Century-Scale Discharge Stagnation and Reactivation of the Ross Ice Streams, West Antarctica C

Total Page:16

File Type:pdf, Size:1020Kb

Century-Scale Discharge Stagnation and Reactivation of the Ross Ice Streams, West Antarctica C JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, F03S27, doi:10.1029/2006JF000603, 2007 Click Here for Full Article Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica C. Hulbe1 and M. Fahnestock2 Received 21 June 2006; revised 31 October 2006; accepted 10 January 2007; published 23 May 2007. [1] Flow features on the surface of the Ross Ice Shelf, West Antarctica, record two episodes of ice stream stagnation and reactivation within the last 1000 years. We document these events using maps of streaklines emerging from individual ice streams made using visible band imagery, together with numerical models of ice shelf flow. Forward model experiments demonstrate that only a limited set of discharge scenarios could have produced the current streakline configuration. According to our analysis, Whillans Ice Stream ceased rapid flow about 850 calendar years ago and restarted about 400 years later and MacAyeal Ice Stream either stopped or slowed significantly between 800 and 700 years ago, restarting about 150 years later. Until now, ice-stream scenarios emphasized runaway retreat or stagnation on millennial timescales. Here we identify a new scenario: century-scale stagnation and reactivation cycles, as well as lateral communication with adjacent ice streams through thickness changes on lightly grounded ice plains. This introduces uncertainty into predictions for future sea-level withdrawals by the West Antarctic Ice Sheet, which are based in part on recent slowing of Whillans Ice Stream and the stagnant condition of Kamb Ice Stream. Citation: Hulbe, C., and M. A. Fahnestock (2007), Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica, J. Geophys. Res., 112, F03S27, doi:10.1029/2006JF000603. 1. Introduction [4] The temporal character of grounding line retreat since the LGM is also of interest. Seismically imaged sedimentary [2] The West Antarctic Ice Sheet (WAIS) has the poten- wedges on the sea floor seaward of the RIS front have been tial for rapid and significant change in grounding line interpreted as grounding line features deposited at sites position due to its marine character and fast-flowing ice where a retreating grounding line paused and held a steady streams [Alley and Whillans, 1991]. Such change is of position before resuming retreat [Mosola and Anderson, interest in part because it would affect sea level immedi- 2003]. Deformed ice–internal stratigraphy upstream of the ately. The Ross Ice Shelf (RIS) grounding line has retreated present-day Kamb Ice Stream (KIS, formerly named C) more than 1000 km, from the continental shelf edge to its grounding line suggests that the grounding line of this present location, in the time since the Last Glacial Maximum currently quiescent outlet was upstream of its present (LGM) [Conway et al., 1999; Shipp et al., 1999]. Of interest location within the last few hundred years [Catania et al., now is whether or not that retreat will continue, and if so, at 2006]. The implication of these observations is that ground- what rate. ing line retreat since the LGM has been episodic, with [3] Timescales for grounding line migration and varia- transient stable stands and local readvance events. This tions in ice-stream discharge in the Ross sea sector of the behavior must have been tied to variability in the volume WAIS are not well known. Observational data are rare but of ice discharged by ice streams into the shelf. some general statements may be made. Ice streams were [5] The relationship between ice stream discharge and present when the grounding line retreated from the conti- grounding line position is complicated. In simplest terms, nental shelf edge [Mosola and Anderson, 2003]; thus it the location of the grounding line depends on sea level, bed seems likely that ice streams have persisted since that time. elevation, and ice thickness (or the volume of ice dis- The broad pattern of retreat since the LGM is early retreat to charge). All else being equal, an increase in volume flux Roosevelt Island in the east and then a gradual ‘‘swinging would lead to grounding line advance while a decrease gate’’ retreat to the present location with the island as a would lead to grounding line retreat. Changes in strain rates hinge point [Conway et al., 1999]. that may accompany changes in volume flux modify this simple relationship. Acceleration of the flow accompanied by increased longitudinal strain rates across an ice stream to 1Department of Geology, Portland State University, Portland, Oregon, USA. ice shelf transition would thin the ice and perhaps yield 2Institute for the Study of Earth, Oceans, and Space, University of New grounding line retreat, as in the classic marine ice sheet Hampshire, Durham, New Hampshire, USA. instability hypothesis [Thomas and Bentley, 1978; Hulbe and Payne, 2001]. Complications may arise owing to the Copyright 2007 by the American Geophysical Union. 