Modeling Ice Sheets from the Bottom Up

Total Page:16

File Type:pdf, Size:1020Kb

Modeling Ice Sheets from the Bottom Up Quaternary Science Reviews 28 (2009) 1831–1849 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Modeling ice sheets from the bottom up T. Hughes* Department of Earth Sciences, Climate Change Institute, University of Maine, Bryand Global Sciences Center, Grove Street Extension, Orono, ME 04469-5790, USA article info abstract Article history: Three facts should guide ice-sheet modeling. (1) Ice height above the bed is controlled by the strength of Received 6 November 2008 ice-bed coupling, reducing ice thickness by some 90 percent when coupling vanishes. (2) Ice-bed Received in revised form coupling vanishes along ice streams that end as floating ice shelves and drain up to 90 percent of an ice 25 May 2009 sheet. (3) Because of (1) and (2), ice sheets can rapidly collapse and disintegrate, thereby removing ice Accepted 6 June 2009 sheets from Earth’s climate system and forcing abrupt climate change. The first model of ice-sheet dynamics was developed in Australia and applied to the present Antarctic Ice Sheet in 1970. It treated slow sheet flow, which prevails over some 90 percent of the ice sheet, but is the least dynamic component. The model made top-down calculations of ice velocities and temperatures, based on known surface conditions and an assumed basal geothermal heat flux. In 1972, Joseph Fletcher proposed a six- step research strategy for studying dynamic systems. The first step was identifying the most dynamic components, which for Antarctica are fast ice streams that discharge up to 90 percent of the ice. Ice-sheet models developed at the University of Maine in the 1970s were based on the Fletcher strategy and focused on ice streams, including calving dynamics when ice streams end in water. These models calculated the elevation of ice sheets based in the strength of ice-bed coupling. This was a bottom-up approach that lowered ice elevations some 90 percent when ice-bed coupling vanished. Top-down modeling is able to simulate changes in the size and shape of ice sheets through a whole glaciation cycle, provided the mass balance is treated correctly. Bottom-up modeling is able to produce accurate changes in ice elevations based on changes in ice-bed coupling, provided the force balance is treated correctly. Truly holistic ice-sheet models should synthesize top-down and bottom-up approaches by combining the mass balance with the force balance in ways that merge abrupt changes in stream flow with slow changes in sheet flow. Then discharging 90 percent of the ice by ice streams mobilizes 90 percent of the area so ice sheets can self-destruct, and thereby terminate a glaciation cycle. Ó 2009 Elsevier Ltd. All rights reserved. 1. Introduction produced elliptical ice-sheet profiles on a horizontal bed. Ablation rates were added and both accumulation and ablation rates were This review primarily traces the trajectory of my glaciological allowed to vary in later refinements (see Hughes, 1998, Figure 5.10). career, which began in 1968. Consequently, those who influenced In all these treatments, gravitational ice motion was resisted by my career the most are cited prominently. My apologies to other a basal shear stress proportional to the product of ice height above prominent glaciologists. A half-century ago, glaciology was being the bed and ice surface slope. The resulting ice surface was high and converted from a descriptive branch of geology to an analytical convex, even when moderate bed topography was included. Their branch of physics. Analytical reconstructions of ice sheets began dependence on the surface mass balance made them top-down with the parabolic profile of an ice sheet having a constant basal models that produced nearly steady-state ice sheets. The ice sheets shear stress on a horizontal bed (Nye, 1951). Next, the basal shear of Antarctica and Greenland today are nearly in steady state overall, stress was allowed to vary with ice velocity determined by within the accuracy of the surface mass balance. These ice sheets a constant surface accumulation rate and whether ice moved by have high convex surfaces where slow sheet flow prevails, as creep over a frozen bed (Haefeli, 1961) or by sliding over a thawed assumed in the analytical models. The Antarctic Ice Sheet often bed (Nye, 1959), using the newly published flow law (Glen, 1955) ends as floating ice shelves because ice accumulation over virtually and sliding law (Weertman, 1957a) of ice. These treatments its entire surface allows it to advance into the sea, where iceberg calving provides the primary ablation mechanism. Weertman * Tel.: þ1 207 581 2198; fax: þ1 207 581 1203. (1957b) provided the first analytical derivation of the low and E-mail address: [email protected] essentially flat surface of a floating ice shelf. In his derivation, 0277-3791/$ – see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.quascirev.2009.06.004 