Linear and Algebraic Structures in Function Sequence Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functions of a Complex Variable II Math 562, Spring 2020
Functions of a Complex Variable II Math 562, Spring 2020 Jens Lorenz April 27, 2020 Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 Contents 1 Notations 5 2 The Schwarz Lemma and Aut(D) 6 2.1 Schwarz Lemma . .6 2.2 Biholomorphic Maps and Automorphisms . .7 2.3 The Automorphism Group of D ...................7 2.4 The Schwarz{Pick Lemma . .9 2.5 Remarks . 11 3 Linear Fractional Transformations and the Riemann Sphere 12 3.1 The Riemann Sphere . 12 3.2 Linear Fractional Transformations . 14 3.3 The Automorphisms of the Riemann Sphere . 16 3.4 A Remarkable Geometric Property of Linear Fractional Trans- formations . 17 3.4.1 Analytical Description of Circles . 18 3.4.2 Circles under Reciprocation . 18 3.4.3 Straight Lines under Reciprocation . 20 3.5 Example: The Cayley Transform in the Complex Plane . 21 3.6 The Cayley Transform of a Matrix . 22 4 The Riemann Mapping Theorem 24 4.1 Statement and Overview of Proof . 24 4.2 The Theorem of Arzela{Ascoli . 26 4.3 Montel's Theorem . 29 4.4 Auxiliary Results on Logarithms and Square Roots . 32 4.5 Construction of a Map in ..................... 33 4.6 A Bound of f 0(P ) for all Ff .................. 35 4.7 Application ofj thej Theorems2 of F Montel and Hurwitz . 36 4.8 Proof That f is Onto . 37 1 4.9 Examples of Biholomorphic Mappings . 39 5 An Introduction to Schwarz–Christoffel Formulas 41 5.1 General Power Functions . 41 5.2 An Example of a Schwarz–Christoffel Map . -
Power Series, Analyticity and Elementary Functions
MATH 566 LECTURE NOTES 2: POWER SERIES, ANALYTICITY AND ELEMENTARY FUNCTIONS TSOGTGEREL GANTUMUR 1. Uniform and normal convergences For a set Ω ⊆ C and a function f :Ω ! C, we define the uniform norm kfkΩ = sup jfj: Ω We say that a sequence ffkg of functions fk :Ω ! C converges uniformly in Ω to f, if kfk − fkΩ ! 0 as k ! 1. Recall that this is equivalent to the sequence ffkg being a Cauchy sequence, i.e., kfk − f`kΩ ! 0 as k; ` ! 1. P P Theorem 1 (Weierstrass M-test). If gn :Ω ! C and n kgnkΩ < 1, then the series n gn converges uniformly in Ω. P Proof. With fk = n≤k gn, we have for ` < k X X X kfk − f`kΩ = k gnkΩ ≤ kgnkΩ ≤ kgnkΩ; `<n≤k `<n≤k n>` which tends to 0 when ` ! 1. So ffkg is a Cauchy sequence, hence converges. P n ¯ Example 2. The geometric series n z converges uniformly in Dr (and also in Dr) as long n as r < 1. To be pedantic, with r < 1 and with functions gn : Dr ! C given by gn(z) = z , P the series n gn converges uniformly in Dr. However, the convergence is not uniform in the P n open unit disk D1, and n z does not converge if jzj ≥ 1. Convergence behaviour of frequently occurring sequences in complex analysis can be cap- tured conveniently by the notion of locally uniform convergence. Recall that U ⊆ Ω is a neighbourhood of z 2 Ω in Ω if there is an open set V ⊆ C such that z 2 V \ Ω ⊆ U. -
Domains of Convergence in Infinite Dimensional Holomorphy
Domains of convergence in infinite dimensional holomorphy Von der Fakult¨at f¨urMathematik und Naturwissenschaften der Carl von Ossietzky Universit¨atOldenburg zur Erlangung des Grades und Titels eines Doktors der Naturwissenschaften (Dr. rer. nat.) angenommene Dissertation von Christopher Prengel geboren am 28.10.1975 in Hannover Gutachter: apl. Prof. Dr. A. Defant Zweitgutachter: Prof. Dr. P. Pflug Tag der Disputation: 26.10.2005 Abstract For certain subsets F(R) of holomorphic functions on a Reinhardt domain m R in a Banach sequence space X, mainly for H∞(R), P (X) and P(X), we give precise descriptions of the domain of convergence dom F(R), i.e. the set of all points of R where the monomial expansion X ∂αf(0) zα α! (N) α∈N0 of every function f ∈ F(R) is (unconditionally) convergent. The results are obtained by an interplay of complex analysis and local Banach space theory, improving work of Ryan and Lempert about monomial expan- sions of holomorphic functions on `1 and using methods from the theory of multidimensional Bohr radii. The problem of conditional convergence is solved for polynomials. It is closely connected with bases for full and symmetric tensor products and convergence preserving permutations. Zusammenfassung F¨urgewisse Teilmengen F(R) holomorpher Funktionen auf einem Reinhardt- m gebiet R in einem Banachfolgenraum X, vor allem f¨ur H∞(R), P (X) und P(X), geben wir eine genaue Beschreibung des Konvergenzbereichs dom F(R), d.h. der Menge aller Punkte aus R, in denen die Monomial- entwicklung X ∂αf(0) zα α! (N) α∈N0 einer jeden Funktion f ∈ F(R) (unbedingt) konvergiert. -
An Introduction to Functional Analysis
