Muramatsu's Method Aryabhata (499 AD) Brahmagupta (640 AD

Total Page:16

File Type:pdf, Size:1020Kb

Muramatsu's Method Aryabhata (499 AD) Brahmagupta (640 AD π in Other Eastern Countries Japan India In the Edo Period of Japan (1603 to 1868), 3.16 was used for π. But Aryabhata (499 AD) as people recognized that this value was not accurate, different values for π were calculated. Wasan scholars such as Muramatsu Shigekiyo, Seki Takakazu, Kamata Toshikiyo, Takebe Katahiro, and Matsunaga Aryabhata usedp the perimeter of a 384-sided poly- Yoshisuke all made calculations of π, and accomplished results gon to find π ≈ 9:8684. Later Aryabhata would comparable to their European mathematician counterparts. publish an “approximation” for his square root value, 3.1416. Note that his approximation is Muramatsu’s Method more accurate than his official value! Shigekiyo Muramatsu published Sanso in 1663. Muramatsu served the Asano family and possibly had a math insti- Brahmagupta (640 AD) tute in Edo (present day Tokyo). In his Brahmagupta used a pattern of inscribed polygons that work, Sanso, Muramatsu arranged prob- increased in the number of sides to calculate the perime- lems published earlier in Japanese math- ter of a circle.p Using these data points, he came to believe ematics texts without answers. Mura- that π = 10: matsu classified these problems into dif- ferent levels according to how difficult he thought they’d be to learn. Asano Crest It is in this book that he also showed the calculation of π from the regular inscribed polygon of 32,768 sides. He correctly obtained the Ramanujan (1887-1920) value 3.1415926. Thus, this book was the first to contain a mathematical calculation of π in Japan. 1 Srinivasa Ramanujan found several formulas for π. His Muramatsu’s method was used in many circles. However, mostp work greatly sped up algorithms for finding π. Further, it academics of the country still used the “root of perfection” 10 as the is still the basis for algorithms employed for computations favored approximation for π until 1800. today..
Recommended publications
  • Notices of the American Mathematical Society June/July 2006
    of the American Mathematical Society ... (I) , Ate._~ f.!.o~~Gffi·u.­ .4-e.e..~ ~~~- •i :/?I:(; $~/9/3, Honoring J ~ rt)d ~cLra-4/,:e~ o-n. /'~7 ~ ~<A at a Gift from fL ~ /i: $~ "'7/<J/3. .} -<.<>-a.-<> ~e.Lz?-1~ CL n.y.L;; ro'T>< 0 -<>-<~:4z_ I Kumbakonam li .d. ~ ~~d a. v#a.d--??">ovt<.·c.-6 ~~/f. t:JU- Lo,.,do-,......) ~a page 640 ~!! ?7?.-L ..(; ~7 Ca.-uM /3~~-d~ .Y~~:Li: ~·e.-l a:.--nd '?1.-d- p ~ .di.,r--·c/~ C(c£~r~~u . J~~~aq_ f< -e-.-.ol ~ ~ ~/IX~ ~ /~~ 4)r!'a.. /:~~c~ •.7~ The Millennium Grand Challenge .(/.) a..Lu.O<"'? ...0..0~ e--ne_.o.AA/T..C<.r~- /;;; '7?'E.G .£.rA-CLL~ ~ ·d ~ in Mathematics C>n.A..U-a.A-d ~~. J /"-L .h. ?n.~ ~?(!.,£ ~ ~ &..ct~ /U~ page 652 -~~r a-u..~~r/a.......<>l/.k> 0?-t- ~at o ~~ &~ -~·e.JL d ~~ o(!'/UJD/ J;I'J~~Lcr~~ 0 ??u£~ ifJ>JC.Qol J ~ ~ ~ -0-H·d~-<.() d Ld.orn.J,k, -F-'1-. ~- a-o a.rd· J-c~.<-r:~ rn-u-{-r·~ ~'rrx ~~/ ~-?naae ~~ a...-'XS.otA----o-n.<l C</.J.d:i. ~~~ ~cL.va- 7 ??.L<A) ~ - Ja/d ~~ ./1---J- d-.. ~if~ ~0:- ~oj'~ t1fd~u: - l + ~ _,. :~ _,. .~., -~- .. =- ~ ~ d.u. 7 ~'d . H J&."dIJ';;;::. cL. r ~·.d a..L- 0.-n(U. jz-o-cn-...l- o~- 4; ~ .«:... ~....£.~.:: a/.l~!T cLc.·£o.-4- ~ d.v. /-)-c~ a;- ~'>'T/JH'..,...~ ~ d~~ ~u ~­ ~ a..t-4. l& foLk~ '{j ~~- e4 -7'~ -£T JZ~~c~ d.,_ .&~ o-n ~ -d YjtA:o ·C.LU~ ~or /)-<..,.,r &-.
