Insect Speciation Rules: Unifying Concepts in Speciation Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Mariner-Like Elements in Orthoptera Разнообразие Mariner
ЭКОЛОГИЧЕСКАЯ ГЕНЕТИКА Вавиловский журнал генетики и селекции. 2019;23(8):1059-1066 Оригинальное исследование / Original article DOI 10.18699/VJ19.581 Diversity of mariner-like elements in Orthoptera K. Ustyantsev1 , M. Biryukov1, I. Sukhikh1, N.V. Shatskaya1, V. Fet2, A. Blinov1, 3, I. Konopatskaia1 1 Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia 2 Marshall University, Department of Biological Sciences, Huntington, USA 3 Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia e-mail: [email protected] Mariner-like elements (MLEs) are among the most widespread DNA transposable elements in eukaryotes. Insects were the first organisms in which MLEs were identified, however the diversity of MLEs in the insect order Orthoptera has not yet been addressed. In the present study, we explore the diversity of MLEs elements in 16 species of Orthoptera be- longing to three infraorders, Acridoidea (Caelifera), Grylloidea (Ensifera), and Tettigoniidea (Ensifera) by combining data mined from computational analysis of sequenced degenerative PCR MLE amplicons and available Orthoptera genomic scaffolds. In total, 75 MLE lineages (Ortmar) were identified in all the studied genomes. Automatic phylogeny-based classification suggested that the current known variability of MLEs can be assigned to seven statistically well-supported phylogenetic clusters (I–VII), and the identified Orthoptera lineages were distributed among all of them. The majori- ty of the lineages (36 out of 75) belong to cluster I; 20 belong to cluster VI; and seven, six, four, one and one lineages belong to clusters II, IV, VII, III, and V, respectively. Two of the clusters (II and IV) were composed of a single Orthoptera MLE lineage each (Ortmar37 and Ortmar45, respectively) which were distributed in the vast majority of the studied Orthoptera genomes. -
Alan Robert Templeton
Alan Robert Templeton Charles Rebstock Professor of Biology Professor of Genetics & Biomedical Engineering Department of Biology, Campus Box 1137 Washington University St. Louis, Missouri 63130-4899, USA (phone 314-935-6868; fax 314-935-4432; e-mail [email protected]) EDUCATION A.B. (Zoology) Washington University 1969 M.A. (Statistics) University of Michigan 1972 Ph.D. (Human Genetics) University of Michigan 1972 PROFESSIONAL EXPERIENCE 1972-1974. Junior Fellow, Society of Fellows of the University of Michigan. 1974. Visiting Scholar, Department of Genetics, University of Hawaii. 1974-1977. Assistant Professor, Department of Zoology, University of Texas at Austin. 1976. Visiting Assistant Professor, Dept. de Biologia, Universidade de São Paulo, Brazil. 1977-1981. Associate Professor, Departments of Biology and Genetics, Washington University. 1981-present. Professor, Departments of Biology and Genetics, Washington University. 1983-1987. Genetics Study Section, NIH (also served as an ad hoc reviewer several times). 1984-1992: 1996-1997. Head, Evolutionary and Population Biology Program, Washington University. 1985. Visiting Professor, Department of Human Genetics, University of Michigan. 1986. Distinguished Visiting Scientist, Museum of Zoology, University of Michigan. 1986-present. Research Associate of the Missouri Botanical Garden. 1992. Elected Visiting Fellow, Merton College, University of Oxford, Oxford, United Kingdom. 2000. Visiting Professor, Technion Institute of Technology, Haifa, Israel 2001-present. Charles Rebstock Professor of Biology 2001-present. Professor of Biomedical Engineering, School of Engineering, Washington University 2002-present. Visiting Professor, Rappaport Institute, Medical School of the Technion, Israel. 2007-2010. Senior Research Associate, The Institute of Evolution, University of Haifa, Israel. 2009-present. Professor, Division of Statistical Genomics, Washington University 2010-present. -
Qrup: 127E; Fənn: Ecological Genetics İmtahan Sualları (2021-Ci Il, Tədris Yükü (Saat) Cəmi: 90 Saat; Mühazirə 45 Saat; Məşğələ 45 Saat)
