The Blue Brain Technology Using Wetware Technology and Fuzzy Logic

Total Page:16

File Type:pdf, Size:1020Kb

The Blue Brain Technology Using Wetware Technology and Fuzzy Logic Remya Vinayakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 61-68 The Blue Brain Technology Using Wetware Technology and Fuzzy Logic Remya Vinayakumar Mtech Computer Science And Engineering Department, Sahrdaya College Of Engineering And Technology Asst.Prof. Deepthi Varghese Sahrdaya College Of Engineering And Technology Prof. Vince Paul HOD Computer Science And Engineering Department,Sahrdaya College Of Engineering And Technology Calicut University Malappuram(district), Calicut,Kerala-673635,India. Abstract— " Blue brain " is the name of the world's first Blue brain in the first artificial brain to be developed. The virtual brain. It is a machine that can function as technology that works behind the blue brain is called the human brain.The Blue Brain Project began in July 2005 blue brain technology. The blue brain is created using the as a collaboration between Professor Henry Markram artificial neural network . On 1 July 2005, the Brain Mind from the Brain Mind Institute at the EPFL (Ecole Institute (BMI, at the Ecole Polytechnique Fidrale de Polytechnique Fdrale de Lausanne) and IBM Lausanne) and IBM (International Business Machines) (International Business Machines), aimed at modelling launched the Blue Brain Project. The aims of this ambitious the neocortical column. Today scientists are in research initiative are to simulate the brains of mammals with a high to create an artificial brain that can think, response, level of biological accuracy and, ultimately, to study the take decision, and keep anything in memory. With the steps involved in the emergence of biological intelligence. advancement in technology, human, the ultimate source The Blue Brain Project plans to reverse engineer the human of information and discovery should also be preserved. brain as a supercomputer simulation. It is hoped that a rat In other words, human is does not live for thousands of brain neocortical simulation ( 21 million neurons) will be years but the information in his mind could be saved achieved by the end of 2014. A full human brain simulation and used for several thousands of years. The technology (86 billion neurons) should be possible by 2023 provided helpful in this activity is Blue Brain.The main aim is to sufficient funding is received. Researchers want to use this upload human brain into machine.It can be used for the technology to develop new therapies for the brain diseases development of the human society. and also new computer technologies. The concept of artificial neural network, fuzzy logic and the wetware Keywords—blue brain, artificial neurons, wetware, technology is being used in the creation of the blue brain. fuzzy logic, perceptron, backpropagation II. ARTIFICIAL NEURAL NETWORK I. INTRODUCTION Artificial neural network is an extremely simplified The ability of a man to control the environment in which model of the brain. The building blocks of the neural he lives is what makes him distinctively different from the networks are called the neurons. An artificial neuron is a other species. His intellectual skills place him at the most computational model inspired in the natural neurons. superior level of the animal kingdom. Thus, underlying all Natural neurons receive signals through synapses located human abilities lie the essential attributes of intelligence. on the dendrites or membrane of the neuron. When the Intelligence refers to the ability to understand, think, act, signals received are strong enough ,surpass a certain interpret and predict the future to achieve and handle threshold , the neuron is activated and emits a signal though relationships, concepts etc. It helps in decision making, the axon. This signal might be sent to another synapse, and problem solving, learning and reasoning. Intelligence thus might activate other neurons.Each neuron receives inputs plays a very important role in survival and progress beyond from many other neurons, changes its state base on the the present. current input and send one output signal to many other Technology has been progressing to a great extend such neurons. that even the human brains are being created artificially through the science of artificial intelligence. Artificial The complexity of real neurons is highly abstracted when intelligence is the simulation of intelligence in machines modelling artificial neurons. These basically consist of which makes it behave like a human being. It is the study inputs (like synapses), which are multiplied by weights and design of intelligent agents where an intelligent agent is (strength of the respective signals), and then computed by a a system that perceives its environment and takes actions mathematical function which determines the activation of that maximize its chances of success. the neuron. Another function computes the output of the www.ijcsit.com 61 Remya Vinayakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 61-68 artificial neuron. ANNs combine artificial neurons in order to process information. There are six characteristics of Artificial Neural Network Information is transmitted as a series of electric impulses, which are basic and important for this technology. so-called spikes. The frequency and phase of these spikes 1) The Network Structure encodes the information. In biological systems, one neuron 2) Parallel Processing Ability can be connected to as many as 10,000 other neurons. 