    [Show full text]
  • Indian Mathematics
    Indian Mathemtics V. S. Varadarajan University of California, Los Angeles, CA, USA UCLA, March 3-5, 2008 Abstract In these two lectures I shall talk about some Indian mathe- maticians and their work. I have chosen two examples: one from the 7th century, Brahmagupta, and the other, Ra- manujan, from the 20th century. Both of these are very fascinating figures, and their histories illustrate various as- pects of mathematics in ancient and modern times. In a very real sense their works are still relevant to the mathe- matics of today. Some great ancient Indian figures of Science Varahamihira (505–587) Brahmagupta (598-670) Bhaskara II (1114–1185) The modern era Ramanujan, S (1887–1920) Raman, C. V (1888–1970) Mahalanobis, P. C (1893–1972) Harish-Chandra (1923–1983) Bhaskara represents the peak of mathematical and astro- nomical knowledge in the 12th century. He reached an un- derstanding of calculus, astronomy, the number systems, and solving equations, which were not to be achieved any- where else in the world for several centuries...(Wikipedia). Indian science languished after that, the British colonial occupation did not help, but in the 19th century there was a renaissance of arts and sciences, and Indian Science even- tually reached a level comparable to western science. BRAHMAGUPTA (598–670c) Some quotations of Brahmagupta As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse the fame of others in assemblies of the people if he proposes algebraic problems, and still more, if he solves them. Quoted in F Cajori, A History of Mathematics A person who can, within a year, solve x2 92y2 =1, is a mathematician.
    [Show full text]
  • Occasion of Receiving the Seki-Takakazu Prize
    特集:日本数学会関孝和賞受賞 On the occasion of receiving the Seki-Takakazu Prize Jean-Pierre Bourguignon, the director of IHÉS A brief introduction to the Institut des Hautes Études Scientifiques The Institut des Hautes Études Scientifiques (IHÉS) was founded in 1958 by Léon MOTCHANE, an industrialist with a passion for mathematics, whose ambition was to create a research centre in Europe, counterpart to the renowned Institute for Advanced Study (IAS), Princeton, United States. IHÉS became a foundation acknowledged in the public interest in 1981. Like its model, IHÉS has a small number of Permanent Professors (5 presently), and hosts every year some 250 visitors coming from all around the world. A Scientific Council consisting of the Director, the Permanent Professors, the Léon Motchane professor and an equal number of external members is in charge of defining the scientific strategy of the Institute. The foundation is managed by an 18 member international Board of Directors selected for their expertise in science or in management. The French Minister of Research or their representative and the General Director of CNRS are members of the Board. IHÉS accounts are audited and certified by an international accountancy firm, Deloitte, Touche & Tomatsu. Its resources come from many different sources: half of its budget is provided by a contract with the French government, but institutions from some 10 countries, companies, foundations provide the other half, together with the income from the endowment of the Institute. Some 50 years after its creation, the high quality of its Permanent Professors and of its selected visiting researchers has established IHÉS as a research institute of world stature.
