The Complete Chloroplast Genome and Characteristics Analysis of Musa Basjoo Siebold
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advancing Banana and Plantain R & D in Asia and the Pacific
Advancing banana and plantain R & D in Asia and the Pacific Proceedings of the 9th INIBAP-ASPNET Regional Advisory Committee meeting held at South China Agricultural University, Guangzhou, China - 2-5 November 1999 A. B. Molina and V. N. Roa, editors The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: · To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved banana cultivars and at the conservation and use of Musa diversity. · To promote and strengthen collaboration and partnerships in banana-related activities at the national, regional and global levels. · To strengthen the ability of NARS to conduct research and development activities on bananas and plantains. · To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. Since May 1994, INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI). The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRIs mandate is to advocate the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRIs headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). -
Ethnobotanical Study on Wild Edible Plants Used by Three Trans-Boundary Ethnic Groups in Jiangcheng County, Pu’Er, Southwest China
Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China Yilin Cao Agriculture Service Center, Zhengdong Township, Pu'er City, Yunnan China ren li ( [email protected] ) Xishuangbanna Tropical Botanical Garden https://orcid.org/0000-0003-0810-0359 Shishun Zhou Shoutheast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Liang Song Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Intergrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Ruichang Quan Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Huabin Hu CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Research Keywords: wild edible plants, trans-boundary ethnic groups, traditional knowledge, conservation and sustainable use, Jiangcheng County Posted Date: September 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40805/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 27th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00420-1. Page 1/35 Abstract Background: Dai, Hani, and Yao people, in the trans-boundary region between China, Laos, and Vietnam, have gathered plentiful traditional knowledge about wild edible plants during their long history of understanding and using natural resources. The ecologically rich environment and the multi-ethnic integration provide a valuable foundation and driving force for high biodiversity and cultural diversity in this region. -
Farmers' Knowledge of Wild Musa in India Farmers'
FARMERS’ KNOWLEDGE OF WILD MUSA IN INDIA Uma Subbaraya National Research Centre for Banana Indian Council of Agricultural Reasearch Thiruchippally, Tamil Nadu, India Coordinated by NeBambi Lutaladio and Wilfried O. Baudoin Horticultural Crops Group Crop and Grassland Service FAO Plant Production and Protection Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2006 Reprint 2008 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Publishing Management Service Information Division FAO Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to: [email protected] © FAO 2006 FARMERS’ KNOWLEDGE OF WILD MUSA IN INDIA iii CONTENTS Page ACKNOWLEDGEMENTS vi FOREWORD vii INTRODUCTION 1 SCOPE OF THE STUDY AND METHODS -
Whole Genome Sequencing of a Banana Wild Relative Musa Itinerans
www.nature.com/scientificreports OPEN Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage- Received: 13 May 2016 Accepted: 26 July 2016 specific diversification of theMusa Published: 17 August 2016 genus Wei Wu1,*, Yu-Lan Yang2,*, Wei-Ming He2, Mathieu Rouard3, Wei-Ming Li4, Meng Xu2, Nicolas Roux3 & Xue-Jun Ge1 Crop wild relatives are valuable resources for future genetic improvement. Here, we report the de novo genome assembly of Musa itinerans, a disease-resistant wild banana relative in subtropical China. The assembled genome size was 462.1 Mb, covering 75.2% of the genome (615.2Mb) and containing 32, 456 predicted protein-coding genes. Since the approximate divergence around 5.8 million years ago, the genomes of Musa itinerans and Musa acuminata have shown conserved collinearity. Gene family expansions and contractions enrichment analysis revealed that some pathways were associated with phenotypic or physiological innovations. These include a transition from wood to herbaceous in the ancestral Musaceae, intensification of cold and drought tolerances, and reduced