1832 T. Hughes / Quaternary Science Reviews 28 (2009) 1831–1849 gravitational ice motion is resisted by a longitudinal tensile stress The top-down models for sheet flow by Budd et al. (1971) and proportional to the height of ice floating above sea level. later top-down models were incompatible with important field data from Antarctica, much of it collected by tractor-train traverses 2. Modeling ice sheets from the top down during the International Geophysical Year (IGY) in 1958 and beyond. The traverses measured ice elevations, temperatures, and Numerical ice-sheet modeling was inaugurated by William accumulation rates at the surface and ice heights above the bed Budd, Richard Jenssen, and Uwe Radok in 1971. They developed along traverse routes. The data, traverse routes, and geographical a steady-state flowline model which they applied to the Antarctic features appeared on the 1970 map, Antarctica, published by the Ice Sheet in order to derive variations of temperature, stress, and American Geographical Society. Contoured bed topographic data velocity with depth, using measured ice heights above the bed, ice showed that most of the West Antarctic Ice Sheet was grounded elevations above sea level, ice surface accumulation rates, and ice below sea level on the Antarctic continental shelf (Bentley and surface temperatures (Budd et al., 1971). From these data, their Ostenso, 1961), leading Mercer (1970) to propose that it was an model plotted ice trajectories and timelines with depth along inherently unstable ‘‘marine’’ ice sheet. Contoured surface eleva- surface flowlines, and calculated either basal ice temperatures tion data showed the East Antarctic Ice Sheet had the convex below the melting point or basal ice melting rates at the melting surface produced by steady-state models of sheet flow, but the point for specified rates of the basal geothermal heat flux. Doubling West Antarctic Ice Sheet had a concave surface. Perhaps the West the geothermal heat flux converted a ubiquitously frozen bed into Antarctic Ice Sheet was far from steady state and in fact was in an a largely thawed bed. Widespread changes from a frozen to advanced stage of gravitational collapse that produced the low a thawed bed also resulted from moderate changes in conditions at floating ice shelves surrounding it. My response to this possibility the ice surface. An outer basal freezing zone was introduced beyond appeared in four monographs, in 1972, 1973, 1974, and 1975, under the inner basal melting zone in subsequent applications of the the acronym ISCAP (Ice Streamline Cooperative Antarctic Project), model to prevent widespread ice-bed decoupling as the basal water all of which posed the question, ‘‘Is the West Antarctic Ice Sheet layer thickened (Sugden, 1977). disintegrating?’’ Was the West Antarctic Ice Sheet not only Budd and Radok were meteorologists who saw interactions of collapsing into ice shelves, but would the ice shelves then disin- the ice surface with the atmosphere as the critical boundary tegrate into icebergs, thereby removing the West Antarctic Ice condition in modeling ice sheets. Budd et al. (1971) specified Sheet from the global climate system, and flooding the world ocean surface conditions in order to determine basal conditions. Theirs with icebergs that, in melting, would cool ocean surface water and was a top-down model in which the surface mass balance combines therefore reduce the ocean-to-atmosphere heat exchange that with the force balance to offset gravitational motion with basal drag drives atmospheric circulation? Could a new glaciation cycle then that resists motion. By that constraint, their model applied only to begin? slow sheet flow. This is known as the ‘‘shallow-ice’’ approximation (Hutter, 1983). Their pioneering work set the stage for developing 3. The Fletcher memorandum gridpoint ice-sheet models that were three dimensional and time dependent. Time-dependent modeling showed that present basal Incorporated in my ISCAP bulletins was a research strategy for thermal conditions are determined primarily by past surface studying dynamic systems proposed by Joseph Fletcher in an conditions, not present conditions, even if surface changes from internal memorandum when he headed the Office of Polar past to present are only moderate. These models also simulate only Programs at the National Science Foundation (Fletcher, 1972). slow sheet flow, which prevails over some 90 percent of ice sheets, Fletcher recommended research that answered six questions past and present. In sheet flow, gravitational flow is resisted directed at how any dynamic system operates. His six questions and primarily by basal drag, as quantified by the basal shear stress. my answers for the Antarctic Ice Sheet that also apply to all ice Since past surface conditions are poorly known for present ice sheets are: sheets, and unknown for former ice sheets, top-down models cannot deliver reliable basal conditions for 90 percent of the bed 1.