    [Show full text]
  • After Ramanujan Left Us– a Stock-Taking Exercise S
    Ref: after-ramanujanls.tex Ver. Ref.: : 20200426a After Ramanujan left us– a stock-taking exercise S. Parthasarathy [email protected] 1 Remembering a giant This article is a sequel to my article on Ramanujan [14]. April 2020 will mark the death centenary of the legendary Indian mathe- matician – Srinivasa Ramanujan (22 December 1887 – 26 April 1920). There will be celebrations of course, but one way to honour Ramanujan would be to do some introspection and stock-taking. This is a short survey of notable achievements and contributions to mathematics by Indian institutions and by Indian mathematicians (born in India) and in the last hundred years since Ramanujan left us. It would be highly unfair to compare the achievements of an individual, Ramanujan, during his short life span (32 years), with the achievements of an entire nation over a century. We should also consider the context in which Ramanujan lived, and the most unfavourable and discouraging situation in which he grew up. We will still attempt a stock-taking, to record how far we have moved after Ramanujan left us. Note : The table below should not be used to compare the relative impor- tance or significance of the contributions listed there. It is impossible to list out the entire galaxy of mathematicians for a whole century. The table below may seem incomplete and may contain some inad- vertant errors. If you notice any major lacunae or omissions, or if you have any suggestions, please let me know at [email protected]. 1 April 1920 – April 2020 Year Name/instit. Topic Recognition 1 1949 Dattatreya Kaprekar constant, Ramchandra Kaprekar number Kaprekar [1] [2] 2 1968 P.C.
    [Show full text]
  • Historical Development of the Chinese Remainder Theorem
    Historical Development of the Chinese Remainder Theorem SHEN KANGSHENG Communicated by C. TRUESDELL 1. Source of the Problem Congruences of first degree were necessary to calculate calendars in ancient China as early as the 2 na century B.C. Subsequently, in making the Jingchu [a] calendar (237,A.D.), the astronomers defined shangyuan [b] 1 as the starting point of the calendar. If the Winter Solstice of a certain year occurred rl days after shangyuan and r2 days after the new moon, then that year was N years after shangyuan; hence arose the system of congruences aN ~ rl (mod 60) ~ r2 (mod b), . ~ ' where a is the number of days in a tropical year and b the number of days in a lunar month. 2. Sun Zi suanjing [c] (Master Sun's Mathematical Manual) Sun Zi suanjing (Problem 26' Volume 3) reads: "There are certain things whose number is unknown. A number is repeatedly divided by 3, the remainder is 2; divided by 5, the remainder is 3; and by 7, the remainder is 2. What will the num- ber be ?" The problem can be expressed as x --= 2 (mod 3) ~ 3 (mod 5) ~- 2 (rood 7). SUN ZI solved the problem as we do, giving x ~ 140 + 63 -k 30 ~=- 233 ~ 23 (rood 105). 1 Shangyuan is a supposed moment that occurred simultaneously with the midnight of jiazi [v] (the first day of the 60 day cycle), the Winter Solstice and the new moon. 286 SHEN KANGSHENG In speaking of the algorithm yielding these addends in the solution he continued: "In general, for G1 ~ 0(mod 5) ~ 0 (mod 7) = 1 (rood 3), take G1 = 70, G2 ~ 0(rood 3) ~ 0(mod 7) ~ 1 (mod 5), take G2 = 21, G3 ~ 0 (mod 3) ~ 0 (mod 5) ~ (1 rood 7), take G3 = 15.
