic, DFO transparent manner in order to encourage remains committed to delivering innovative dialogue and collaboration; science and services to Canadians. provide a platform from which to build and Following the suspension of scientific field nurture fundamentally more inclusive, trust- and respect-based relationships with all operations in the spring of 2020, DFO has Canadians; since resumed much of its field programming. -
The Bacterial Community of Quesnel Lake Sediments Impacted by A
www.nature.com/scientificreports OPEN The bacterial community of Quesnel Lake sediments impacted by a catastrophic mine tailings spill Received: 14 September 2018 Accepted: 31 December 2018 difer in composition from those at Published: xx xx xxxx undisturbed locations – two years post-spill I. Hatam1, E. L. Petticrew2, T. D. French2,3, P. N. Owens3, B. Laval4 & S. A. Baldwin1 The West Basin of Quesnel Lake (British Columbia, Canada) sufered a catastrophic disturbance event in August 2014 when mine tailings and scoured natural material were deposited into the lake’s West Basin due to an impoundment failure at the adjacent Mount Polley copper-gold mine. The deposit covered a signifcant portion of the West Basin foor with a thick layer of material. Since lake sediments host bacterial communities that play key roles in the geochemical cycling in lacustrine environments, it is important to understand which groups inhabit the newly deposited material and what this implies for the ecological function of the West Basin. Here we report a study conducted two years post- spill, comparing the bacterial communities from sediments of both disturbed and undisturbed sites. Our results show that sediments from disturbed sites difered in physical and chemical properties than those in undisturbed sites (e.g. higher pH, particle size and Cu concentration). Furthermore, bacterial communities from the disturbed sites appeared to be legacy communities from the tailings impoundment, with metabolic potential revolving mainly around the cycling of S and metals, whereas the ones from the undisturbed sites were associated with the cycling of N. Mining and mineral processing produce large quantities of waste material. -
He University of Northern British Columbia's Quesnel River
WELCOME TO QRRC than 2.5 million chinook QUESNEL WATERSHED OFFERS: The QRRC is a world- and coho salmon and • the Quesnel, Cariboo and the Horsefly Rivers, and a multitude of small class research centre rainbow trout fry annually. lakes and streams; that provides a setting for Strong community pressure • a variety of biogeoclimatic zones and sub-zones within the area; • the 6,060 hectare Cariboo River Protected Area; he University of Northern collaboration involving to save the facility upon • anadromous salmonids such as Chinook, Coho, sockeye, and pink salmon; researchers from UNBC its closure in 1995 and the • non-anadromous fish such as rainbow trout, bull trout, dolly varden and and other kokanee; TBritish Columbia’s Quesnel River awarding of • other fish species such as burbot, mountain whitefish, northern provincial, an endowment pikeminnow, longnose dace, peamouth chub, redside shiner, and suckers; national and fund for • the Cariboo Mountains and its varied wildlife, including grizzly and black Research Centre (QRRC) is ideally bear, wolverine, cougar, lynx, caribou, elk, moose, deer, mountain goat, international Landscape beaver, martin, weasel, waterfowl, raptors and dozens more species of situated for both land and aquatic universities, Ecology by birds; government • historical large-scale hydraulic placer mining such as the Bullion Pit which Forest Renewal is 120 metres deep, 3 kilometres long, and where >9 million cubic metres of based research and university agencies, BC in 2002 gravel were hydraulically removed into the Quesnel River; other Students studying carbon levels in the soil near Likely. resulted in the • current open pit and placer mining operations; • active forest harvesting and management by major licencees; education. -
Kootenay Lake Fertilization Experiment, Years 11 and 12(2002 and 2003)
KOOTENAY LAKE FERTILIZATION EXPERIMENT, YEARS 11 AND 12(2002 AND 2003) by E. U. Schindler, K. I. Ashley, R. Rae, L. Vidmanic, H. Andrusak, D. Sebastian, G. Scholten, P. Woodruff, F. Pick, L. M. Ley and P. B. Hamilton. Fisheries Project Report No. RD 114 2006 Fish and Wildlife Science and Allocation Ministry of Environment Province of British Columbia Major Funding by Fish and Wildlife Compensation Program - Columbia Basin Fisheries Project Reports frequently contain preliminary data, and conclusions based on these may be subject to change. Reports may be cited in publications but their manuscript status (MS) must be noted. Please note that the presentation summaries in the report are as provided by the authors, and have received minimal editing. Please obtain the individual author's permission before citing their work. KOOTENAY LAKE FERTILIZATION EXPERIMENT, YEARS 11 AND 12 (2002 AND 2003) by E. U. Schindler1, K. I. Ashley2, R. Rae3, L. Vidmanic4, H. Andrusak5, D. Sebastian6, G. Scholten6, P. Woodruff7, F. Pick8, L. M. Ley9 and P. B. Hamilton9. 