Recommended publications
  • Early Break-Up of the Norwegian Channel Ice Stream During the Last Glacial Maximum
    Quaternary Science Reviews 107 (2015) 231e242 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Early break-up of the Norwegian Channel Ice Stream during the Last Glacial Maximum * John Inge Svendsen a, , Jason P. Briner b, Jan Mangerud a, Nicolas E. Young c a Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Postbox 7803, N-5020 Bergen, Norway b Department of Geology, University at Buffalo, Buffalo, NY 14260, USA c Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA article info abstract Article history: We present 18 new cosmogenic 10Be exposure ages that constrain the breakup time of the Norwegian Received 11 June 2014 Channel Ice Stream (NCIS) and the initial retreat of the Scandinavian Ice Sheet from the Southwest coast Received in revised form of Norway following the Last Glacial Maximum (LGM). Seven samples from glacially transported erratics 31 October 2014 on the island Utsira, located in the path of the NCIS about 400 km up-flow from the LGM ice front Accepted 3 November 2014 position, yielded an average 10Be age of 22.0 ± 2.0 ka. The distribution of the ages is skewed with the 4 Available online youngest all within the range 20.2e20.8 ka. We place most confidence on this cluster of ages to constrain the timing of ice sheet retreat as we suspect the 3 oldest ages have some inheritance from a previous ice Keywords: Norwegian Channel Ice Stream free period. Three additional ages from the adjacent island Karmøy provided an average age of ± 10 Scandinavian Ice Sheet 20.9 0.7 ka, further supporting the new timing of retreat for the NCIS.
    [Show full text]
  • Ribbed Bedforms in Palaeo-Ice Streams Reveal Shear Margin
    https://doi.org/10.5194/tc-2020-336 Preprint. Discussion started: 21 November 2020 c Author(s) 2020. CC BY 4.0 License. Ribbed bedforms in palaeo-ice streams reveal shear margin positions, lobe shutdown and the interaction of meltwater drainage and ice velocity patterns Jean Vérité1, Édouard Ravier1, Olivier Bourgeois2, Stéphane Pochat2, Thomas Lelandais1, Régis 5 Mourgues1, Christopher D. Clark3, Paul Bessin1, David Peigné1, Nigel Atkinson4 1 Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France 2 Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes CEDEX 3, France 10 3 Department of Geography, University of Sheffield, Sheffield, UK 4 Alberta Geological Survey, 4th Floor Twin Atria Building, 4999-98 Ave. Edmonton, AB, T6B 2X3, Canada Correspondence to: Jean Vérité ([email protected]) Abstract. Conceptual ice stream landsystems derived from geomorphological and sedimentological observations provide 15 constraints on ice-meltwater-till-bedrock interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of ribbed bedforms remain unclear. We explore the conditions under which these bedforms develop and their spatial organisation with (i) an experimental model that reproduces the dynamics of ice streams and subglacial landsystems and (ii) an analysis of the distribution of ribbed bedforms on selected examples of paleo-ice stream beds of the Laurentide Ice Sheet. We find that a specific kind of ribbed bedforms can develop subglacially 20 from a flat bed beneath shear margins (i.e., lateral ribbed bedforms) and lobes (i.e., submarginal ribbed bedforms) of ice streams.