    [Show full text]
  • Srinivasa Ramanujan Iyengar
    Srinivasa Ramanujan Iyengar Srinivasa Ramanujan Iyengar (Srinivāsa Rāmānujan Iyengār)() (December 22, 1887 – April 26, 1920) was an Indian mathematician widely regarded as one of the greatest mathematical minds in recent history. With almost no formal training in mathematics, he made profound contributions in the areas of analysis and number theory. A child prodigy, Ramanujan was largely self-taught and compiled nearly 3,884 theorems during his short lifetime. Although a small number of these theorems were actually false, most of his statements have now been proven to be correct. His deep intuition and uncanny algebraic manipulative ability enabled him to state highly original and unconventional results that have inspired a vast amount of research; however, some of his discoveries have been slow to enter the mathematical mainstream. Recently his formulae have begun to be applied in the field of crystallography and physics. The Ramanujan Journal was launched specifically to publish work "in areas of mathematics influenced by Ramanujan". With the encouragement of friends, he wrote to mathematicians in Cambridge seeking validation of his work. Twice he wrote with no response; on the third try, he found the English Mathematician G. H. Hardy. Ramanujan's arrival at Cambridge (March 1914) was the beginning of a very successful five-year collaboration with Hardy. One remarkable result of the Hardy-Ramanujan collaboration was a formula for the number p(n) exp(π 2n /3) of partitions of a number n: pn()∼ asn→∞.A partition of a positive integer n is just an expression for n as a sum of 43n positive integers, regardless of order.
    [Show full text]
  • Secondary Indian Culture and Heritage
    Culture: An Introduction MODULE - I Understanding Culture Notes 1 CULTURE: AN INTRODUCTION he English word ‘Culture’ is derived from the Latin term ‘cult or cultus’ meaning tilling, or cultivating or refining and worship. In sum it means cultivating and refining Ta thing to such an extent that its end product evokes our admiration and respect. This is practically the same as ‘Sanskriti’ of the Sanskrit language. The term ‘Sanskriti’ has been derived from the root ‘Kri (to do) of Sanskrit language. Three words came from this root ‘Kri; prakriti’ (basic matter or condition), ‘Sanskriti’ (refined matter or condition) and ‘vikriti’ (modified or decayed matter or condition) when ‘prakriti’ or a raw material is refined it becomes ‘Sanskriti’ and when broken or damaged it becomes ‘vikriti’. OBJECTIVES After studying this lesson you will be able to: understand the concept and meaning of culture; establish the relationship between culture and civilization; Establish the link between culture and heritage; discuss the role and impact of culture in human life. 1.1 CONCEPT OF CULTURE Culture is a way of life. The food you eat, the clothes you wear, the language you speak in and the God you worship all are aspects of culture. In very simple terms, we can say that culture is the embodiment of the way in which we think and do things. It is also the things Indian Culture and Heritage Secondary Course 1 MODULE - I Culture: An Introduction Understanding Culture that we have inherited as members of society. All the achievements of human beings as members of social groups can be called culture.
    [Show full text]
  • ON MATHEMATICAL TERMINOLOGY: CULTURE CROSSING in NINETEENTH-CENTURY CHINA the History of Mathematical Terminologies in Nineteent
    ANDREA BRÉARD ON MATHEMATICAL TERMINOLOGY: CULTURE CROSSING IN NINETEENTH-CENTURY CHINA INTRODUCTORY REMARKS: ON MATHEMATICAL SYMBOLISM The history of mathematical terminologies in nineteenth-century China is a multi-layered issue. Their days of popularity and eventual decline are bound up with the complexities of the disputes between the Qian-Jia School who were concerned with textual criticism and the revival of ancient native Chinese mathematical texts, and those scholars that were interested in mathematical studies per se1 (and which we will discuss in a more detailed study elsewhere). The purpose of the following article is to portray the ‘introduction’ of Western mathematical notations into the Chinese consciousness of the late nineteenth century as a major signifying event, both (i) in its own right within the context of the translation of mathematical writ- ings from the West; and (ii) with respect to the way in which the tradi- tional mathematical symbolic system was interpreted by Qing commentators familiar with Western symbolical algebra. Although one might assume to find parallel movements in the commentatorial and translatory practices of one and the same person, nineteenth-cen- tury mathematical activities will be shown to be clearly compartmen- talized. In fact, for the period under consideration here, it would be more appropriate to speak of the ‘reintroduction’ of Western mathematical notations. Already in 1712 the French Jesuit Jean-François Foucquet S. J. (1665–1741) had tried to introduce algebraic symbols in his Aer- rebala xinfa ̅ (New method of algebra). This treatise, which was written for the Kangxi emperor, introduced symbolical 1 In particular, the ‘three friends discussing astronomy and mathematics’ (Tan tian san you dž ) Wang Lai (1768–1813), Li Rui (1763–1820) and Jiao Xun nj (1765–1814).