0148-0227/07/2006JF000603$09.00 F03S27 1 of 11 F03S27 HULBE AND FAHNESTOCK: ICE STREAMS STOP AND START F03S27 Figure 1. Composite MODIS image of the Ross Ice Shelf. development of sticky spots in the discharge path [Hulbe 2001]. Models designed to study ice stream discharge and Fahnestock, 2004]. cycles (slowing, stagnation, and reactivation) produce mil- [6] Evidence for both past and ongoing variation in ice lennial or longer timescales [MacAyeal, 1992; Payne, 1995; stream discharge is found in many locations in the Ross Sea Parizek et al., 2003]. Quantitative interpretations of present- sector of the WAIS, for example, the stagnation of KIS day WAIS conditions [Bougamont et al., 2003; Joughin and about 150 years ago [Retzlaff and Bentley, 1993], the Tulaczyk, 2002; Vogel et al., 2005] generally favor ice stagnation of Siple Ice Stream (a distributary of Kamb) stream deceleration and relatively long timescales for reac- 420 ± 60 years ago (Ben Smith, personal communication tivation. The prediction by Vogel et al. [2005] that the now- 2005), and recent slowing at the downstream end of quiescent KIS may soon reactivate, based on borehole Whillans Ice Stream (WIS, formerly B) [Joughin and observations of subglacial conditions, is an exception to Tulaczyk, 2002]. Together, these observations suggest a conventional views. negative trend in the volume of ice being discharged from [8] Flow features in the surface of the RIS provide an the WAIS. One conclusion that may be drawn from the opportunity to extend the high-resolution observational recent trend is that the ice sheet is nearing the end of a long record of ice stream and grounding line variability beyond downwasting phase and the future contribution to sea level the instrumental era [Fahnestock et al., 2000]. Because the will be negative. However, these are as yet short-lived flow of the shelf must adjust to the volume flux of ice events in a system that has persisted for tens of thousands discharged into it, physical tracers within the ice form a of years. Quantification of variability in ice stream dis- time-integrated record of past events [MacAyeal et al., charge will help place the recent events in a useful predic- 1988]. The RIS record extends back about 1000 years, the tive context. approximate age of ice now at the shelf front. Hulbe and [7] Numerical models of the coupled ice sheet and ice Fahnestock [2004] studied features associated with the shelf system have been used to study variability in ice sheet lightly grounded, low-slope ice plains across which active discharge. Unfortunately, models of the whole ice sheet ice streams make the transition from a grounded to floating system are in general too coarse to resolve many details of condition, and concluded that grounding line migration is grounding line migration and often do not include realistic episodic and driven by thermal processes near the base of transitions from grounded to floating ice [Hulbe and Payne, the fast-flowing ice. Here we direct our attention to recon- 2 of 11 F03S27 HULBE AND FAHNESTOCK: ICE STREAMS STOP AND START F03S27 Figure 2. Ice provenance map developed by tracing streaklines and relict ice stream margins upstream to the grounding line. Digitizations of major streakline packages are drawn on the map. The dashed line on Kamb Ice Stream is the trace to which the stream’s northern margin jumped to create the Duckfoot feature. structing the history of ice stream discharge implied by flow [10] The subtle surface morphology present on the RIS features now visible in the ice shelf. can be observed, to a limited extent, in many types of visible-band satellite imagery [Bindschadler, 1993; Casassa 2. Flow Features in the Ice Shelf Surface et al., 1991; Williams and Ferrigno, 1988]. Enhancements made using multiple images can greatly improve our ability [9] Flow features observed on the surfaces of floating ice to see such features [Scambos and Fahnestock, 1999; shelves chronicle kinematic and dynamic events over the Fahnestock et al., 2000]. Here we use a multiple-image lifetimes of the features [MacAyeal et al., 1988]. Three composite from 250 m pixel size red-light (band 1) images broad classes of flow feature are observed throughout the from the MODIS sensor on NASA’s Terra platform. The RIS (Figures 1 and 2): subtle ridges in surface elevation that MODIS imagery was obtained from the NASA Goddard in gross scale trend downstream (streaklines); trains of Space Flight Center Earth Sciences Distributed Active shear-margin crevasses that advect downstream from their Archive Center. At any location, the composite includes a sites of formation; and transverse crevasses of multiple few to ten images spanning a few-week period in November possible origins. Streaklines originate in the grounded ice and December 2001, using multiple local solar times from sheet, where ice flows over a basal disturbance such as a 1000 GMT to 2200 GMT. This range of image acquisition sticky spot, roches moutonnee, or other obstacle at the bed times provides a range of sun azimuths in the images used.
Recommended publications
  • The U-Pb Detrital Zircon Signature of West Antarctic Ice Stream Tills in The
    Antarctic Science 26(6), 687–697 (2014) © Antarctic Science Ltd 2014. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102014000315 The U-Pb detrital zircon signature of West Antarctic ice stream tills in the Ross embayment, with implications for Last Glacial Maximum ice flow reconstructions KATHY J. LICHT, ANDREA J. HENNESSY and BETHANY M. WELKE Indiana University-Purdue University Indianapolis, Department of Earth Sciences, 723 West Michigan Street, Indianapolis, IN 46202, USA [email protected] Abstract: Glacial till samples collected from beneath the Bindschadler and Kamb ice streams have a distinct U-Pb detrital zircon signature that allows them to be identified in Ross Sea tills. These two sites contain a population of Cretaceous grains 100–110 Ma that have not been found in East Antarctic tills. Additionally, Bindschadler and Kamb ice streams have an abundance of Ordovician grains (450–475 Ma) and a cluster of ages 330–370 Ma, which are much less common in the remainder of the sample set. These tracers of a West Antarctic provenance are also found east of 180° longitude in eastern Ross Sea tills deposited during the last glacial maximum (LGM). Whillans Ice Stream (WIS), considered part of the West Antarctic Ice Sheet but partially originating in East Antarctica, lacks these distinctive signatures. Its U-Pb zircon age population is dominated by grains 500–550 Ma indicating derivation from Granite Harbour Intrusive rocks common along the Transantarctic Mountains, making it indistinguishable from East Antarctic tills.
    [Show full text]
  • The Ministry for the Future / Kim Stanley Robinson
    This book is a work of fiction. Names, characters, places, and incidents are the product of the author’s imagination or are used fictitiously. Any resemblance to actual events, locales, or persons, living or dead, is coincidental. Copyright © 2020 Kim Stanley Robinson Cover design by Lauren Panepinto Cover images by Trevillion and Shutterstock Cover copyright © 2020 by Hachette Book Group, Inc. Hachette Book Group supports the right to free expression and the value of copyright. The purpose of copyright is to encourage writers and artists to produce the creative works that enrich our culture. The scanning, uploading, and distribution of this book without permission is a theft of the author’s intellectual property. If you would like permission to use material from the book (other than for review purposes), please contact [email protected]. Thank you for your support of the author’s rights. Orbit Hachette Book Group 1290 Avenue of the Americas New York, NY 10104 www.orbitbooks.net First Edition: October 2020 Simultaneously published in Great Britain by Orbit Orbit is an imprint of Hachette Book Group. The Orbit name and logo are trademarks of Little, Brown Book Group Limited. The publisher is not responsible for websites (or their content) that are not owned by the publisher. The Hachette Speakers Bureau provides a wide range of authors for speaking events. To find out more, go to www.hachettespeakersbureau.com or call (866) 376-6591. Library of Congress Cataloging-in-Publication Data Names: Robinson, Kim Stanley, author. Title: The ministry for the future / Kim Stanley Robinson. Description: First edition.