3) Distributed Memory Usually, a neuron receives its information from other 4) Fault Tolerance Ability neurons in a confined area, its so-called receptive field. 5) Collective Solution The higher a weight of an artificial neuron is, the 6) Learning Ability stronger the input which is multiplied by it will be. Weights can also be negative, so we can say that the signal is III. PERCEPTRON inhibited by the negative weight. Depending on the weights, Perceptron is the basic unit of the neural network. A the computation of the neuron will be different. By perceptron takes a vector of a real valued input , calculates adjusting the weights of an artificial neuron we can obtain a linear combination of these inputs, and outputs a 1 if the the output we want for specific inputs. But when we have result is greater than some threshold and outputs a -1 if the an ANN of hundreds or thousands of neurons, it would be result is lesser than the threshold. it consists of: quite complicated to find by hand all the necessary weights. But we can find algorithms which can adjust the weights of • N inputs, ... the ANN in order to obtain the desired output from the • Weights for each input, ... network. This process of adjusting the weights is called • A bias input (constant) and associated weighted sum of learning or training. inputs, y = + + ... + • A threshold function, i.e 1 if y > 0, -1 if y <= 0 Fig.1 Biological Neural Network The number of types of ANNs and their uses is very high. Since the first neural model by McCulloch and Pitts (1943) there have been developed hundreds of different Fig.3 A Perceptron models considered as ANNs. The differences in them might be the functions, the accepted values, the topology, the learning algorithms, etc. Also there are many hybrid models IV. THE BACKPROPAGATION ALGORITHM where each neuron has more properties than the ones we are The backpropagation algorithm is used in layered feed- reviewing here. Because of matters of space, we will forward ANNs. This means that the artificial neurons are present only an ANN which learns using the organized in layers, and send their signals forward, and then backpropagation algorithm for learning the appropriate the errors are propagated backwards. The network receives weights, since it is one of the most common models used in inputs by neurons in the input layer, and the output of the ANNs, and many others are based on it. Since the function network is given by the neurons on an output layer. There of ANNs is to process information, they are used mainly in may be one or more intermediate hidden layers. fields related with it. There are a wide variety of ANNs that The backpropagation algorithm uses supervised are used to model real neural networks, and study behaviour learning, which means that we provide the algorithm with and control in animals and machines, but also there are examples of the inputs and outputs we want the network to ANNs which are used for engineering purposes, such as compute, and then the error (difference between actual and pattern recognition, forecasting, and data compression. expected results) is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANN learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. The activation function of the artificial neurons in ANNs implementing the backpropagation algorithm is a weighted sum (the sum of the inputs xi multiplied by their respective weights ): , Fig.2 Artificial Neural Network www.ijcsit.com 62 Remya Vinayakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 61-68 We can see that the activation depends only on the inputs And then, how much the output depends on the and the weights. If the output function would be the identity activation, which in turn depends on the weights (from (1) (output=activation), then the neuron would be called linear. and (2)): But these have severe limitations. The most common output function is the sigmoidal function: 1 ∆ 1 , 2 1, And we can see that (from (6) and (7)): The sigmoidal function is very close to one for large positive numbers, 0.5 at zero, and very close to zero for 2 1 large negative numbers. This allows a smooth transition 8 between the low and high output of the neuron (close to zero or close to one).
