Subseafloor Biosphere Linked to Hydrothermal Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Larvae from Deep-Sea Hydrothermal Vents Disperse in Surface Waters
BPT06-12 JpGU-AGU Joint Meeting 2017 Larvae from deep-sea hydrothermal vents disperse in surface waters *Takuya Yahagi1, Tomihiko Higuchi1, Shirai Kotaro1, Hiromi Kayama WATANABE2, Anders Warén3 , Shigeaki Kojima1, Yasunori Kano1 1. Atmosphere and Ocean Research Institute, The University of Tokyo, 2. Japan Agency for Marine-Earth Science and Technology, 3. Swedish Museum of Natural History, Stockholm Larval dispersal significantly contributes to the geographic distribution, population dynamics and evolutionary processes of animals endemic to deep-sea hydrothermal vents. Benthic invertebrates with a pelagic larval period can be categorized as lecithotrophic or planktotrophic species. Among vent-animals, the former lecithotrophs generally disperse near the ocean floor while the latter planktotrophs have been considered to disperse in mid-water, above the influence of a hydrothermal plume. However, surprisingly little is known as to the extent that the planktotrophic larvae migrate vertically to shallower waters to take advantages of richer food supplies and strong currents. Here, we first provide converging evidence from the taxonomy, phylogeny, population genetics, physiology and behaviour of the species of Shinkailepadinae (Gastropoda: Neritimorpha) for their vertical migration as long-lived planktotrophic larvae from deep-sea hydrothermal vents to the surface water. Sixteen species were identified from global hydrothermal vent fields and cold methane seeps as the extant members of the subfamily. They generally show wide distribution ranges with their panmictic population structure. The culture experiments of larvae of the vent-endemic Shinkailepas myojinensis strongly suggested that their larvae grow and disperse in the surface water for an extended period of time. The oxygen isotopic analyses of the larval and adult shells of three Shinkailepas species, which is the first attempt for vent-endemic taxa, perfectly supported the vertical migration of larvae as an obligatory part of the species’ life cycles. -
Vertical, Lateral and Temporal Structure in Larval Distributions at Hydrothermal Vents
MARINE ECOLOGY PROGRESS SERIES Vol. 293: 1–16, 2005 Published June 2 Mar Ecol Prog Ser Vertical, lateral and temporal structure in larval distributions at hydrothermal vents L. S. Mullineaux1,*, S. W. Mills1, A. K. Sweetman2, A. H. Beaudreau3, 4 5 A. Metaxas , H. L. Hunt 1Woods Hole Oceanographic Institution, MS 34, Woods Hole, Massachusetts 02543, USA 2Max-Planck-Institut für marine Mikrobiologie, Celsiusstraße 1, 28359 Bremen, Germany 3University of Washington, Box 355020, Seattle, Washington 98195, USA 4Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada 5University of New Brunswick, PO Box 5050, Saint John, New Brunswick E2L 4L5, Canada ABSTRACT: We examined larval abundance patterns near deep-sea hydrothermal vents along the East Pacific Rise to investigate how physical transport processes and larval behavior may interact to influence larval dispersal from, and supply to, vent populations. We characterized vertical and lateral distributions and temporal variation of larvae of vent species using high-volume pumps that recov- ered larvae in good condition (some still alive) and in high numbers (up to 450 individuals sample–1). Moorings supported pumps at heights of 1, 20, and 175 m above the seafloor, and were positioned directly above and at 10s to 100s of meters away from vent communities. Sampling was conducted on 4 cruises between November 1998 and May 2000. Larvae of 22 benthic species, including gastropods, a bivalve, polychaetes, and a crab, were identified unequivocally as vent species, and 15 additional species, or species-groups, comprised larvae of probable vent origin. For most taxa, abundances decreased significantly with increasing height above bottom. When vent sites within the confines of the axial valley were considered, larval abundances were significantly higher on-vent than off, sug- gesting that larvae may be retained within the valley. -
Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2005 Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise Jessica Lynn Wallace College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Wallace, Jessica Lynn, "Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise" (2005). Dissertations, Theses, and Masters Projects. Paper 1539626835. https://dx.doi.org/doi:10.21220/s2-zy51-8j97 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. REPRODUCTIVE ATTRIBUTES OF POLYNOID POLYCHAETES FROM HYDROTHERMAL VENTS ON THE EAST PACIFIC RISE A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Jessica Lynn Wallace 2005 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Jessica L. Wallace Approved by the Committee, August 2005 Dr. Cindy Lee Van Dover, Chair Dr. Paul D. Heideman Dr. Joseph L. Scott To Dad and Ken for inspiring my love of oceanography To Mom and Stephen for their unending love and support TABLE OF CONTENTS Page Acknowledgements v List of Figures vi Abstract vii Introduction 2 Chapter I. -