    [Show full text]
  • Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs Amanda Colleen Lough Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 9-1-2014 Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs Amanda Colleen Lough Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Lough, Amanda Colleen, "Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs" (2014). All Theses and Dissertations (ETDs). 1319. https://openscholarship.wustl.edu/etd/1319 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Earth and Planetary Sciences Dissertation Examination Committee: Douglas Wiens, Chair Jill Pasteris Philip Skemer Viatcheslav Solomatov Linda Warren Michael Wysession Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs by Amanda Colleen Lough A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2014 St. Louis, Missouri © 2014, Amanda Colleen Lough Table of Contents List of Figures .............................................................................................................................
    [Show full text]
  • Here Westerlies in Patagonia and South Georgia Island; Kreutz K (PI), Campbell S (Co-PI) $11,952
    Seth William Campbell University of Maine Juneau Icefield Research Program Climate Change Institute The Foundation for Glacier School of Earth & Climate Sciences & Environmental Research 202 Sawyer Hall 4616 25th Avenue NE, Suite 302 Orono, Maine 04469-5790 Seattle, Washington 98105 [email protected] [email protected] 207-581-3927 www.alpinesciences.net Education 2014 Ph.D. Earth & Climate Sciences University of Maine, Orono 2010 M.S. Earth Sciences University of Maine, Orono 2008 B.S. Earth Sciences University of Maine, Orono 2005 M. Business Administration University of Maine, Orono 2001 B.A. Environmental Science, Minor: Geology University of Maine, Farmington Current Employment 2018 – Present University of Maine, Assistant Professor of Glaciology; Climate Change Institute and School of Earth & Climate Sciences 2018 – Present Juneau Icefield Research Program, Director of Academics & Research 2016 – Present ERDC-CRREL, Research Geophysicist (Intermittent Status) Prior Employment 2015 – 2018 University of Maine, Research Assistant Professor 2016 – 2018 University of Washington, Post-Doctoral Research Associate 2014 – 2016 ERDC-CRREL, Research Geophysicist 2014 – 2017 University of California, Davis, Research Associate 2011 – 2014 University of Maine, Graduate Research Assistant 2009 – 2014 ERDC-CRREL, Research Physical Scientist 2010 – 2012 University of Washington, Professional Research Staff 2008 – 2009 University of Maine, Graduate Teaching Assistant 2000 E/Pro Engineering & Environmental Consulting, Survey Technician 1999
    [Show full text]
  • Variability in the Mass Flux of the Ross Sea Ice Streams, Antarctica, Over the Last Millennium
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 1-1-2012 Variability in the Mass Flux of the Ross Sea Ice Streams, Antarctica, over the last Millennium Ginny Catania University of Texas at Austin Christina L. Hulbe Portland State University Howard Conway University of Washington - Seattle Campus Ted A. Scambos University of Colorado at Boulder C. F. Raymond University of Washington - Seattle Campus Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Geology Commons Let us know how access to this document benefits ou.y Citation Details Catania. G. A., C.L. Hulbe, H.B. Conway, T.A. Scambos, C.F. Raymond, 2012, Variability in the mass flux of the Ross Sea ice streams, Antarctica, over the last millennium. Journal of Glaciology, 58 (210), 741-752. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Journal of Glaciology, Vol. 58, No. 210, 2012 doi: 10.3189/2012JoG11J219 741 Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium Ginny CATANIA,1,2 Christina HULBE,3 Howard CONWAY,4 T.A. SCAMBOS,5 C.F. RAYMOND4 1Institute for Geophysics, University of Texas, Austin, TX, USA E-mail: [email protected] 2Department of Geology, University of Texas, Austin, TX, USA 3Department of Geology, Portland State University, Portland, OR, USA 4Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA 5National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA ABSTRACT.