Recommended publications
  • Reverse-Engineering the Brain [email protected]
    Prof. Henry Markram Dr. Felix Schürmann Reverse-Engineering the Brain [email protected] http://bluebrainproject.epfl.ch Brain Mind Institute © Blue Brain Project The Electrophysiologist’s View BBP BBP BBP © Blue Brain Project Accurate Models that Relate to Experiment LBCÆPC SBCÆPC NBCÆPC BTCÆPC MCÆPC © Blue Brain Project BBP Phase I: Neocortical Column Create a faithful “in silico” replica at cellular level of a neocortical column of a young rat by the means of: • reverse engineering the biology components • forward constructing functional mathematical models • Building 10,000 morphologically complex neurons • Constructing a circuit with 30,000,000 dynamic synapses • Simulating the column close to real-time © Blue Brain Project Building and Simulating the NCC BBP © Blue Brain Project The Electrocphysiologist’s View - Revisited BBP BBP BBP © Blue Brain Project BBP Phase I: « in vitro » vs. « in silico » BBP BBP BBP BBP in silico in silico in vitro in vitro © Blue Brain Project Level of Detail 0x Channels ,00 Compartment 10 ~20HH style channels/compartment Neuron ~350compartments/neuron Synapses A Rat’s Neocortical Column: IT Challenge: • ~1mm^3 • 3,500,000 compartments • 6 layers • passive (cable, Gauss • > 50 morphological classes Elimination) • ~340 morpho-electrical types • active HH style channels • ~200 types of ion channels • 30,000,000 synapses ~3,000/neuron • 10,000 neurons • dynamic • 18 types of synapses • 30,000,000 synapses • Æ reporting 1 value/compartment Æ 140GB/biol sec © Blue Brain Project Usage of BG/L in the BBP Dedicated 4 rack BG/L @ EPFL with 8192 processors, 2TB of distributed memory, 22.4 TFlop (peak) ÆUsed throughout all parts of the project ÆAllows iteration of complete process within a week • Building: Run evolutionary algorithms for fitting of thousands of single cell models to data typical job size: 2048 procs S.
    [Show full text]
  • A Case Study of a Blue Brain Working on the Neural Network Concept
    International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com International Journal of Multidisciplinary Research and Growth Evaluation ISSN: 2582-7138 Received: 03-06-2021; Accepted: 19-06-2021 www.allmultidisciplinaryjournal.com Volume 2; Issue 4; July-August 2021; Page No. 201-206 A case study of a blue brain working on the neural network concept Neha Verma Student, Department of Computer Applications, RIMT University, Mandi Gobindgarh, Punjab, India Corresponding Author: Neha Verma Abstract Blue brain is the name of the world's first virtual brain So IBM is trying to create an artificial brain that can think, initiated and founded by the scientist Henry Markram at response and take decisions like human brain. It is called EPFL in Lausanne Switzerland. The main aim behind this "Blue Brain". Hence this paper consists of the concepts of project is to save knowledge of the human brain for decades. Blue Brain, the requirements of the Blue Brain project, It is a well known fact that human doesn't live for thousands various strategies undertaken to build the Blue Brain, of years and the intelligence is also lost after a person's death. advantages and disadvantages and many more. Keywords: Neurons, Nanobots, Blue Gene, Virtual mind, Neuroscience 1. Introduction As we know the human brain is most powerful creation of God and it is very complex to understand the circuit of human brain. However with the advancement in technology, now it is possible to create a virtual brain so in future, the human brains are going to be attacked by the blue brain and it is going to be very useful for all of us.
    [Show full text]
  • Blue Brain Project
    Blue Brain Project The Blue Brain Project is an attempt to create a with 100 mesocircuits totalling a hundred million cells. synthetic brain by reverse-engineering mammalian brain Finally a cellular human brain is predicted possible by circuitry. The aim of the project, founded in May 2005 by 2023 equivalent to 1000 rat brains with a total of a hun- the Brain and Mind Institute of the École Polytechnique dred billion cells.[8][9] Fédérale de Lausanne (EPFL) in Switzerland, is to study Now that the column is finished, the project is currently the brain’s architectural and functional principles. busying itself with the publishing of initial results in sci- The project is headed by the founding director Henry entific literature, and pursuing two separate goals: Markram and co-directed by Felix Schürmann and Sean Hill. Using a Blue Gene supercomputer running Michael 1. construction of a simulation on the molecular Hines’s NEURON software, the simulation does not con- level,[1] which is desirable since it allows studying sist simply of an artificial neural network, but involves the effects of gene expression; a biologically realistic model of neurons.[1][2][3] It is hoped that it will eventually shed light on the nature of 2. simplification of the column simulation to allow for consciousness.[3] parallel simulation of large numbers of connected There are a number of sub-projects, including the Cajal columns, with the ultimate goal of simulating a Blue Brain, coordinated by the Supercomputing and Vi- whole neocortex (which in humans consists of about sualization Center of Madrid (CeSViMa), and others run 1 million cortical columns).