Bakı Dövlət Universiteti Biologiya fakültəsi; Qrup: 127E; Fənn: Ecological genetics İmtahan sualları (2021-ci il, tədris yükü (saat) cəmi: 90 saat; mühazirə 45 saat; məşğələ 45 saat) 1. The subject of Ecological genetics, its main problems 2. The theoretical and practical problems of Ecological genetics 3. Brief history of Ecological genetics 4. The investigation methods of Ecological genetics 5. Conception of adaptation, adaptive reaction norm 6. The role of modifications and genotypic variations in adaptation 7. Different types of adaptations 8. Ontogenetic and phylogenetic adaptations 9. Population-species adaptations and adaptations in biogeocenosis 10. Adaptive traits of biological systems: plasticity, flexibility, stability, homeostasis, genetic homeostasis and canalization 11. Genetic diversity, its types; significance of conservation of genetic diversity 12. Genetic erosion, its causes and results 13. Genetic effects of population fragmentation, population size, inbreeding and gene flow 14. Population bottleneck and fonder effect 15. Conservation methods of genetic diversity 16. Evolution as a consequence of changes in alleles and allele frequencies in populations over time 17. Factors affecting allele frequencies and genetic equilibrium in populations 18. Genetic nature of adaptive reactions 19. Role of heterozygosity and polymorphism in adaptation 20. Explaining the high level of genetic variation in populations 21. Detecting genetic variation by artificial selection and genetic markers 22. Polymerase chain reaction (PCR); its steps, limits, types and applications 23. Integration of adaptive reactions 24. Role of supergenes and gene-complexes in adaptation 25. Heterostyly, its role in adaptation 26. Genetic regulation mechanisms of adaptive traits 27. Effects of environmental factors on gene expression in prokaryotes; the operon model of regulation 28. -
INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch
ZOOLOGÍA-TAXONOMÍA www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 31(2):407-440. 2009 HACIA UNA SÍNTESIS DE LOS PAPILIONOIDEA (INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a historical sketch JOSÉ LUIS SALINAS-GUTIÉRREZ El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] CLAUDIO MÉNDEZ Escuela de Biología, Universidad de San Carlos, Ciudad Universitaria, Campus Central USAC, Zona 12. Guatemala, Guatemala. [email protected] MERCEDES BARRIOS Centro de Estudios Conservacionistas (CECON), Universidad de San Carlos, Avenida La Reforma 0-53, Zona 10, Guatemala, Guatemala. [email protected] CARMEN POZO El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] JORGE LLORENTE-BOUSQUETS Museo de Zoología, Facultad de Ciencias, UNAM. Apartado Postal 70-399, México D.F. 04510; México. [email protected]. Autor responsable. RESUMEN La riqueza biológica de Mesoamérica es enorme. Dentro de esta gran área geográfi ca se encuentran algunos de los ecosistemas más diversos del planeta (selvas tropicales), así como varios de los principales centros de endemismo en el mundo (bosques nublados). Países como Guatemala, en esta gran área biogeográfi ca, tiene grandes zonas de bosque húmedo tropical y bosque mesófi lo, por esta razón es muy importante para analizar la diversidad en la región. Lamentablemente, la fauna de mariposas de Guatemala es poco conocida y por lo tanto, es necesario llevar a cabo un estudio y análisis de la composición y la diversidad de las mariposas (Lepidoptera: Papilionoidea) en Guatemala. -
The Speciation History of Heliconius: Inferences from Multilocus DNA Sequence Data
The speciation history of Heliconius: inferences from multilocus DNA sequence data by Margarita Sofia Beltrán A thesis submitted for the degree of Doctor of Philosophy of the University of London September 2004 Department of Biology University College London 1 Abstract Heliconius butterflies, which contain many intermediate stages between local varieties, geographic races, and sympatric species, provide an excellent biological model to study evolution at the species boundary. Heliconius butterflies are warningly coloured and mimetic, and it has been shown that these traits can act as a form of reproductive isolation. I present a species-level phylogeny for this group based on 3834bp of mtDNA (COI, COII, 16S) and nuclear loci (Ef1α, dpp, ap, wg). Using these data I test the geographic mode of speciation in Heliconius and whether mimicry could drive speciation. I found little evidence for allopatric speciation. There are frequent