1 Fish and Wildlife Science and Allocation Section, Ministry of Environment, Province of BC, 401-333 Victoria St., Nelson, BC, V1L 4K3 2 Department of Civil Engineering, University of British Columbia, 2324 Main Mall, Vancouver, B.C. V6T 1W5 3 Sumac Writing & Editing, 9327 Milne RD, Summerland, BC V0H 1Z7 4 Limno-Lab Ltd., 506-2260 W.10th Ave., Vancouver, BC V6K 2H8 5 Redfish Consulting Ltd., 5244 Hwy 3A, Nelson, BC, V1L 6N6 6 Aquatic Ecosystem Science Section, Biodiversity Branch Ministry of Environment, Province of BC PO Box 9338 STN PROV GOVT, Victoria, BC, V8W 9M2 7 Biological Contractor, BC Conservation Foundation, 206-17564 56th Ave., Surrey, BC, V3S 4X5 8 University of Ottawa, Department of Biology, Ottawa, ON, K1N 6N5 9 Canadian Museum of Nature, P. -
State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2016
State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2016 Peter C. Chandler, Stephanie A. King and Jennifer Boldt (Editors) Fisheries & Oceans Canada Institute of Ocean Sciences 9860 West Saanich Rd. Sidney, B.C. V8L 4B2 Canada 2017 Canadian Technical Report of Fisheries and Aquatic Sciences 3225 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. -
Eocene Paleo-Physiography and Drainage Directions, Southern Interior Plateau, British Columbia1
215 Eocene paleo-physiography and drainage directions, southern Interior Plateau, British Columbia1 Selina Tribe Abstract: A map of reconstructed Eocene physiography and drainage directions is presented for the southern Interior Plateau region, British Columbia south of 53°N. Eocene landforms are inferred from the distribution and depositional paleoenvironment of Eocene rocks and from crosscutting relationships between regional-scale geomorphology and bedrock geology of known age. Eocene drainage directions are inferred from physiography, relief, and base level elevations of the sub-Eocene unconformity and the documented distribution, provenance, and paleocurrents of early Cenozoic fluvial sediments. The Eocene landscape of the southern Interior Plateau resembled its modern counterpart, with highlands, plains, and deeply incised drainages, except regional drainage was to the north. An anabranching valley system trending west and northwest from Quesnel and Shuswap Highlands, across the Cariboo Plateau to the Fraser River valley, contained north-flowing streams from Eocene to early Quaternary time. Other valleys dating back at least to Middle Eocene time include the North Thompson valley south of Clearwater, Thompson valley from Kamloops to Spences Bridge, the valley containing Nicola Lake, Bridge River valley, and Okanagan Lake valley. During the early Cenozoic, highlands existed where the Coast Mountains are today. Southward drainage along the modern Fraser, Chilcotin, and Thompson River valleys was established after the Late Miocene. Résumé : Cet article présente une carte reconstituée de la géographie physique et des directions de drainage, à l’Éocène, pour la région du plateau intérieur de la Colombie-Britannique, au sud du 53e parallèle Nord. Les formes de terrain à l’Éocène sont déduites de la distribution et du paléoenvironnement de déposition des roches de l’Éocène et à partir de relations de recoupement entre la géomorphologie à l’échelle régionale et la géologie du socle, d’âge connu. -
Eutsuk Lake Rainbow Trout: Biology, Population Significance and Fishery Management
Eutsuk Lake Rainbow Trout: Biology, Population Significance and Fishery Management prepared by: Joseph S. De Gisi Box 2518 Smithers, BC V0J 2N0 for: BC Parks Skeena District Box 5000 Smithers, BC V0J 2N0 December 2002 Eutsuk Lake Rainbow Trout Table of Contents List of Figures.....................................................................................................................iii List of Tables ......................................................................................................................iii List of Appendices..............................................................................................................iv 1. Introduction..................................................................................................1 1.1. Document Organization ..........................................................................................2 1.2. Concepts and Definitions.........................................................................................2 2. Sources and Methods ...................................................................................5 2.1. Occurrence of the Large Lake Piscivore Ecotype ..................................................5 2.2. Life History of British Columbia Piscivorous Rainbow Trout ..............................5 2.2.1. Eutsuk Lake Fish Population and Habitat Datasets.............................................5 2.2.1.1. Lake Survey 1982.........................................................................................5 2.2.1.2. Angling