    [Show full text]
  • A Review of Ice-Sheet Dynamics in the Pine Island Glacier Basin, West Antarctica: Hypotheses of Instability Vs
    Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 A review of ice-sheet dynamics in the Pine Island Glacier basin, West Antarctica: hypotheses of instability vs. observations of change. David G. Vaughan, Hugh F. J. Corr, Andrew M. Smith, Adrian Jenkins British Antarctic Survey, Natural Environment Research Council Charles R. Bentley, Mark D. Stenoien University of Wisconsin Stanley S. Jacobs Lamont-Doherty Earth Observatory of Columbia University Thomas B. Kellogg University of Maine Eric Rignot Jet Propulsion Laboratories, National Aeronautical and Space Administration Baerbel K. Lucchitta U.S. Geological Survey 1 Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 Abstract The Pine Island Glacier ice-drainage basin has often been cited as the part of the West Antarctic ice sheet most prone to substantial retreat on human time-scales. Here we review the literature and present new analyses showing that this ice-drainage basin is glaciologically unusual, in particular; due to high precipitation rates near the coast Pine Island Glacier basin has the second highest balance flux of any extant ice stream or glacier; tributary ice streams flow at intermediate velocities through the interior of the basin and have no clear onset regions; the tributaries coalesce to form Pine Island Glacier which has characteristics of outlet glaciers (e.g. high driving stress) and of ice streams (e.g. shear margins bordering slow-moving ice); the glacier flows across a complex grounding zone into an ice shelf coming into contact with warm Circumpolar Deep Water which fuels the highest basal melt-rates yet measured beneath an ice shelf; the ice front position may have retreated within the past few millennia but during the last few decades it appears to have shifted around a mean position.
    [Show full text]
  • Century-Scale Discharge Stagnation and Reactivation of the Ross Ice Streams, West Antarctica C
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, F03S27, doi:10.1029/2006JF000603, 2007 Click Here for Full Article Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica C. Hulbe1 and M. Fahnestock2 Received 21 June 2006; revised 31 October 2006; accepted 10 January 2007; published 23 May 2007. [1] Flow features on the surface of the Ross Ice Shelf, West Antarctica, record two episodes of ice stream stagnation and reactivation within the last 1000 years. We document these events using maps of streaklines emerging from individual ice streams made using visible band imagery, together with numerical models of ice shelf flow. Forward model experiments demonstrate that only a limited set of discharge scenarios could have produced the current streakline configuration. According to our analysis, Whillans Ice Stream ceased rapid flow about 850 calendar years ago and restarted about 400 years later and MacAyeal Ice Stream either stopped or slowed significantly between 800 and 700 years ago, restarting about 150 years later. Until now, ice-stream scenarios emphasized runaway retreat or stagnation on millennial timescales. Here we identify a new scenario: century-scale stagnation and reactivation cycles, as well as lateral communication with adjacent ice streams through thickness changes on lightly grounded ice plains. This introduces uncertainty into predictions for future sea-level withdrawals by the West Antarctic Ice Sheet, which are based in part on recent slowing of Whillans Ice Stream and the stagnant condition of Kamb Ice Stream. Citation: Hulbe, C., and M. A. Fahnestock (2007), Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica, J.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • Land Ice, Paleoclimate and Polar Climate Working Groups