    [Show full text]
  • Blue Brain-A Massive Storage Space
    Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 7 (2017) pp. 2125-2136 © Research India Publications http://www.ripublication.com Blue Brain-A Massive Storage Space Y.Vijayalakshmi Dept. of CSE, Karpagam University, Coimbatore, Tamilnadu, India Teena Jose Research Scholar, CS, Bharathiar University Coimbatore, Tamilnadu, India Dr. S. Sasidhar Babu Professor, Dept. of CSE, Sree Narayana Gurukulam College of Engineering, Ernakulam Dt. Kerala, India Sruthi R. Glorya Jose Dept. of CS, St.Thomas College, Thrisur, Kerala, India Dr. P. Manimegalai Prof.,Dept. of ECE, Karpagam University, Coimbatore, Tamilnadu, India. Abstract Human brain, the greatest creation of god which is package of unimaginative functions. A man is intelligent because of the brain. ”Blue Brain” is world’s first virtual brain. Pink brain is special because of that it can think, respond, take decision without any effort and keep anything in memory. Aim of the project is to archive features of Pink brain to a Digital system. In short, ”Brain to a Digital System”. After death of a human, data including intelligence, knowledge, personality, memory and feelings can be used for further development of society. BB Storage space is an extracted concept from Blue brain project. Storing numerous and variety of data on memory is an advantage provided. By this concept, registers act as neurons and Electric signals as simulation impulses. Variation of data are identified based on signal variation that reach the registers. Registers mentioned here is same that a normal system maintains. Benefit 2126 Y.Vijayalakshmi et al focused by this concept of storage is storing data without deletion on real time as normal brain does.
    [Show full text]
  • Large-Scale Simulation of Brain Tissue, Blue Brain Project, EPFL
    ANL/ALCF/ESP-17/3 Large-Scale Simulation of Brain Tissue, Blue Brain Project, EPFL Technical Report for the ALCF Theta Early Science Program Argonne Leadership Computing Facility ALCF Early Science Program (ESP) Technical Report ESP Technical Reports describe the code development, porting, and optimization done in preparing an ESP project's application code(s) for the next generation ALCF computer system. This report is for a project in the Theta ESP, preparing for the ALCF Theta computer system. About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratoryfs main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service of the U.S. Dept. of Energy's Office of Scientific and Technical Information Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandria, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected] Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI): U.S. Department of Energy Office of Scientific and Technical Information P.O.
    [Show full text]
  • An Overview of Mind Uploading
    IOSR Journal of Engineering (IOSR JEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 18-25 An Overview of Mind Uploading Mrs. Mausami Sawarkar1, Mr. Dhiraj Rane2 Dept of CSE, Priydarshani J L CoE, Nagpur Dept. of CS, GHRIIT, Nagpur Abstract: Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us. Mind uploading is the conceptual futuristic technology of transferring human minds tocomputer hardware using whole-brain emulation process. In this research work, we have discuss the brief review of the technological prospectsfor mind uploading, a range of philosophical and ethical aspects of the technology. We have also summarizes various issues for mind uploading. There are many technologies are working on these issues will be summarize. These include questions about whether uploads will have consciousness and whether uploading willpreserve personal identity, as well as what impact on society a working uploading technology is likelyto have and whether these impacts are desirable. The issue of whether we ought to move forwardstowards uploading technology remains as unclear as ever. Keywords: Mind Uploading, Whole brain simulation, I. Introduction Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us. Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate.