shifts in colour pattern within and between sister species which have a positive and significant correlation with species diversity; this suggests that speciation is facilitated by the evolution of novel mimetic patterns. My data is also consistent with the idea that two major innovations in Heliconius, adult pollen feeding and pupal-mating, each evolved only once. By comparing gene genealogies from mtDNA and introns from nuclear Tpi and Mpi genes, I investigate recent speciation in two sister species pairs, H. erato/H. himera and H. melpomene/H. cydno. There is highly significant discordance between genealogies of the three loci, which suggests recent speciation with ongoing gene flow. Finally, I explore the phylogenetic relationships between races of H. melpomene using an AFLP band tightly linked to the Yb colour pattern locus (which determines the yellow bar in the hindwing). -
Aerodynamic and Aposematic Functions of Butterfly Wing Motion Robert B
PROCEEDINGS OF ' Proc. R. Soc. B (2007) 274, 913-917 THE ROYAL doi:10.1098/rspb.2006.0261 SOCIETY Published online 30 January 2007 Evolution of the wave: aerodynamic and aposematic functions of butterfly wing motion Robert B. Srygley1'2'* 1 Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Many unpalatable butterfly species use coloration to signal their distastefulness to birds, but motion cues may also be crucial to ward off predatory attacks. In previous research, captive passion-vine butterflies Heliconius mimetic in colour pattern were also mimetic in motion. Here, I investigate whether wing motion changes with the flight demands of different behaviours. If birds select for wing motion as a warning signal, aposematic butterflies should maintain wing motion independently of behavioural context. Members of one mimicry group {Heliconius cydno and Heliconius sapho) beat their wings more slowly and their wing strokes were more asymmetric than their sister-species {Heliconius melpomene and Heliconius erato, respectively), which were members of another mimicry group having a quick and steady wing motion. Within mimicry groups, wing beat frequency declined as its role in generating lift also declined in different behavioural contexts. In contrast, asymmetry of the stroke was not associated with wing beat frequency or behavioural context—strong indication that birds process and store the Fourier motion energy of butterfly wings. Although direct evidence that birds respond to subtle differences in butterfly wing motion is lacking, birds appear to generalize a motion pattern as much as they encounter members of a mimicry group in different behavioural contexts. -
Systematics and Acoustics of North American Anaxipha (Gryllidae: Trigonidiinae) by Thomas J
Systematics and acoustics of North American Anaxipha (Gryllidae: Trigonidiinae) by Thomas J. Walker and David H. Funk Journal of Orthoptera Research 23(1): 1-38. 2014. Front cover Back cover In brief: This paper provides valid scientific names for the 13 species known to occur in North America and uses their songs and files to question the prevailing view of how frequency is determined in the songs of most crickets. Supplementary materials: All supplementary materials are accessible here as well as from the Full Text and PDF versions on BioOne. Press “Page Down” to view page 1 of the article. T.J. WALKER AND D.H.Journal FUNK of Orthoptera Research 2014, 23(1): 1-381 Systematics and acoustics of North American Anaxipha (Gryllidae: Trigonidiinae) THOMAS J. WALKER AND DAVID H. FUNK [TW] Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA. Email: [email protected] [DF] Stroud Water Research Center, Avondale, Pennsylvania, 19311, USA. Email: [email protected] Abstract Introduction The genus Anaxipha has at least 13 North American species, eight of which Some 163 species of tiny brownish crickets are nominally in the are described here. Ten species fall into these three species groups: exigua trigonidiine genus Anaxipha (OSFO 2013), but Otte & Perez-Gelabert group (exigua Say, scia Hebard and n. spp. thomasi, tinnulacita, tinnulenta, (2009, p. 127) suggest that the genus is "in serious need of revi- and tinnula); delicatula group (delicatula Scudder and vernalis n. sp.); litarena sion" and that "the taxonomy of the Trigonidiinae as a whole is in a group (litarena Fulton and rosamacula n.sp.). -