    2019 WG Meetings Land Ice, Paleoclimate and Polar Climate Working Groups Simulating the Northern Hemisphere climate and ice sheets during the last deglaciation with CESM2.1/CISM2.1 Petrini M. & Bradley S.L February 4, 2019 Study area and scientific motivations Study area: • At Last Glacial Maximum, ~21 ka, three large ice sheets: CIS Greenland, North American, Eurasian; LIS IIS GIS BSIS FIS BIIS Ice sheet reconstruction for initial LGM boundary conditions, from BRITICE-CHRONO + Lecavalier et al., 2014. Eurasian Ice Sheet complex: Fennoscandian Ice Sheet (FIS), Barents Sea Ice Sheet (BSIS), British-Irish Ice Sheet (BIIS). North American Ice Sheet complex: Laurentide Ice Sheet (LIS), Cordilleran Ice Sheet (CIS), Innuitian Ice Sheet (IIS). Study area and scientific motivations Study area: • At Last Glacial Maximum, ~21 ka, three continental ice sheets: CIS Greenland, North American, Eurasian; • Sea level ~132±2 m lower: 76.0±6.7 Eurasian: 18.4±4.9 m SLE North American: 76.0±6.7 m SLE LIS IIS Greenland: 4.1±1.0 m SLE. f (Simms et al., 2019 QSR) GIS BSIS 4.1±1.0 FIS BIIS 18.4±4.9 Ice sheet reconstruction for initial LGM boundary conditions, from BRITICE-CHRONO + Lecavalier et al., 2014. Eurasian Ice Sheet complex: Fennoscandian Ice Sheet (FIS), Barents Sea Ice Sheet (BSIS), British-Irish Ice Sheet (BIIS). North American Ice Sheet complex: Laurentide Ice Sheet (LIS), Cordilleran Ice Sheet (CIS), Innuitian Ice Sheet (IIS). Study area and scientific motivations Study area: • At Last Glacial Maximum, ~21 ka, three continental ice sheets: CIS Greenland, North American, Eurasian; • Sea level ~132±2 m lower: Eurasian: 18.4±4.9 m SLE North American: 76.0±6.7 m SLE LIS IIS Greenland: 4.1±1.0 m SLE.
    [Show full text]
  • Ilulissat Icefjord
    World Heritage Scanned Nomination File Name: 1149.pdf UNESCO Region: EUROPE AND NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Ilulissat Icefjord DATE OF INSCRIPTION: 7th July 2004 STATE PARTY: DENMARK CRITERIA: N (i) (iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 28th Session of the World Heritage Committee Criterion (i): The Ilulissat Icefjord is an outstanding example of a stage in the Earth’s history: the last ice age of the Quaternary Period. The ice-stream is one of the fastest (19m per day) and most active in the world. Its annual calving of over 35 cu. km of ice accounts for 10% of the production of all Greenland calf ice, more than any other glacier outside Antarctica. The glacier has been the object of scientific attention for 250 years and, along with its relative ease of accessibility, has significantly added to the understanding of ice-cap glaciology, climate change and related geomorphic processes. Criterion (iii): The combination of a huge ice sheet and a fast moving glacial ice-stream calving into a fjord covered by icebergs is a phenomenon only seen in Greenland and Antarctica. Ilulissat offers both scientists and visitors easy access for close view of the calving glacier front as it cascades down from the ice sheet and into the ice-choked fjord. The wild and highly scenic combination of rock, ice and sea, along with the dramatic sounds produced by the moving ice, combine to present a memorable natural spectacle. BRIEF DESCRIPTIONS Located on the west coast of Greenland, 250-km north of the Arctic Circle, Greenland’s Ilulissat Icefjord (40,240-ha) is the sea mouth of Sermeq Kujalleq, one of the few glaciers through which the Greenland ice cap reaches the sea.