Geomicrobiological Processes in Extreme Environments: a Review
202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments. -
Prokaryotes Exposed to Elevated Hydrostatic Pressure - Daniel Prieur
EXTREMOPHILES – Vol. III - Piezophily: Prokaryotes Exposed to Elevated Hydrostatic Pressure - Daniel Prieur PIEZOPHILY: PROKARYOTES EXPOSED TO ELEVATED HYDROSTATIC PRESSURE Daniel Prieur Université de Bretagne occidentale, Plouzané, France. Keywords: archea, bacteria, deep biosphere, deep sea, Europa, exobiology, hydrothermal vents, hydrostatic pressure, hyperthermophile, Mars, oil reservoirs, prokaryote. Contents 1. Introduction 2. Deep-Sea Microbiology 2.1. A Brief History 2.2. Deep-Sea Psychrophiles 2.2.1. General Features 2.2.2. Adaptations to Elevated Hydrostatic Pressure 2.3. Deep-Sea Hydrothermal Vents 2.3.1. Deep-Sea Hyperthermophiles 2.3.2. Responses to Hydrostatic Pressure 3. Other Natural Environments Exposed to Hydrostatic Pressure 3.1. Deep Marine Sediments 3.2. Deep Oil Reservoirs 3.3. Deep Rocks and Aquifers 3.4. Sub-Antarctic Lakes 4. Other Worlds 4.1. Mars 4.2. Europa 5. Conclusions Acknowledgements Glossary Bibliography Biographical Sketch SummaryUNESCO – EOLSS All living organisms, and particularly prokaryotes, which colonize the most extreme environments, SAMPLEhave their physiology cont rolledCHAPTERS by a variety of physicochemical parameters whose different values contribute to the definition of biotopes. Hydrostatic pressure is one of the major parameters influencing life, but its importance is limited to only some environments, especially the deep sea. If the deep sea is defined as water layers below one kilometer depth, this amount of water, which is exposed to pressures up to 100 MPa, represents 62% of the volume of the total Earth biosphere. A rather small numbers of investigators have studied the prokaryotes that, alongside invertebrates and vertebrates, inhabit this extreme environment. Deep-sea prokaryotes show different levels of adaptation to elevated hydrostatic pressure, from the barosensitive organisms to the obligate piezophiles. -
Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages. -
Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism
Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism Ryutaro Goto1,2*, Tomoko Okamoto2, Hiroshi Ishikawa3, Yoichi Hamamura4, Makoto Kato2 1 Department of Marine Ecosystem Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan, 2 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan, 3 Uwajima, Ehime, Japan, 4 Kure, Hiroshima, Japan Abstract The Echiura, or spoon worms, are a group of marine worms, most of which live in burrows in soft sediments. This annelid- like animal group was once considered as a separate phylum because of the absence of segmentation, although recent molecular analyses have placed it within the annelids. In this study, we elucidate the interfamily relationships of echiuran worms and their evolutionary pattern of feeding mode and sexual dimorphism, by performing molecular phylogenetic analyses using four genes (18S, 28S, H3, and COI) of representatives of all extant echiuran families. Our results suggest that Echiura is monophyletic and comprises two unexpected groups: [Echiuridae+Urechidae+Thalassematidae] and [Bone- lliidae+Ikedidae]. This grouping agrees with the presence/absence of marked sexual dimorphism involving dwarf males and the paired/non-paired configuration of the gonoducts (genital sacs). Furthermore, the data supports the sister group relationship of Echiuridae and Urechidae. These two families share the character of having anal chaetae rings around the posterior trunk as a synapomorphy. The analyses also suggest that deposit feeding is a basal feeding mode in echiurans and that filter feeding originated once in the common ancestor of Urechidae. Overall, our results contradict the currently accepted order-level classification, especially in that Echiuroinea is polyphyletic, and provide novel insights into the evolution of echiuran worms. -
Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls
Review Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls Angelo F. Bernardino1*, Lisa A. Levin2, Andrew R. Thurber3, Craig R. Smith4 1 Departamento de Oceanografia e Ecologia, Universidade Federal do Espı´rito Santo, Goiabeiras, Vito´ ria, Esp´ı rito Santo, Brazil, 2 Center for Marine Biodiversity and Conservation; Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America,3 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America,4 Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, United States of America communities. Sulfide is toxic to most metazoan taxa [1,2], Abstract: Sediments associated with hydrothermal vent- although some sediment-dwelling taxa have adapted to conditions ing, methane seepage and large organic falls such as of low oxygen and appear capable of tolerating the presence of whale, wood and plant detritus create deep-sea networks sulfide. Due to high local production, metazoans in reducing of soft-sediment habitats fueled, at least in part, by the sediments in the deep sea are often released from the extreme food oxidation of reduced chemicals. Biological studies at limitation prevalent in the background community (e.g. [3]). deep-sea vents, seeps and organic falls have looked at Instead, chemical toxicity may drive infaunal community macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sedi- structure. In this meta-analysis we ask which taxa are common ment macrobenthos in various reducing ecosystems. -
Reproduction of Gastropods from Vents on the East Pacific Rise and the Mid-Atlantic Ridge
JOBNAME: jsr 27#1 2008 PAGE: 1 OUTPUT: Friday March 14 03:55:15 2008 tsp/jsr/159953/27-1-19 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of Shellfish Research, Vol. 27, No. 1, 107–118, 2008. provided by Woods Hole Open Access Server REPRODUCTION OF GASTROPODS FROM VENTS ON THE EAST PACIFIC RISE AND THE MID-ATLANTIC RIDGE PAUL A. TYLER,1* SOPHIE PENDLEBURY,1 SUSAN W. MILLS,2 LAUREN MULLINEAUX,2 KEVIN J. ECKELBARGER,3 MARIA BAKER1 AND CRAIG M. YOUNG4 1National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom; 2Biology Department Woods Hole Oceanographic Institution, Woods Hole Massachusetts 02543; 3Darling Marine Center, University of Maine, 193 Clark’s Cove Road. Walpole, Maine 04573; 4Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon 97420 ABSTRACT The gametogenic biology is described for seven species of gastropod from hydrothermal vents in the East Pacific and from the Mid-Atlantic Ridge. Species of the limpet genus Lepetodrilus (Family Lepetodrilidae) had a maximum unfertilized oocyte size of <90 mm and there was no evidence of reproductive periodicity or spatial variation in reproductive pattern. Individuals showed early maturity with females undergoing gametogenesis at less than one third maximum body size. There was a power relationship between shell length and fecundity, with a maximum of ;1,800 oocytes being found in one individual, although individual fecundity was usually <1,000. Such an egg size might be indicative of planktotrophic larval development, but there was never any indication of shell growth in larvae from species in this genus. -
Download Full Article 2.4MB .Pdf File
Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries. -
The Deep Biosphere in Terrestrial Sediments in the Chesapeake Bay Area, Virginia, USA
ORIGINAL RESEARCH ARTICLE published: 19 July 2011 doi: 10.3389/fmicb.2011.00156 The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA Anja Breuker1,2, Gerrit Köweker1, Anna Blazejak1† and Axel Schippers1,2* 1 Geomicrobiology, Federal Institute for Geosciences and Natural Resources, Hannover, Germany 2 Faculty of Natural Sciences, Leibniz Universität Hannover, Hannover, Germany Edited by: For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya Andreas Teske, University of North in deep terrestrial sediments are provided using multiple methods (total cell counting, Carolina at Chapel Hill, USA quantitative real-time PCR, Q-PCR and catalyzed reporter deposition–fluorescence in situ Reviewed by: ∼ Marco J. L. Coolen, Woods Hole hybridization, CARD–FISH). The oligotrophic (organic carbon content of 0.2%) deep ter- Oceanographic Institution, USA restrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and Karine Alain, Centre National de la sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling Recherche Scientifique, France was checked using fluorescent microspheres. Total cell counts decreased from 109 to *Correspondence: 106 cells/g dry weight within the uppermost 20 m, and did not further decrease with depth Axel Schippers, Bundesanstalt für Geowissenschaften und Rohstoffe, below.Within the top 7 m, a significant proportion of the total cell counts could be detected Stilleweg 2, 30655 Hannover, with CARD–FISH.The CARD–FISH numbers for Bacteria were about an order of magnitude Germany. higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by e-mail: [email protected] Q-PCR. -
Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.