    [Show full text]
  • Mathematical Philosophy of Takebe Katahiro
    数理解析研究所講究録 第 1831 巻 2013 年 57-65 57 Mathematical Philosophy of Takebe Katahiro Morimoto, Mitsuo 1 Seki Kowa Institute of Mathematics, Yokkaichi University Professor Emeritus, Sophia University Abstract Takebe Katahiro (1664-1739) was a Japanese mathematician, who exposed his philosophy on Mathematics itself and on Mathematical Research. In the Taisei Sankei (1711), he wrote Chapter 4 entitled the “Three Essentials” describing four classes of mathematical problems, the status of parameters in a problem and the classffica- tion of numbers. Note that his thought was based on Chinese traditional philosophy and on the achievement of Japanese mathematics in the early Edo period. Note also he recognized some numbers are not algebraic. In the Tetsujutsu Sankei (1722) he recommended the inductive heuristic method in mathe- matical research and recognized a mathematical research would be successful once the character of a mathematical object and that of a mathematician were accommodated to each other, com- paring his method of calculation of the circular $co$ efficient with that of his master Seki Takakazu and citing his own discovery of the infinite power series expansion formula of an inverse trigono- metric function. The Meiji Restoration (1868) was a tuming point in the history of Japan from the feudalism to the constitutional monarchism. The “ordinance on school system” (1872) of the new gov- emment defined mathematics in Japanese schools to be of “European style” thus abandoning the Japanese traditional mathematics. This policy was proved to be efficient at least for a half century and Takebe’s philosophy on Mathematics was buried in the complete oblivion. 1 Takebe Katahiro Takebe Katahiro 建部賢弘 (1664-1739) was one of great mathematicians in the Edo Period (1603- 1868) of Japan.
    [Show full text]
  • A Review of the History of Japanese Mathematics
    Revue d’histoire des math´ematiques, 7 (2001), p. 137–155. A REVIEW OF THE HISTORY OF JAPANESE MATHEMATICS Tsukane OGAWA (*) ABSTRACT. — This review aims to introduce Japanese mathematics to a non- expert and a non-Japanese readership. It briefly characterizes mathematics in Japan, surveys its history, as it developed over the last century, and provides a large (if not exhaustive) bibliography of works in the primary European languages. RESUM´ E´.—APERC¸ U SUR L’HISTOIRE DES MATHEMATIQUES´ JAPONAISES. Le but de cette note est de pr´esenter les math´ematiques japonaises `a un public non sp´ecialis´e dans le domaine. Les math´ematiques au Japon sont bri`evement caract´eris´ees, leur histoire, telle qu’elle s’est d´evelopp´ee durant le dernier si`ecle, est pass´ee en revue et finalement une importante bibliographie dans les principales langues europ´eennes est propos´ee, mˆeme si elle ne peut pr´etendre `a l’exhaustivit´e. 1. INTRODUCTION – NOT ONLY SANGAKU The custom of hanging sangaku ( ), wooden plates on which are inscribed mathematical problems and their answers, under the roofs of shrines in the Edo period (1603–1867) in Japan is familiar enough to have been illustrated and described in Scientific American, May 1998 [Rothman 1998]. It is, however, obvious that sangaku is not all there is to Japanese mathematics. It would be fallacious to consider that the essence of Japanese mathematics reveals itself in sangaku. As a beginning, this essay attempts briefly to introduce Japanese mathematics to a non-Japanese readership. It will answer the following questions : 1) What kind of mathematical disciplines developed in Japan ? 2) How were mathematical expressions written in vertical typesetting ? 3) How did the Japanese calculate ? 4) Is it true that, lacking proofs, Japanese mathematics was not logical ? (*) Texte re¸cu le 7 mars 1999, r´evis´e le 11 novembre 2000.