diseases resistance genes for subtropical marginally distributed Musa species. Prevalent purifying selection and transposed duplications were found to facilitate the diversification of NBS-encoding gene families for twoMusa species. The population genome history analysis of M. itinerans revealed that the fluctuated population sizes were caused by the Pleistocene climate oscillations, and that the formation of Qiongzhou Strait might facilitate the population downsizing on the isolated Hainan Island about 10.3 Kya. The qualified assembly of the M. itinerans genome provides deep insights into the lineage-specific diversification and also valuable resources for future banana breeding. -
Musa Acuminata Colla (Musaceae) from Tripura, Northeast India
Bioscience Discovery, 9(1): 209-212, Jan - 2018 © RUT Printer and Publisher Print & Online, Open Access, Research Journal Available on http://jbsd.in ISSN: 2229-3469 (Print); ISSN: 2231-024X (Online) Research Article Notes on an Accidental Epiphytic Banana: Musa acuminata Colla (Musaceae) from Tripura, Northeast India Dipankar Deb1*, Dipan Sarma2, Sourabh Deb1 and BK Datta3 1*Agroforestry & Forest Ecology Laboratory Department of Forestry & Biodiversity Tripura University, Suryamaninagar- 799022, Tripura India 2,3Plant Taxonomy & Biodiversity Laboratory, Department of Botany, Tripura University, Suryamaninagar- 799022, Tripura India *Email: [email protected] Article Info Abstract Received: 06-10-2017, In the present communication we report a new accidental epiphytic banana, Musa Revised: 02-12-2017, acuminata Colla which grows above the height of 8 m in the trunk cavity of the Accepted: 08-01-2018 host plant Azadirachta indica A. Juss (local name: Gheto neem). The size of collar Keywords: diameter of this specimen is about 22 cm, smaller shoot growing up with 4 Accidental epiphyte, Musa spreading leaves. It is an unconditional and accidental shows the possibility of acuminata, Tripura. plant growth by vegetative reproduction or by seed germination process on host plant cavity. INTRODUCTION and functionality of some important ecosystems and Epiphytes are specialist plant that grows on another they may even act as keystone species (Gabriela et plant commonly referred to as air plants. They grow al., 2015). Many biotic and abiotic factors on the surface of barks, cavity, dead decompose determine the miscellany of epiphytes, such as part of tree but remain physiologically independent climate, water availability, edaphic factors, host tree (Benzing, 2004) and do not extract nutrients from size, species identity, bark features and architecture the host's vascular system. -
Banana (Musa Spp) from Peel to Pulp Ethnopharmacology, Source Of
Journal of Ethnopharmacology 160 (2015) 149–163 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health Aline Pereira n, Marcelo Maraschin Federal University of Santa Catarina, Plant Morphogenesis and Biochemistry Laboratory, PO Box 476, 88049-900 Florianopolis, Brazil article info abstract Article history: Ethnopharmacological relevance: Banana is a fruit with nutritional properties and also with acclaimed Received 29 April 2014 therapeutic uses, cultivated widely throughout the tropics as source of food and income for people. Received in revised form Banana peel is known by its local and traditional use to promote wound healing mainly from burns and 5 November 2014 to help overcome or prevent a substantial number of illnesses, as depression. Accepted 5 November 2014 Aim of the study: This review critically assessed the phytochemical properties and biological activities of Available online 13 November 2014 Musa spp fruit pulp and peel. Keywords: Materials and methods: A survey on the literature on banana (Musa spp, Musaceae) covering its botanical Musa spp classification and nomenclature, as well as the local and traditional use of its pulp and peel was Banana peel performed. Besides, the current state of art on banana fruit pulp and peel as interesting complex matrices Bioactive compounds sources of high-value compounds from secondary metabolism was also approached. Phytochemistry fi Metabolomics Results: Dessert bananas and plantains are systematic classi ed into four sections, Eumusa, Rhodochla- Parkinson’s disease mys, Australimusa, and Callimusa, according to the number of chromosomes. -
Sequencing and De Novo Assembly of Abaca (Musa Textilis Née) Var