Zoosystema 31(3)
New and little known crickets from Espiritu Santo Island, Vanuatu (Insecta, Orthoptera, Grylloidea, Pseudotrigonidium Chopard, 1915, Phaloriinae and Nemobiinae p.p.) Laure DESUTTER-GRANDCOLAS Muséum national d’Histoire naturelle, Département Systématique et Évolution, UMR 7205 CNRS, case postale 50, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Desutter-Grandcolas L. 2009. — New and little known crickets from Espiritu Santo Island, Vanuatu (Insecta, Orthoptera, Grylloidea, Pseudotrigonidium Chopard, 1915, Phaloriinae and Nemobiinae p.p.). Zoosystema 31 (3) : 619-659. ABSTRACT Th e cricket fauna of Espiritu Santo Island (Vanuatu) has been sampled during the SANTO 2006 biological survey. About 50 cricket species have been collected and observed in the fi eld. In the present paper, cricket species belonging to KEY WORDS Pseudotrigonidium Chopard, 1915, Phaloriinae and to troglobitic Nemobiinae Insecta, are studied, and their habitat characterized according to specimen observations Orthoptera, Grylloidea, in the fi eld. Six new species are described, Pseudotrigonidium personatum n. sp., Phaloriinae, Phaloria faponensis n. sp., P. nigricollis n. sp., P. pentecotensis n. sp., P. walterlinii Nemobiinae, troglobitic taxa, n. sp. and Cophonemobius faustini n. sp. Podoscirtus chopardi Willemse, 1925 Micronesia, is transferred to the genus Phaloria Stål, 1877 and redescribed, while Phaloria Pacifi c, chopardi (Willemse, 1951) from the Carolines islands is renamed P. willemsei Vanuatu, bioacoustics, Desutter-Grandcolas, 2009 to avoid homonymy. Th e calling song of P. chopardi new species. is described. ZOOSYSTEMA • 2009 • 31 (3) © Publications Scientifi ques du Muséum national d’Histoire naturelle, Paris. www.zoosystema.com 619 Desutter-Grandcolas L. RÉSUMÉ Grillons nouveaux ou peu connus de l’île d’Espiritu Santo, Vanuatu (Insecta, Orthoptera, Grylloidea, Pseudotrigonidium Chopard, 1915, Phaloriinae and Nemobiinae p.p.). -
Insights Into the Genomic Evolution of Insects from Cricket Genomes
ARTICLE https://doi.org/10.1038/s42003-021-02197-9 OPEN Insights into the genomic evolution of insects from cricket genomes ✉ Guillem Ylla 1 , Taro Nakamura 1,9, Takehiko Itoh 2, Rei Kajitani 2, Atsushi Toyoda 3,4, Sayuri Tomonari 5, Tetsuya Bando6, Yoshiyasu Ishimaru5, Takahito Watanabe5, Masao Fuketa7, ✉ ✉ Yuji Matsuoka5,10, Austen A. Barnett 1,11, Sumihare Noji 5, Taro Mito 5 & Cassandra G. Extavour 1,8 Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA 1234567890():,; methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis.We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. -
Maintien À Long Terme Des Communautés D'insectes Forestiers Dans Un Contexte De Changement Global : Réponses Écologiques D
UNIVERSITE DE LA NOUVELLE-CALEDONIE ECOLE DOCTORALE DU PACIFIQUE (ED 469) Maintien à long terme des communautés d’insectes forestiers dans un contexte de changement global : Réponses écologiques des communautés d'Orthoptères dans une succession forestière et face à la progression d'espèces invasives THESE Pour obtenir le grade de DOCTEUR DE L‘UNIVERSITE DE LA NOUVELLE-CALEDONIE Discipline : Biologie des populations et écologie IMBE UMR CNRS, IRD, UAPV / ISYEB – UMR 7205 CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités Présentée et soutenue publiquement par Jérémy ANSO Le 30 Mars 2016 Direction de thèse : Hervé Jourdan, Laure Desutter-Grandcolas et Eric Vidal JURY M. Olivier DANGLES Directeur de recherche, IRD Rapporteur M. Bruno FOGLIANI Maître de conférences, IAC Rapporteur M. Yves LETOURNEUR Professeur, UNC Examinateur M. Philippe GRANDCOLAS Directeur de recherche, CNRS Examinateur M. Olivier BLIGHT Maître de conférences, Université d’Avignon Examinateur M. Eric VIDAL Directeur de recherche, IRD Co-directeur M. Hervé JOURDAN Ingénieur de recherche, IRD Co-directeur Mme. Laure DESUTTER- GRANDCOLAS Professeure, MNHN Co-directrice Remerciements Je remercie tous les membres du jury qui ont accepté d‘évaluer ce travail de recherche. Merci à MM. Olivier Dangles et Bruno Fogliani, tous deux rapporteurs de ce travail, ainsi qu‘à MM. Philippe Grandcolas, Yves Letourneur et Olivier Blight, tous trois examinateurs. Je remercie Hervé Jourdan qui m‘a épaulé durant tout ce travail au centre IRD de Nouméa. Merci à Hervé de m‘avoir fait confiance dès le départ de cette thèse et de ce long travail que l‘on sait formateur. Hervé est une véritable encyclopédie vivante sur la Nouvelle- Calédonie, et sur pratiquement tous les sujets qui s‘y réfèrent. -
