Hazard Communication and the Globally
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tremprime QD Low-Odor
Version: 1.1 Revision Date: 10/12/2018 SAFETY DATA SHEET 1. Identification Material name: TREMPRIME Q.D. LOW ODOR Material: 022045 805 Recommended use and restriction on use Recommended use : Coatings Restrictions on use: Not known. Manufacturer/Importer/Supplier/Distributor Information Tremco Canadian Sealants 220 Wicksteed Ave Toronto ON M4H 1G7 CA Contact person : EH&S Department Telephone : 1-800-263-6046 Emergency telephone number : 1-800-424-9300 (US); 1-613-996-6666 (Canada) 2. Hazard(s) identification Hazard Classification Physical Hazards Flammable liquids Category 3 Health Hazards Acute toxicity (Inhalation - vapor) Category 4 Serious Eye Damage/Eye Irritation Category 2A Germ Cell Mutagenicity Category 1B Carcinogenicity Category 1B Unknown toxicity - Health Acute toxicity, oral 40.8 % Acute toxicity, dermal 43 % Acute toxicity, inhalation, vapor 97 % Acute toxicity, inhalation, dust 100 % or mist Label Elements Hazard Symbol : 1/14 800000060000 Version: 1.1 Revision Date: 10/12/2018 Signal Word: Danger Hazard Statement: Flammable liquid and vapor. Harmful if inhaled. Causes serious eye irritation. May cause genetic defects. May cause cancer. Precautionary Statements Prevention: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Keep container tightly closed. Ground and bond container and receiving equipment. Use explosion-proof [electrical/ventilating/lighting/EF e:uipment. 5se non1sparking tools. Take action to prevent static discharges. Wear protective gloves/protective clothing/eye protection/face protection. Avoid breathing dust/fume/gas/mist/vapors/spray. 5se only outdoors or in a well1ventilated area. Wash thoroughly after handling. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. -
Job Hazard Analysis
Identifying and Evaluating Hazards in Research Laboratories Guidelines developed by the Hazards Identification and Evaluation Task Force of the American Chemical Society’s Committee on Chemical Safety Copyright 2013 American Chemical Society Table of Contents FOREWORD ................................................................................................................................................... 3 ACKNOWLEDGEMENTS ................................................................................................................................. 5 Task Force Members ..................................................................................................................................... 6 1. SCOPE AND APPLICATION ..................................................................................................................... 7 2. DEFINITIONS .......................................................................................................................................... 7 3. HAZARDS IDENTIFICATION AND EVALUATION ................................................................................... 10 4. ESTABLISHING ROLES AND RESPONSIBILITIES .................................................................................... 14 5. CHOOSING AND USING A TECHNIQUE FROM THIS GUIDE ................................................................. 17 6. CHANGE CONTROL .............................................................................................................................. 19 7. ASSESSING -
CONFINED SPACE ENTRY PROGRAM University of Wisconsin-Superior Revised June 2014
University of Wisconsin - Superior Confined Space Program Revised June, 2014 CONFINED SPACE ENTRY PROGRAM University of Wisconsin-Superior Revised June 2014 Section 1 INTRODUCTION A confined space is, by definition, a space that is large enough and so configured that an employee can enter and perform work, has a limited or restricted means for entry or exit and is not intended for continuous human occupancy. Examples of confined spaces include boilers, hoppers, underground vaults, tanks, sewers, storage bins, crawl spaces, pits, ducts, tunnels, diked areas, vessels, and silos. The entry procedures to be used to enter a confined space are determined based on the space classification as either a non-permit or permit-required confined space. A non-permit confined space is a confined space has a safe atmosphere to work in and no other hazards capable of causing death or serious physical harm. A permit-required confined space is a confined space with existing or potential hazards that significantly increase the risk to the employee. These hazards include hazardous atmospheres, electrical hazards, unguarded moving parts, a severely restricted exit from the space, engulfment hazards, converging walls, sloping floors, falls from heights exceeding 6 feet, or any other recognized serious safety or health hazard. Often, work like welding or painting within a non- permit confined space, might introduce significant hazards, and the normal classification of the space would be upgraded to a permit-confined space. The general entry procedure involves a team of individuals, including the employee’s supervisor, the entrant, an attendant and entry supervisor. The classification of the space as a permit or non- permit space determines what steps and personnel are needed to make the entry. -