    [Show full text]
  • Ancient India and Mathematics Sundar Sarukkai
    11 Ancient India and Mathematics Sundar Sarukkai ne way to approach this very broad topic is to list There are some things in all that the ancient Indian mathematicians did – common between Indian and Oand they did do an enormous amount of Greek Mathematics but there Mathematics: arithmetic (including the creation of decimal are also significant differences – place notation, the invention of zero), trigonometry (the not just in style but also in the detailed tables of sines), algebra (binomial theorem, larger world view (which influences, for solving quadratic equations), astronomy and astrology example, the completely different ways of understanding (detailed numerical calculations). Later Indian the nature of numbers in the Greek and the Indian Mathematics, the Kerala school, discovered the notions of traditions). This difference has led many writers to claim infinite series, limits and analysis which are the precursors that Indians (and Chinese among others) did not possess to calculus. the notions of Science and Mathematics. The first, and enduring response, to the question of Science and Since these details are easily available I am not going to list Mathematics in ancient non-Western civilizations is one of them here. What is of interest to me is to understand in skepticism. Did the Indians and Chinese really have Science what sense these activities were 'mathematical'. By doing and Mathematics as we call it now? This skepticism has so, I am also responding to the charge that these people been held over centuries and by the most prominent were not doing Mathematics but something else. This is a thinkers of the west (and is in fact so widespread as to charge similar to that addressed to Science in ancient India include claims that Indians did not 'have' philosophy, logic – the claim here is that what was being done in metallurgy, and even religion).
    [Show full text]
  • Editors Seek the Blessings of Mahasaraswathi
    OM GAM GANAPATHAYE NAMAH I MAHASARASWATHYAI NAMAH Editors seek the blessings of MahaSaraswathi Kamala Shankar (Editor-in-Chief) Laxmikant Joshi Chitra Padmanabhan Madhu Ramesh Padma Chari Arjun I Shankar Srikali Varanasi Haranath Gnana Varsha Narasimhan II Thanks to the Authors Adarsh Ravikumar Omsri Bharat Akshay Ravikumar Prerana Gundu Ashwin Mohan Priyanka Saha Anand Kanakam Pranav Raja Arvind Chari Pratap Prasad Aravind Rajagopalan Pavan Kumar Jonnalagadda Ashneel K Reddy Rohit Ramachandran Chandrashekhar Suresh Rohan Jonnalagadda Divya Lambah Samika S Kikkeri Divya Santhanam Shreesha Suresha Dr. Dharwar Achar Srinivasan Venkatachari Girish Kowligi Srinivas Pyda Gokul Kowligi Sahana Kribakaran Gopi Krishna Sruti Bharat Guruganesh Kotta Sumedh Goutam Vedanthi Harsha Koneru Srinath Nandakumar Hamsa Ramesha Sanjana Srinivas HCCC Y&E Balajyothi class S Srinivasan Kapil Gururangan Saurabh Karmarkar Karthik Gururangan Sneha Koneru Komal Sharma Sadhika Malladi Katyayini Satya Srivishnu Goutam Vedanthi Kaushik Amancherla Saransh Gupta Medha Raman Varsha Narasimhan Mahadeva Iyer Vaishnavi Jonnalagadda M L Swamy Vyleen Maheshwari Reddy Mahith Amancherla Varun Mahadevan Nikky Cherukuthota Vaishnavi Kashyap Narasimham Garudadri III Contents Forword VI Preface VIII Chairman’s Message X President’s Message XI Significance of Maha Kumbhabhishekam XII Acharya Bharadwaja 1 Acharya Kapil 3 Adi Shankara 6 Aryabhatta 9 Bhadrachala Ramadas 11 Bhaskaracharya 13 Bheeshma 15 Brahmagupta Bhillamalacarya 17 Chanakya 19 Charaka 21 Dhruva 25 Draupadi 27 Gargi
    [Show full text]