Ecological Genetics of Freshwater Fish: a Short Review of the Genotype–Phenotype Connection
Animal Biodiversity and Conservation 34.2 (2011) Review309 Ecological genetics of freshwater fish: a short review of the genotype–phenotype connection O. Vidal & J. L. García–Marín Vidal, O. & García–Marín, J. L., 2011. Ecological genetics of freshwater fish: a short review of the genotype– phenotype connection. Animal Biodiversity and Conservation, 34.2: 309–317. Abstract Ecological genetics of freshwater fish: a short review of the genotype–phenotype connection.— Molecular eco- logy or ecological genetics is an expanding application of population genetics which has flourished in the last two decades but it is dominated by systematic and phylogeographic studies, with relatively little emphasis on the study of the genetic basis of the process of adaptation to different ecological conditions. The relationship between genotype and adaptive phenotypes is weak because populations are often difficult to quantify and experiments are logistically challenging or unfeasible. Interestingly, in freshwater fish, studies to characterize the genetic architecture of adaptive traits are not as rare as in other vertebrate groups. In this review, we summarize the few cases where the relationship between the ecology and genetics of freshwater fish is more developed, namely the relationship between genetic markers and ecological phenotypes. Key words: Ecological genetics, Molecular ecology, Genotype–phenotype relationship, Adaptation, Landscape genetics, Species introduction. Resumen Genética ecológica de los peces de agua dulce: una breve revisión de la conexión genotipo–fenotipo.— La ecología molecular o la genética ecológica es una aplicación de la genética de poblaciones que durante las dos últimas décadas ha sufrido un proceso de expansión. Sin embargo, en la ecología molecular predominan los estudios sistemáticos y filogeográficos, con relativamente poco énfasis en el análisis de la base genética del proceso de adaptación a diferentes condiciones ecológicas. -
IB 162 Ecological Genetics University of California, Berkeley Department of Integrative Biology (4 Units)
Ecological Genetics Integrative Biology 162 IB 162 Ecological Genetics University of California, Berkeley Department of Integrative Biology (4 units) Course Description: This course presents modern approaches to studying evolution in natural populations, which requires both ecology and genetics. We will study quantitative and molecular causes of inheritance of ecologically important traits and their evolution. We will use simple mathematical models to predict evolution in natural populations. This course will help you build a conceptual framework for understanding biology. "Nothing in biology makes sense except in the light of evolution." . Theodosius Dobzhansky (1970) Genetics of the Evolutionary Process Format: There are lecture and discussion sessions. Lectures will focus primarily on broad concepts and ideas. Weekly discussion sections will help you master ideas and give you practice in reading and analyzing primary scientific literature. Lectures: TBD Discussions: TBD Goals: 1. Students will understand how genes and environments interact to produce phenotypes, including biological fitness, and influence which alleles are passed on to the next generation. 2. Mathematical models make our assumptions explicit. We will develop and apply simple mathematical models for studying evolution in natural populations. 3. Students will improve their ability to ask questions and answer them using scientific methods. 4. Students will gain factual knowledge of terms and concepts used to study evolution in natural populations. Instructors and their contact information. TBD Office hours are the best way to get help and feedback. If you have a complicated question, are struggling to understand something, or want to dive deeper, come to office hours of the professor or the GSI. Grade Breakdown Activity (see below for details) Points Discussion section quizzes (5 @ 2 pts.