Natural Disasters: Acts of God, Nature Or Society? on the Social Relation to Natural Hazards J. Weichselgartner & J. Bertens
Risk Analysis II, C.A. Brebbia (Editor) © 2000 WIT Press, www.witpress.com, ISBN 1-85312-830-9 Natural disasters: acts of God, nature or society? On the social relation to natural hazards J. Weichselgartner & J. Bertens Abstract Natural disasters are characterised by complex relationships and interactions between physical hazards and society. These, as well as local context, cultural aspects, social and political activities, and economic concerns, present diffi- culties in practical application of mitigation concepts and models. This paper outlines general approaches in natural risk assessment and gives an insight into the contextual dynamics surrounding a hazard event. Since precise measurement of uncertainties and exact prediction of damages is hardly feasible, the incorporation of a hazard of place concept in vulnerability assessment is proposed. Qualities that determine potential damage are identified and characteristics described. It is suggested that, even without assessing risk exactly, vulnerability reduction decreases damages and losses. The chosen perspective illustrates that natural disasters are a result of social decision processes rather than acts of God or nature. Introduction We begin our discussion with the words of David Okrent - professor of engineering and applied science at the University of California - to introduce central conceptions in risk assessment. His comment on societal risk is based on testimony he presented on 25 July 1979 to the Subcommittee on Science, Research, and Technology, U.S. House of Representatives, thus four months after Three Mile Island accident: Risk Analysis II, C.A. Brebbia (Editor) © 2000 WIT Press, www.witpress.com, ISBN 1-85312-830-9 Risk Analysis II "The terms Tiazard' and 'risk' can be used in various ways. -
Cem-Seal-SDS Sheet
Cem-Seal ICP Building Solutions Group/Pli-Dek Version No: 1.2 Issue Date: 10/26/2020 Safety Data Sheet according to OSHA HazCom Standard (2012) requirements Print Date: 10/26/2020 S.GHS.USA.EN SECTION 1 Identification Product Identifier Product name Cem-Seal Synonyms Not Available Other means of identification Not Available Recommended use of the chemical and restrictions on use Relevant identified uses Specialty floor coating Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party Registered company name ICP Building Solutions Group/Pli-Dek Address 4565 W. Watkins Street Phoenix AZ Not applicable Telephone 623-435-2277 Fax Not Available Website www.ICPGROUP.com Email Not Available Emergency phone number Association / Organisation ChemTel Emergency telephone 1-800-255-3924 numbers Other emergency telephone 1-813-248-0585 numbers SECTION 2 Hazard(s) identification Classification of the substance or mixture NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Acute Aquatic Hazard Category 3 Label elements Hazard pictogram(s) Not Applicable Signal word Not Applicable Hazard statement(s) H402 Harmful to aquatic life. Hazard(s) not otherwise classified Not Applicable Precautionary statement(s) General P101 If medical advice is needed, have product container or label at hand. P102 Keep out of reach of children. Page 1 continued... Version No: 1.2 Page 2 of 8 Issue Date: 10/26/2020 Cem-Seal Print Date: 10/26/2020 Precautionary statement(s) Prevention P273 Avoid release to the environment. -
Chapter 4: HAZARD COMMUNICATION
Chapter 4: HAZARD COMMUNICATION The text of this chapter represents the agreement reached on a harmonised hazard communication system as part of the work on the GHS, with minor editorial changes. Additional explanatory text has been added in some sections in order to provide guidance for the reader on how to interpret the GHS agreed text. Where this is the case, the text is italicised and placed in a box to differentiate it from the agreed GHS text. OBJECTIVES AND SCOPE 1. One of the objective of the work on the GHS has been the development of a harmonised hazard communication system including labelling, safety data sheets and easily understandable symbols, based on the classification criteria developed by the focal points within the IOMC Co-ordinating Group for the Harmonisation of Chemical Classifications Systems, CG/HCCS. This work has been carried out under the auspices of the ILO, by the ILO Working Group on Hazard Communication. The specific Terms of Reference and Membership of the Working Group are provided in Annex 1. In addition the principles contained in the IOMC CG/HCCS Terms of Reference and the document “Description and Further Clarification of the Anticipated Application of the GHS (also referred to as “The Scope Document”) also applied to the work on harmonisation of hazard communication (see Chapter 2). Application of the Harmonised Hazard Communication System 2.The harmonised system for hazard communication includes the appropriate labelling tools to convey information about each of the hazard classes and categories in the GHS. The use of symbols, signal words or hazard statements other than those which have been assigned to each of the GHS hazard classes and categories would be contrary to harmonisation. -