G C A T T A C G G C A T genes Article Sequencing and de Novo Assembly of Abaca (Musa textilis Née) var. Abuab Genome Leny Calano Galvez 1,* , Rhosener Bhea Lu Koh 2 , Cris Francis Cortez Barbosa 1 , Jayson Calundre Asunto 1 , Jose Leonido Catalla 1, Robert Gomez Atienza 1, Kennedy Trinidad Costales 1, Vermando Masinsin Aquino 2 and Dapeng Zhang 3 1 Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Bldg, DA Compound, Diliman, Quezon City 1101, Philippines; [email protected] (C.F.C.B.); jcasunto.philfi[email protected] (J.C.A.); [email protected] (J.L.C.); rgatienza@philfida.da.gov.ph (R.G.A.); [email protected] (K.T.C.) 2 National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; [email protected] (R.B.L.K.); [email protected] (V.M.A.) 3 Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville, MD 20705, USA; [email protected] * Correspondence: [email protected] Abstract: Abaca (Musa textilis Née), an indigenous crop to the Philippines, is known to be the source of the strongest natural fiber. Despite its huge economic contributions, research on crop improvement is limited due to the lack of genomic data. In this study, the whole genome of the abaca var. Abuab was sequenced using Illumina Novaseq 6000 and Pacific Biosciences Single-Molecule Real-Time Sequel. The genome size of Abuab was estimated to be 616 Mbp based on total k-mer number and volume peak. Its genome was assembled at 65× depth, mapping 95.28% of the estimated genome size. -
Musalogue: Diversity in the Genus Musa
A catalogue of Musa germplasm Diversity in the genus Musa Jeff Daniells, Christophe Jenny, Deborah Karamura and Kodjo Tomekpe CIRAD The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: . To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved cultivars and at the conservation and use of Musa diversity . To promote and strengthen collaboration and partnerships in banana-related research activities at the national, regional and global levels . To strengthen the ability of NARS to conduct research and development activities on bananas and plantains . To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest Centre. The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI's mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI's headquarters is based in Rome, Italy, with offices in another 19 countries worldwide. It operates through -
Zingiberales)
Homoplasy, Pollination, and Emerging Complexity During the Evolution of Floral Development in the Tropical Gingers (Zingiberales) By: Chelsea D. Specht, Roxana Yockteng, Ana Maria Almeida, Bruce K. Kirchoff, W. John Kress Specht, C. D., Y. Roxana, A. M. Almeida, B. K. Kirchoff, W. J. Kress. 2012. Homoplasy, pollination, and emerging complexity during the evolution of floral development in the tropical gingers (Zingiberales). Botanical Review 78: 440–462. The final publication is available at http://link.springer.com/article/10.1007/s12229-012-9111- 6 ***Reprinted with permission. No further reproduction is authorized without written permission from Springer. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: With their impressive array of floral diversity and a largely-understood phylogenetic relationships, the Zingiberales provide an ideal model clade to test for the roles of genetic and ecological factors driving floral diversification. Many Zingiberales have close associations with particular suites of pollinators, a species-level interaction that is reflected in their overall floral morphology. Here we first discuss the importance of understanding developmental evolution in a phylogenetic context, then use the evolution of floral morphology across the Zingiberales to test the hypothesis that shifts in rates of diversification among these tropical monocots is correlated with shifts in pollination syndrome, suggesting an important role of pollination specificity in driving speciation and floral diversification in the Zingiberales. Keywords: Floral evolution | Developmental evolution | Pollination syndrome | Zingiberales | Diversification rates | Model clade | Key innovation Article: “…evolutionary approaches and the exploration of developmental diversity offer a powerful probe into developmental mechanisms and the architecture of ontogeny, in a distinct and perhaps complementary manner to that provided by developmental genetics”—Rudolf A. -
Plastome Phylogeny Monocots SI Tables