    [Show full text]
  • Challenges for Brain Emulation
    Review Paper Challenges for Brain Emulation: Why is it so Difficult? 1 2 Rick Cattell and Alice Parker 1 SynapticLink.org 2 University of Southern California, USA *corresponding author: [email protected] non-linear summation, and conductance of synaptic signals. Abstract These models have likewise been enhanced over the years In recent years, half a dozen major research groups have simulated by researchers examining synaptic transmission, integration, or constructed sizeable networks of artificial neurons, with the and plasticity. ultimate goal to emulate the entire human brain. At this point, Over the past 50 years, advances in technology have these projects are a long way from that goal: they typically successively and phenomenally increased our ability to simulate thousands of mammalian neurons, versus tens of billions emulate neural networks with speed and accuracy.1 At the in the human cortex, with less dense connectivity as well as less- same time, and particularly over the past 20 years, our complex neurons. While the outputs of the simulations understanding of neurons in the brain has increased demonstrate some features of biological neural networks, it is not substantially, with imaging and microprobes contributing clear how exact the artificial neurons and networks need to be to invoke system behavior identical to biological networks and it is significantly to our understanding of neural physiology. not even clear how to prove that artificial neural network behavior These advances in both technology and neuroscience is identical in any way to biological behavior. However, enough make possible the projects we discuss in this paper, aimed progress has been made to draw some conclusions and make at modeling large numbers of interconnected neurons.
    [Show full text]
  • Upgrading Human Brain to Blue Brain
    dicine e & N om a n n a o t N e f c o h Ganji and Nayana, J Nanomed Nanotechnol 2015, 6:3 l n Journal of a o n l o r g u DOI: 10.4172/2157-7439.1000287 y o J ISSN: 2157-7439 Nanomedicine & Nanotechnology Short Communication Open Access Upgrading Human Brain to Blue Brain Shruti Ganji* and Kamala Nayana Department of Information Technology (3/4), M.V.S.R Engineering College, Saroornagar Mandal, Nadargul, Hyderabad, Telangana 501510, India Abstract Blue brain is the name given to the world’s first virtual brain. That means a machine that can function as human brain. There is an attempt to create an artificial brain that can think, response, take decision, and keep anything in memory. The most important thing is to upload the contents of the normal brain into the computer or virtual brain with help of nanobots. Keywords: Blue; Virtual; Artificial brain; Nanobots Introduction In future, our brains are going to be attacked by the blue brain!! Yeah that’s right, but there is nothing to be worried, as it is going to be really useful for us. As sir Isaac Newton once said that we are like small kids on the sea shore, who are getting curious and excited by finding sea shells and fossils, but beyond the beach there is a huge ocean with diverse creatures and things yet to be discovered. Similarly he wants to say that in the field of technology, there are many things to be invented that might bring a drastic change in the field of science and technology [1].
    [Show full text]
  • Alternative Ad.Qxd
    P014_NELE_JUN09.qxp:CVR FEATURE TEMP 4/6/09 11:12 Page 14 Thinking BIG! How electronics technology is supporting attempts to model the brain. By David Boothroyd. Illustration: Phil Holmes P014_NELE_JUN09.qxp:CVR FEATURE TEMP 4/6/09 11:13 Page 15 COVER STORY Modelling the brain imulating complex objects and systems on computers is entire device because of local manufacturing faults,” Prof Meier says. now a vast industry, giving us an understanding of things, “This will become even more important if one goes to nanoscale such as the global climate, that would otherwise be components, as other projects are looking to do. impossible. While the weather may be complex, it is simple “Power consumption is the major issue in achieving WFI for the compared with the object now being modelled by projects analogue neural network. To limit the power consumption of event Sworldwide: the human brain. transmission, we have developed a novel asynchronous, differential Generally recognised as the most complex known object in the low voltage signalling scheme. Also, the static power consumption of universe, the human brain contains around 100billion nerve cells or all circuits is minimised, and especially the synapse, which uses no neurons, each linked by around 10,000 synapses. Every cubic static power at all. These techniques keep average power millimetre of the cerebral cortex contains roughly 1bn synapses. Even consumption to less than 1kW for a single wafer. If this is distributed by the standards of today’s semiconductor chips, this is an impressive uniformly across a 20cm silicon wafer, it equates to a power density piece of packaging.