    [Show full text]
  • Drainage Networks, Lakes and Water Fluxes Beneath the Antarctic Ice Sheet
    Annals of Glaciology 57(72) 2016 doi: 10.1017/aog.2016.15 96 © The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Drainage networks, lakes and water fluxes beneath the Antarctic ice sheet Ian C. WILLIS,1 Ed L. POPE,1,2 Gwendolyn J.‐M.C. LEYSINGER VIELI,3,4 Neil S. ARNOLD,1 Sylvan LONG1,5 1Scott Polar Research Institute, Department of Geography, University of Cambridge, Lensfield Road, Cambridge CB2 1ER, UK E-mail: [email protected] 2National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK 3Department of Geography, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK 4Department of Geography, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland 5Leggette, Brashears & Graham, Inc., Groundwater and Environmental Engineering Services, 4 Research Drive, Shelton, Connecticut CT 06484, USA ABSTRACT. Antarctica Bedmap2 datasets are used to calculate subglacial hydraulic potential and the area, depth and volume of hydraulic potential sinks. There are over 32 000 contiguous sinks, which can be thought of as predicted lakes. Patterns of subglacial melt are modelled with a balanced ice flux flow model, and water fluxes are cumulated along predicted flow pathways to quantify steady- state fluxes from the main basin outlets and from known subglacial lakes. The total flux from the contin- − − ent is ∼21 km3 a 1. Byrd Glacier has the greatest basin flux of ∼2.7 km3 a 1.
    [Show full text]
  • Scaling of Instability Time-Scales of Antarctic Outlet Glaciers Based On
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-252 Manuscript under review for journal The Cryosphere Discussion started: 15 January 2019 c Author(s) 2019. CC BY 4.0 License. Scaling of instability time-scales of Antarctic outlet glaciers based on one-dimensional similitude analysis Anders Levermann1,2,3 and Johannes Feldmann1 1Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany 2LDEO, Columbia University, New York, USA 3Institute of Physics, University of Potsdam, Potsdam, Germany Correspondence: Anders Levermann ([email protected]) Abstract. Recent observations and ice-dynamic modeling suggest that a marine ice sheet instability (MISI) might have been triggered in West Antarctica. The corresponding outlet glaciers, Pine Island Glacier (PIG) and Thwaites Glacier (TG), showed significant retreat during at least the last two decades. While other regions in Antarctica have the topographic predisposition for the same kind of instability it is so far unclear how fast these instabilities would unfold if they were initiated. Here we 5 employ the concept of similitude to estimate the characteristic time scales of several potentially MISI-prone outlet glaciers around the Antarctic coast. The proposed one-dimensional scaling approach combines observational and model data with a scaling analysis of the governing equations for fast ice flow. Evaluating outlet-characteristic ice and bed geometry, surface mass balance and basal friction in the relevant region near the grounding line, we assume that the inferred time scales correspond to the outlet-specific initial responses time to potential destabilization. Our results suggest that TG and PIG have the fastest 10 responses time of all investigated outlets, with TG responding about 1.25 to 2 times as fast as PIG, while other outlets around Antarctica would be up to ten times slower if destabilized.