Givnish et al. – American Journal of Botany – Appendix S2. Taxa included in the across- monocots study and sources of sequence data. Sources not included in the main bibliography are listed at the foot of this table. Order Famiy Species Authority Source Acorales Acoraceae Acorus americanus (Raf.) Raf. Leebens-Mack et al. 2005 Acorus calamus L. Goremykin et al. 2005 Alismatales Alismataceae Alisma triviale Pursh Ross et al. 2016 Astonia australiensis (Aston) S.W.L.Jacobs Ross et al. 2016 Baldellia ranunculoides (L.) Parl. Ross et al. 2016 Butomopsis latifolia (D.Don) Kunth Ross et al. 2016 Caldesia oligococca (F.Muell.) Buchanan Ross et al. 2016 Damasonium minus (R.Br.) Buchenau Ross et al. 2016 Echinodorus amazonicus Rataj Ross et al. 2016 (Rusby) Lehtonen & Helanthium bolivianum Myllys Ross et al. 2016 (Humb. & Bonpl. ex Hydrocleys nymphoides Willd.) Buchenau Ross et al. 2016 Limnocharis flava (L.) Buchenau Ross et al. 2016 Luronium natans Raf. Ross et al. 2016 (Rich. ex Kunth) Ranalisma humile Hutch. Ross et al. 2016 Sagittaria latifolia Willd. Ross et al. 2016 Wiesneria triandra (Dalzell) Micheli Ross et al. 2016 Aponogetonaceae Aponogeton distachyos L.f. Ross et al. 2016 Araceae Aglaonema costatum N.E.Br. Henriquez et al. 2014 Aglaonema modestum Schott ex Engl. Henriquez et al. 2014 Aglaonema nitidum (Jack) Kunth Henriquez et al. 2014 Alocasia fornicata (Roxb.) Schott Henriquez et al. 2014 (K.Koch & C.D.Bouché) K.Koch Alocasia navicularis & C.D.Bouché Henriquez et al. 2014 Amorphophallus titanum (Becc.) Becc. Henriquez et al. 2014 Anchomanes hookeri (Kunth) Schott Henriquez et al. 2014 Anthurium huixtlense Matuda Henriquez et al. -
High Cryptic Species Diversity Is Revealed by Genome-Wide
Wu et al. BMC Plant Biology (2018) 18:194 https://doi.org/10.1186/s12870-018-1410-6 RESEARCH ARTICLE Open Access High cryptic species diversity is revealed by genome-wide polymorphisms in a wild relative of banana, Musa itinerans, and implications for its conservation in subtropical China Wei Wu1 , Wei-Lun Ng1, Jun-Xin Yang2, Wei-Ming Li3 and Xue-Jun Ge4* Abstract Background: Species delimitation is a challenging but essential task in conservation biology. Morphologically similar species are sometimes difficult to recognize even after examination by experienced taxonomists. With the advent of molecular approaches in species delimitation, this hidden diversity has received much recent attention. In addition to DNA barcoding approaches, analytical tools based on the multi-species coalescence model (MSC) have been developed for species delimitation. Musa itinerans is widely distributed in subtropical Asia, and at least six varieties have been documented. However, the number of evolutionarily distinct lineages remains unknown. Results: Using genome resequencing data of five populations (making up four varieties), we examined genome- wide variation and found four varieties that were evolutionary significant units. A Bayesian Phylogenetics and Phylogeography (BP&P) analysis using 123 single copy nuclear genes support three speciation events of M. itinerans varieties with robust posterior speciation probabilities; However, a Bayes factor delimitation of species with genomic data (BFD*) analysis using 1201 unlinked single nucleotide polymorphisms gave decisive support for a five-lineage model. When reconciling divergence time estimates with a speciation time scale, a modified three-lineage model was consistent with that of BP&P, in which the speciation time of two varieties (M. -
Monograph - Agriculture
Monograph - Agriculture Musa × paradisiaca (Banana) Javier Covarrubias Agricultural Science Colegio Bolivar 2018-2019 Dr Wojciech Waliszewski Javier Covarrubias; Musa × paradisiaca (Banana) Table of Contents Table of Contents 1 1: Importance 3 Chapter 2 Ecology of Musa x Paradisiaca 4 2. Ecology 4 2.1: Affinity 4 2.2: Fossil Record 6 2.3 Origins 7 2.4 Present Distribution 8 2.5 Elevation & Climate 10 2.6: Soil & Geology 11 Chapter 3 Biology of Musa x Paradisiaca 13 3. Ecology 13 3.1 Chromosome Complement 13 3.1.1 Chromosome number & data 13 3.2 Life Cycles & Phenology 13 3.2.1 Flower Production 14 3.2.2 Fruit Development 15 3.3 Productivity and Biology 15 3.3.1 Pollination 15 3.3.2 Sexuality and Reproduction 16 Chapter 4 Propagation & Management 17 4.2 Propagation 17 4.2.1 Rhizome Propagation 17 4.2.2 Sucker Propagation 18 4.3 Planting 19 4.4 Management 20 4.4.3 Pest Disease and Control 22 Chapter 5 Markets and Uses 23 5.1 Markets 23 1 Javier Covarrubias; Musa × paradisiaca (Banana) 5.2 Uses 24 5.2.1 Edible Uses 24 5.2.2 Medicinal Uses 25 5.2.3 Use in textiles 26 References: 29 Chapter 2 References 29 Chapter 3 References 29 Chapter 4 References: 30 Chapter 5 References: 31 2 Javier Covarrubias; Musa × paradisiaca (Banana) 1: Importance Musa × paradisiaca represents globally one of the most important fruit crops. With 50 million tons of produce annually worldwide. Also, banana has other uses, there have been experiments going on to do biotechnological production of protein, with the waste of bananas.