Hazcom Training Requirements Due Dec. 1, 2013
This presentation reviews the new chemical container labeling and safety data sheet requirements under the new Hazard Communication standard. Reference information about the labeling and safety data sheet format can be found on www.osha.gov; specifically on the hazard communication Web page at www.osha.gov/dsg/hazcom. 1 (Read slide) The GHS manual that is accessed from the website provides additional detail about the system for chemical classifications and hazard communication. The purpose of the new HazCom standard is to ensure the hazards of all chemicals produced or imported are classified and information concerning the classified hazards is transmitted to employers and employees in a more informative and consistent manner based on the criteria established in the GHS. 2 The globally harmonized system is a…(read 1st two paragraphs on slide) The GHS is the culmination of more than a decade of work. There were many individuals involved from a multitude of countries, international organizations, and stakeholder organizations. There work spanned a wide range of expertise, from toxicology to fire protection, and ultimately required extensive good will and the willingness to compromise, in order to achieve a system that provides a single, globally harmonized system, to address classification of hazardous substances and mixtures, and the communication of these hazards through revised labeling and SDS’s. The new system is being implemented throughout the world by countries including Canada, the European Union, China, Australia, and Japan. Other U.S. Agencies including the Department of Transportation (DOT), Environmental Protection Agency, and the Consumer Product Safety Commission actively participated in developing the GHS. -
Occupational Health Hazards: Employer, Employee, and Labour Union Concerns
International Journal of Environmental Research and Public Health Review Occupational Health Hazards: Employer, Employee, and Labour Union Concerns Oscar Rikhotso 1,* , Thabiso John Morodi 1 and Daniel Masilu Masekameni 2 1 Department of Environmental Health, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; [email protected] 2 Occupational Health Division, School of Public Health, University of Witwatersrand, Parktown 2193, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-123-824-923 Abstract: This review paper examines the extent of employer, worker, and labour union concerns to occupational health hazard exposure, as a function of previously reported and investigated com- plaints. Consequently, an online literature search was conducted, encompassing publicly available reports resulting from investigations, regulatory inspection, and enforcement activities conducted by relevant government structures from South Africa, the United Kingdom, and the United States. Of the three countries’ government structures, the United States’ exposure investigative activities con- ducted by the National Institute for Occupational Safety and Health returned literature search results aligned to the study design, in the form of health hazard evaluation reports reposited on its online database. The main initiators of investigated exposure cases were employers, workers, and unions at 86% of the analysed health hazard evaluation reports conducted between 2000 and 2020. In the synthesised literature, concerns to exposure from chemical and physical hazards were substantiated by occupational hygiene measurement outcomes confirming excessive exposures above regulated Citation: Rikhotso, O.; Morodi, T.J.; health and safety standards in general. Recommendations to abate the confirmed excessive exposures Masekameni, D.M. -
Controlling Chemical Exposure Industrial Hygiene Fact Sheets
Controlling Chemical Exposure Industrial Hygiene Fact Sheets Concise guidance on 16 components of industrial hygiene controls New Jersey Department of Health and Senior Services Division of Epidemiology, Environmental and Occupational Health Occupational Health Service PO Box 360 Trenton, NJ 08625-0360 609-984-1863 October 2000 James E. McGreevey Clifton R. Lacy, M.D. Governor Commissioner Written by: Eileen Senn, MS, CIH Occupational Health Surveillance Program James S. Blumenstock Senior Assistant Commissioner Public Health Protection and Prevention Programs Eddy Bresnitz, MD, MS State Epidemiologist/Assistant Commissioner Division of Epidemiology, Environmental and Occupational Health Kathleen O’Leary, MS Director Occupational Health Service David Valiante, MS, CIH Acting Program Manager Occupational Health Surveillance Program Funding: This project was supported in part by a cooperative agreement from the U.S. Department of Health and Human Services, National Institute for Occupational Safety and Health (NIOSH). Reproduction: The NJDHSS encourages the copying and distribution of all or parts of this booklet. All materials are in the public domain and may be reproduced or copied without permission. Cita- tion as to the source is appreciated. This document is available on the Internet at: www.state.nj.us/health/eoh/survweb/ihfs.pdf Citation: Senn, E., Controlling Chemical Exposure; Industrial Hygiene Fact Sheets, Trenton, NJ: New Jersey Department of Health and Senior Services, October 2000. Table of Contents Methods for Controlling -