    [Show full text]
  • Author's Tracked Changes
    Mechanics and dynamics of pinning points on the Shirase Coast, West Antarctica Holly Still1 and Christina Hulbe1 1National School of Surveying, University of Otago, Dunedin, New Zealand Correspondence: Holly Still ([email protected]) Abstract. Ice rises and rumples, sites of localised ice-shelf grounding, modify ice-shelf flow by generating lateral and basal shear stresses, upstream compression and downstream tension. Studies of pinning points typically quantify this role indirectly, through related metrics such as a buttressing number. Here, we quantify the dynamic effects of pinning points directly, by comparing model-simulated stress states in the Ross Ice Shelf (RIS) with and without a specific set of pinning points located 5 downstream of the MacAyeal and Bindschadler Ice Streams (MacIS and BIS, respectively). Because ice properties are only known indirectly, the experiment is repeated with different realisations of the ice softness. While longitudinal stretching, and thus ice velocity, is smaller with the pinning points, flow resistance generated by other grounded features is also smaller. Conversely, flow resistance generated by other grounded features increases when the pinning points are absent, providing a non-local control on the net effect of the pinning points on ice-shelf flow. We find that an ice stream located directly upstream 10 of the pinning points, MacIS, is less responsive to their removal than the obliquely oriented BIS. This response is due to zones of locally higher basal drag acting on MacIS, which may itself be a consequence of the coupled ice-shelf and ice- stream response to the pinning points. We also find that inversion of present-day flow and thickness for basal friction and ice softness, without feature-specific, a posteriori adjustment, leads to the incorrect representation of ice rumple morphology and an incorrect boundary condition at the ice base.
    [Show full text]
  • Data Assimilation Problems in Glaciology Daniel Shapero A
    Data assimilation problems in glaciology Daniel Shapero A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Randall J. Leveque, Chair Ian R. Joughin Benjamin E. Smith Anne Greenbaum Program Authorized to Offer Degree: Applied Mathematics © Copyright 2017 Daniel Shapero University of Washington Abstract Data assimilation problems in glaciology Daniel Shapero Chair of the Supervisory Committee: Dr. Randall J. Leveque Department of Applied Mathematics Rising sea levels due to mass loss from Greenland and Antarctica threaten to inun- date coastal areas the world over. For the purposes of urban planning and hazard mitigation, policy makers would like to know how much sea-level rise can be antici- pated in the next century. To make these predictions, glaciologists use mathematical models of ice sheet flow, together with remotely-sensed observations of the current state of the ice sheets. The quantities that are observable over large spatial scales are the ice surface elevation and speed, and the elevation of the underlying bedrock. There are other quantities, such as the viscosity within the ice and the friction co- efficient for sliding over the bed, that are just as important in dictating how fast the glacier flows, but that are not observable at large scales using current meth- ods. These quantities can be inferred from observations by using data assimilation methods, applied to a model of glacier flow. In this dissertation, I will describe my work on data assimilation problems in glaciology. My main contributions so far have been: computing the bed stress underneath the three biggest Greenland outlet glaciers; developing additional tools for glacier modelling and data assimi- lation in the form of the open-source library icepack; and improving the statistical methodology through the user of total variation priors.
    [Show full text]
  • Byrd Glacier
    high ice hummocks. Although the ice appears to be mov- ported by the Antarctic Ice Sheet over some undeter- ing rapidly in this region, the crevassing does not indi- mined distance. cate a preferential direction of movement. This work has been supported by the National Aer- Bulk ice samples were collected by chipping at loca- onautics and Space Administration, which supplied the tions near stations 10, 12, and 17. The samples will be services of the senior author, and the National Science melted and the dissolved gases (N2, 02, Ar, G02) and Foundation, which funded the fieldwork through grant carbon-14 abundances will be measured for dating by E. DPP 77-21742. L. Fireman (Smithsonian Astrophysical Observatory) (Fireman, 1979). References The Allan Hills will be revisited by the authors during Cassidy, W. A. 1978. Antarctic search for meteorites during the 1979-80 season for a resurvey of the line and to the 1977-78 field season. Antarctic Journal of the United States, extend the triangulation chain farther west. Ice samples 13(4): 39-40. for gas analysis will be obtained from selected stations. Nagata, T. 1978. A possible mechanism of concentration of The discovery of large numbers of meteorites presents meteorites within the meteorite field in Antarctica. In Pro- a unique opportunity for glaciological studies relating to ceedings of the Second Symposium on Yamato Meteorites (held 23- their transport and concentration. If the mechanism can 24 February 1977). Memoirs of National Institute of Polar Research, special issue no.. 8 (ed. T. Nagata), pp. 70-92. be deduced, it may be possible, with accurate measure- Tokyo: National Institute of Polar Research.