    [Show full text]
  • The U-Pb Detrital Zircon Signature of West Antarctic Ice Stream Tills in The
    Antarctic Science 26(6), 687–697 (2014) © Antarctic Science Ltd 2014. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102014000315 The U-Pb detrital zircon signature of West Antarctic ice stream tills in the Ross embayment, with implications for Last Glacial Maximum ice flow reconstructions KATHY J. LICHT, ANDREA J. HENNESSY and BETHANY M. WELKE Indiana University-Purdue University Indianapolis, Department of Earth Sciences, 723 West Michigan Street, Indianapolis, IN 46202, USA [email protected] Abstract: Glacial till samples collected from beneath the Bindschadler and Kamb ice streams have a distinct U-Pb detrital zircon signature that allows them to be identified in Ross Sea tills. These two sites contain a population of Cretaceous grains 100–110 Ma that have not been found in East Antarctic tills. Additionally, Bindschadler and Kamb ice streams have an abundance of Ordovician grains (450–475 Ma) and a cluster of ages 330–370 Ma, which are much less common in the remainder of the sample set. These tracers of a West Antarctic provenance are also found east of 180° longitude in eastern Ross Sea tills deposited during the last glacial maximum (LGM). Whillans Ice Stream (WIS), considered part of the West Antarctic Ice Sheet but partially originating in East Antarctica, lacks these distinctive signatures. Its U-Pb zircon age population is dominated by grains 500–550 Ma indicating derivation from Granite Harbour Intrusive rocks common along the Transantarctic Mountains, making it indistinguishable from East Antarctic tills.
    [Show full text]
  • Advance and Retreat of Cordilleran Ice Sheets in Washington, U.S.A
    Document généré le 4 oct. 2021 19:12 Géographie physique et Quaternaire Advance and Retreat of Cordilleran Ice Sheets in Washington, U.S.A. Avancée et recul des inlandsis de la Cordillère dans l’État de Washington (É.-U.) Vorstoß und Rückzug der Kordilleren-Eisdecke in Washington State. U.S.A. Don J. Easterbrook Volume 46, numéro 1, 1992 Résumé de l'article Dans la Cordillère, les glaciations se sont produites selon des modes URI : https://id.erudit.org/iderudit/032888ar caractéristiques d'avancée et de recul : 1) dépôts fluvioglaciaires d'avancée; 2) DOI : https://doi.org/10.7202/032888ar poli glaciaire; 3) till; 4) dépôts fluvio-glaciaires de retrait au sud de Seattle, dans le sud des basses-terres de Puget, dépôts glacio-marins dans les basses-terres Aller au sommaire du numéro du nord, et eskers, terrasses fluvioglaciaires et petites moraines sur le plateau de Columbia. La datation au radiocarbone indique que les lobes de Puget et de Juan de Fuca ont avancé et reculé synchroniquement. Parmi les preuves qui Éditeur(s) nous contraignent à rejeter l'hypothèse selon laquelle un front en fusion, qui vêlait, serait à l'origine des dépôts glacio-marins, citons : 1) les nombreuses Les Presses de l'Université de Montréal datations au radiocarbone qui révèlent la mise en place simultanée de dépôts glacio-marins sur tout le territoire; 2) les dépôts issus de la fusion de la glace ISSN stagnante, intimement associés aux dépôts glacio-marins; 3) les preuves irréfutables d'une origine autre que marine des sables de Deming qui révèlent 0705-7199 (imprimé) que la Cordillère était libre de glace immédiatement avant la mise en place des 1492-143X (numérique) dépôts glacio-marins.