Job Safety Analysis
Job Safety Analysis BWC Division of Safety and Hygiene Training Center Introduction Job Safety Analysis Table of Contents Tab Page Introduction Objectives 2 Agenda 3 BWC Office Locations 4 Introduction Slides 5 PowerPoint 9 Content JSA Educational Material 25 Job Hazard Control Plan 32 Job Safety Analysis Review Checklist 36 Sample Approved JSA 39 Typical Errors on JSA 40 Sample Job Hazard Analysis 41 Downloading Materials (one-hour presentation) from Web 42 Resources Additional Resources 43 JSA Planning Sheet 45 Hazard Identification Checklist 46 Questions to Ask When Determining Controls 48 National Safety Council JSA & Directions 49 PNW/APS Safety Performance 51 OSHA Job Safety Analysis 55 JSA Forms 81 February 2008 Printed within BWC Job Safety Analysis Objectives You will learn: - A proactive approach to incident prevention and safety; - The purpose and benefits of a JSA; - Techniques for performing a JSA; - How to conduct and document a JSA; - How to analyze the results of your JSA; - How to implement your safe job procedures; - How to manage and maintain your JSA process. 2 Job Safety Analysis Agenda 8:30 am - 11:30 am - Introductions - What do you want to take away from class? - Review material in book - How to do a JSA - Video and group discussion of video afterwards 11:30 am - 12:30 pm - Lunch 1:30 pm - 3:30 pm - JSA practical exercises - Group discussion of and explanation of results of exercises: corrective actions, identifying steps, and identifying hazards. 3:30 pm - 4:30 pm - Review session - Website demos - Q&A - Evaluations 3 BWC Columbus Logan 30 W. -
Frequently Asked Question
National Health and Safety Function, Workplace Health and Wellbeing Unit, National HR Division Frequently Asked Question Ref: FAQ 012:02 RE: Chemical Safety Issue date: July 2015 Revised December 2019 Review December 2021 Date: date: Author(s): NH&SF-Information & Advisory Team Note: This information/advice has been issued in response to frequently asked questions around a specific topic and may not cover all issues arising, should you require more specific advice please contact the Health & Safety Help Desk. The management of any occupational safety and health issue(s) remains the responsibility of local management. What is a Chemical Agent /Hazardous Substance? A hazardous substance is something that has the potential to cause harm. The hazards of a substance are evaluated by examining the properties of the substance such as toxicity, flammability and chemical reactivity, as well as how the material is used. What harm can chemicals cause? Chemicals may cause health effects, for example be a respiratory sensitiser or skin irritant Chemicals may be a physical hazard, for example a flammable, explosive or oxidising chemical Chemicals may affect the environment, if they are used, stored or disposed of incorrectly What are the main routes of exposure? Healthcare workers may suffer health effects when hazardous chemicals enter the body. The main routes of exposure are: Inhalation: breathing in the chemical Absorption: through skin contact or a splash in the eye Ingestion: via contaminated food or hands and Inoculation: when a sharp object such as a needle punctures the skin Does the Manager have to complete a risk assessment? Yes, the Safety, Health and Welfare at Work (Chemical Agents) Regulations, 2001 places a duty on the employer to determine whether any hazardous chemical agents are present at the workplace and to assess any risk to the safety and health of employees arising from the presence of those chemical agents. -
Environmental Impact Assessment and Due Diligence Report (DRAFT)
Environmental Impact Assessment and Due Diligence Report (DRAFT) Project Number: 47051-002 May 2015 PRC: Chemical Industry Energy Efficiency and Emissions Reduction Project Prepared by ChemChina and CHC for the Asian Development Bank. This is a version of the draft posted in May 2015 available on http://www.adb.org/Documents/RRPs/?id=47051-002-3. CURRENCY EQUIVALENTS (as of 11 May 2015) Currency unit – yuan (CNY) CNY1.00 = $ 0.1633 $1.00 = CNY 6.1254 ABBREVIATIONS ADB – Asian Development Bank AP – Affected Person API – American Petroleum Institute ASL – Above Sea Level CCPS – Center for Chemical Process Safety CEMS – Continuous Emissions Monitoring System ChemChina – China National Chemical Corporation CHC – China Haohua Company CHP – Combined Heat and Power CNY – Chinese Yuan CSEMP – Construction Site Environmental Management Plan DCS – Distributed Control System EA – Executing Agency EHS – Environment, Health and Safety EHSS – Environment, Health and Safety Specialist EHSU – Environment, Health and Safety Unit EIA – Environmental Impact Assessment EMoP – Environmental Monitoring Plan EMP – Environmental Management Plan EMS – Environmental Monitoring Station EPB – Environmental Protection Bureau FSR – Feasibility Study Report Flor – Calcium fluoride (CaF2) or “fluorite” GDP – Gross Domestic Product GHG – Greenhouse Gas GIP – Good International Practice GRM – Grievance Redress Mechanism HDP – High Density Polyethylene IA – Implementing Agency IEE – Initial Environmental Examination IT – Interim Target LIC – Loan Implementation Consultant