    [Show full text]
  • Abstract Book
    4th Interdisciplinary Antarctic Earth Sciences Conference Oct. 13-15, 2019 Antarctic deep field camp planning workshop Oct. 15-16, 2019 Camp Cedar Glen, Julian, CA Thanks to those who make our science possible and many others... AGENDA 2019 Interdisciplinary Antarctic Earth Sciences Conference Saturday, Oct. 12 4:00 pm Earliest possible check in at Camp Cedar Glen 5:00 8:00 Badge pick up @ Camp Cedar Glen, dinner and social at Julian Brewing Co. (Participants pay) Rides available. See Christine Kassab to load Sunday presentations. Sunday, Oct. 13 start End notes Title Authors 8:00 9:00 Breakfast with Safety Orientation from Camp staff. Badge pick up and load talks in Griffin Hall 9:00 9:10 Welcome Organizing Committee: B. Adams, B. Goehring, J. Isbell, K. Licht, K. Panter, L. Stearns, K. Tinto 9:10 9:20 NSF remarks Mike Jackson 9:20 9:35 Processes acting on Antarctic mantle: Implications for James M.D. Day flexure and volcanism 9:35 9:50 Sub-Ice Thermal Anomaly Mapping Using Phil Wannamaker, G. Hill, V. Magnetotellurics. Considering the U.S. Great Basin as Maris, J. Stodt, Y. Ogawa an Analog 9:50 10:10 INVITED: Pre-glacial and glacial uplift and incision Stuart N. Thomson, P. W. Reiners, history of the central Transantarctic Mountains J. He, S. R. Hemming, K.J. Licht reevaluated using multiple low-temperature thermochronometers 10:10 10:25 New single-crystal age determinations for basement K.W. Parsons, Willis Hames, S. rocks in the Miller Range of the Ross Orogen, Central Thomson Transantarctic Mountains 10:25 10:45 Break 10:45 11:05 INVITED: Antarctic Subglacial Limnology: John E.
    [Show full text]
  • 1 the NSF/OPP Contribution to Antarctic Glaciology: a Personal Perspective Terence J. Hughes Professor Emeritus of Earth Science
    The NSF/OPP Contribution To Antarctic Glaciology: A Personal Perspective Terence J. Hughes Professor Emeritus of Earth Sciences and Climate Change University of Maine Orono, Maine 04469-5790 30 October 2010 I retired from the University of Maine on 15 January 2010 from a joint appointment in the Department of Earth Sciences and the Climate Change Institute, both located in the Bryand Global Sciences Center. This provided the opportunity to produce a personal account of the contribution to Antarctic glaciology made by the Office of Polar Programs (OPP) in the United States National Science Foundation (NSF) over the last half century. For convenience, my account will be made decade-by-decade, beginning in the mid Twentieth Century. The old hands, affectionately called Old Antarctic Explorers (OAEs), are a vanishing breed, so it is important for an account to be made before the Dying of the Light. 1950—1960 The Cold War began at the end of World War II when the victors, primarily the USA and the USSR, battled diplomatically to dominate a new world hegemony. It was an ideological struggle that pitted Capitalism against Communism. The Communist hegemony spread first in Eastern Europe as the Red Army occupied these countries up to what Winston Churchill called an Iron Curtain. I like to have some fun with this in an age without teleprompters. Winston is at his podium in Missouri, looking out over the crowd: “From Trieste in the Baltic to Stettin in the Adriatic, an Iron Curtain has descended across the continent.” [pause] “I mean from Stettin in the Baltic to Trieste in the Adriatic!” [grumbles to himself] Then, in 1949, Mao Tse Tung overthrew the Nationalist Chinese government and China entered the Communist orbit.
    [Show full text]