Appalachian State University Department of Mathematics Ralph Chikhany Introduction to Functional Analysis c 2015 A Directed Research Paper in Partial Fulfillment of the Requirements for the Degree of Master of Arts May 2015 Approved: Dr William J Cook Member Dr William C Bauldry Member Contents Introduction 1 1 Metric Spaces 3 1.1 Definition and Examples . .3 1.2 Underlying Topology . .6 1.3 Convergence and Continuity . .9 1.4 Completeness and Completion . 11 1.5 Compactness . 15 2 Banach Spaces 18 2.1 Normed Vector Spaces . 18 2.1.1 Vector Spaces . 18 2.1.2 Normed Spaces . 19 2.1.3 Bounded Linear Operators . 22 2.2 Banach Spaces . 24 2.2.1 Introduction to Differential Equations in Banach Spaces . 25 2.3 Linear Functionals and Duality . 28 3 Hilbert Spaces 31 3.1 Inner Product Spaces and Orthogonality . 31 3.2 Hilbert Spaces . 35 3.3 Orthonormal Sequences and Bases . 38 3.4 Representation Theorems . 41 3.5 Special Operators . 44 3.6 Weak-Weak∗ Topologies and Convergence . 48 Bibliography 51 Introduction Functional Analysis was founded at the beginning of the 20th century to provide a general abstract domain for some problems, namely from physics, where the issue was finding functions verifying certain properties. With this incentive in mind, functional analysis can be perceived as the study of function spaces. To place this field in relation to differential and integral calculus, we can classify the study of functions in three levels, from the most elementary to the abstract: The first level consists of studying properties of individual functions, namely their domain, extremas, concavity, asymptotes.. -
Explorations in Harmonic Analysis with Applications to Complex Function Theory and the Heisenberg Group
Explorations in Harmonic Analysis with Applications to Complex Function Theory and the Heisenberg Group by Steven G. Krantz with the assistance of Lina Lee August 16, 2007 To the memory of Alberto P. Cald´eron. Table of Contents Preface v 1 Ontology and History of Real Analysis 1 1.1 DeepBackgroundinReal AnalyticFunctions. 2 1.2 The Idea of Fourier Expansions . 4 1.3 Differences of the Real Analytic Theory and the Fourier Theory 6 1.4 ModernDevelopments . .. ... .. .. .. .. ... .. .. 7 1.5 WaveletsandBeyond.. .. ... .. .. .. .. ... .. .. 8 1.6 HistoryandGenesisofFourierSeries . 9 1.6.1 DerivationoftheHeatEquation. 12 2 Advanced Ideas: The Hilbert Transform 17 2.1 TheNotionoftheHilbertTransform . 18 2.1.1 TheGutsoftheHilbertTransform . 20 2.1.2 The Laplace Equation and Singular integrals on RN . 22 2.1.3 Boundedness of the Hilbert Transform . 24 2.1.4 Lp Boundedness of the Hilbert Transform . 32 2.2 TheModifiedHilbertTransform . 33 3 Essentials of the Fourier Transform 41 3.1 Essential Properties of the Fourier Transform . 42 3.2 InvarianceandSymmetryProperties . 44 3.3 Convolution and Fourier Inversion . 50 3.4 QuadraticIntegralsandPlancherel . 58 3.5 SobolevSpaceBasics . 61 i ii 4 Fourier Multipliers 71 4.1 BasicsofFractionalIntegrals. 72 4.2 The Concept of Singular Integrals . 74 4.3 Prolegomena to Pseudodifferential Operators . 77 5 Fractional and Singular Integrals 79 5.1 Fractional and Singular Integrals Together . 80 5.2 FractionalIntegrals . 82 5.3 Background to Singular Integrals . 85 5.4 MoreonIntegralOperators . 93 6 Several Complex Variables 95 6.1 Plurisubharmonic Functions . 96 6.2 Fundamentals of Holomorphic Functions . 103 6.3 NotionsofConvexity . .106 6.3.1 The Analytic Definition of Convexity . -
Lecture Notes on Several Complex Variables
Lecture notes on several complex variables Harold P. Boas Draft of December 3, 2013 Contents 1 Introduction1 1.1 Power series.....................................2 1.2 Integral representations...............................3 1.3 Partial differential equations............................3 1.4 Geometry......................................4 2 Power series6 2.1 Domain of convergence...............................6 2.2 Characterization of domains of convergence....................7 2.3 Elementary properties of holomorphic functions.................. 11 2.4 The Hartogs phenomenon.............................. 12 2.5 Natural boundaries................................. 14 2.6 Summary: domains of convergence........................ 22 2.7 Separate holomorphicity implies joint holomorphicity............... 23 3 Holomorphic mappings 27 3.1 Fatou–Bieberbach domains............................. 27 3.1.1 Example.................................. 28 3.1.2 Theorem.................................. 30 3.2 Inequivalence of the ball and the bidisc...................... 31 3.3 Injectivity and the Jacobian............................. 32 3.4 The Jacobian conjecture.............................. 35 4 Convexity 37 4.1 Real convexity.................................... 37 4.2 Convexity with respect to a class of functions................... 38 4.2.1 Polynomial convexity............................ 39 4.2.2 Linear and rational convexity........................ 44 4.2.3 Holomorphic convexity........................... 47 4.2.4 Pseudoconvexity.............................