    [Show full text]
  • Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest During the Late Quaternary Period
    Western Washington University Western CEDAR Scholars Week 2017 - Poster Presentations May 17th, 9:00 AM - 12:00 PM Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest during the late Quaternary Period Henry Haro Western Washington University Follow this and additional works at: https://cedar.wwu.edu/scholwk Part of the Environmental Studies Commons, and the Higher Education Commons Haro, Henry, "Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest during the late Quaternary Period" (2017). Scholars Week. 20. https://cedar.wwu.edu/scholwk/2017/Day_one/20 This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Animating the Temporal Progression of Cordilleran Deglaciation in the Pacific Northwest during the late Quaternary Period Henry Haro – 2017 The Cordilleran Ice Sheet Sequential Progression of Cordilleran Retreat The topography of the Pacific Northwest, its fjords, inland waterways and islands, are a result of an extended period of glaciation and glacial retreat. This retreat influenced the physical features and the resulting succession of vegetation that led to the landscape we see today. Despite this importance of the Cordilleran ice sheet and the large volume of research on the topic, there lacks a good detailed animation of the movement of the entire ice sheet from the last glacial maximum to the present day. In this study, I used spatial data of the glacial extent at different periods of time during the Quaternary period to model and animate the movement of the Cordilleran ice sheet as it retreated from 18,000 BCE to 10,000 BCE.
    [Show full text]
  • Glacial Processes and Landforms-Transport and Deposition
    Glacial Processes and Landforms—Transport and Deposition☆ John Menziesa and Martin Rossb, aDepartment of Earth Sciences, Brock University, St. Catharines, ON, Canada; bDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada © 2020 Elsevier Inc. All rights reserved. 1 Introduction 2 2 Towards deposition—Sediment transport 4 3 Sediment deposition 5 3.1 Landforms/bedforms directly attributable to active/passive ice activity 6 3.1.1 Drumlins 6 3.1.2 Flutes moraines and mega scale glacial lineations (MSGLs) 8 3.1.3 Ribbed (Rogen) moraines 10 3.1.4 Marginal moraines 11 3.2 Landforms/bedforms indirectly attributable to active/passive ice activity 12 3.2.1 Esker systems and meltwater corridors 12 3.2.2 Kames and kame terraces 15 3.2.3 Outwash fans and deltas 15 3.2.4 Till deltas/tongues and grounding lines 15 Future perspectives 16 References 16 Glossary De Geer moraine Named after Swedish geologist G.J. De Geer (1858–1943), these moraines are low amplitude ridges that developed subaqueously by a combination of sediment deposition and squeezing and pushing of sediment along the grounding-line of a water-terminating ice margin. They typically occur as a series of closely-spaced ridges presumably recording annual retreat-push cycles under limited sediment supply. Equifinality A term used to convey the fact that many landforms or bedforms, although of different origins and with differing sediment contents, may end up looking remarkably similar in the final form. Equilibrium line It is the altitude on an ice mass that marks the point below which all previous year’s snow has melted.
    [Show full text]
  • Ice Stream Formation
    Ice stream formation Christian Schoof1, and Elisa Mantelli2 1Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada 2AOS Program, Princeton University, Princeton, USA November 6, 2020 Abstract Ice streams are bands of fast-flowing ice in ice sheets. We investigate their formation as an example of spontaneous pattern formation, based on positive feedbacks between dissipa- tion and basal sliding. Our focus is on temperature-dependent subtemperate sliding, where faster sliding leads to enhanced dissipation and hence warmer temperatures, weakening the bed further, although we also treat a hydromechanical feedback mechanism that operates on fully molten beds. We develop a novel thermomechanical model capturing ice-thickness scale physics in the lateral direction while assuming the the flow is shallow in the main downstream direction. Using that model, we show that formation of a steady-in-time pattern can occur by the amplification in the downstream direction of noisy basal conditions, and often leads to the establishment of a clearly-defined ice stream separated from slowly-flowing, cold-based ice ridges by narrow shear margins, with the ice stream widening in the downstream direction. We are able to show that downward advection of cold ice is the primary stabilizing mechanism, and give an approximate, analytical criterion for pattern formation. 1 Introduction Ice streams are narrow bands of fast flow within otherwise more slowly-flowing ice sheets, often forming near the margin or grounding line of the ice sheet as outlets that can carry the majority of the ice discharged [1]. Some ice streams are confined to topographic lows that channelize flow [2], but not all, and those that are not controlled by topography may occur in parallel arrays of roughly similar ice streams.
    [Show full text]