    [Show full text]
  • Upgrading Human Brain to Blue Brain
    International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected] Volume 4, Issue 3, March 2015 ISSN 2319 - 4847 Upgrading human brain to blue brain Shruti Ganji , Kamala Nayana Information Technology (3/4) M.V.S.R Engineering College ABSTRACT Blue brain is the name given to the world’s first virtual brain. That means a machine that can function as human brain. There is an attempt to create an artificial brain that can think, response, take decision, and keep anything in memory. The most important thing is to upload the contents of the normal brain into the computer or virtual brain with help of nanobots. Keywords: -Blue, Virtual, Artificial Brain, Nanobots. 1. INTRODUCTION In future, our brains are going to be attacked by the blue brain!! Yeah that’s right, but there is nothing to be worried, as it is going to be really useful for us. As , Isaac Newton once said that we are like small kids on the sea shore, who are getting curious and excited by finding sea shells and fossils, but beyond the beach there is a huge ocean with diverse creatures and things yet to be discovered .Similarly he wants to say that in the field of technology, there are many things to be invented that might bring a drastic change in the field of science and technology. Human brain is the most valuable creation of god. Intelligence is lost after a person’s death .but how can we restore this intelligence? Is there a solution for it? Yes there is and it is called the blue brain technology.
    [Show full text]
  • Blue Brain Bluepyopt
    Blue Brain BluePyOpt An extensible framework for data-driven model parameter optimization The Blue Brain Python Optimization Library (BluePyOpt) is an extensible framework for data-driven model parameter optimization that wraps and standardizes several existing open-source tools. BluePyOpt simplifies the task of creating and sharing model parameter optimizations, and the associated techniques and knowledge. This is achieved by abstracting the optimization and evaluation tasks into various reusable and flexible discrete elements according to established best-practices. Furthermore, BluePyOpt provides methods for setting up both small- and large-scale optimizations on a variety of platforms, ranging from laptops to Linux clusters and cloud-based compute infrastructures. At its core, BluePyOpt is a framework providing a conceptual scaffolding in the form of an object-oriented application programming interface (API) for constructing optimization problems according to established best-practices, while leveraging existing search algorithms and modeling simulators transparently “under the hood.” For common optimization tasks, the user configures the optimization by writing a short Python script using the BluePyOpt API. For more advanced use cases, the user is free to extend the API in accordance with their own needs, potentially contributing these extensions back to the core library. The latter is important for BluePyOpt APIs to remain broadly applicable and state-of-the-art, as best-practices develop for specific problem domains, mirroring the evolution that has occurred for neuron model optimization strategies. Depending on the complexity of the model to be optimized, BluePyOpt optimizations can require significant computing resources. The systems available to neuroscientists in the community can be very heterogeneous, and it is often difficult for users to set up the required software.
    [Show full text]
  • Neuromorphic Microelectronics from Devices to Hardware Systems and Applications
    NOLTA, IEICE Invited Paper Neuromorphic microelectronics from devices to hardware systems and applications Alexandre Schmid 1 a) 1 Microelectronic Systems Laboratory, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland a) alexandre.schmid@epfl.ch Received April 9, 2016; Revised May 20, 2016; Published October 1, 2016 Abstract: Neuromorphic systems aiming at mimicking some characteristics of the nervous systems of living humans or animals have been developed since the late 1980s’, taking benefit of intrinsic properties and increasing performances of the successive silicon fabrication tech- nologies. A regain of interest has been observed in the middle of the 2010s’, which manifests itself from the emergence of large-scale projects integrating various computational and hard- ware perspectives, by the increased interest and involvement of industry and the growth of the volume of scientific publications. This paper reviews research directions and methods of neuromorphic microelectronics hardware, the developed hardware and its performance, and discusses current issues and potential future developments. Key Words: neuromorphic engineering, neuromorphic computing, neuromorphic devices, neu- romorphic circuits, neuromorphic architectures 1. Introduction Nature has ever been a source of inspiration of humanity in domains as various as arts, medicine, science. Understanding the concepts of natural evolution has been a prerequisite and the motivation of engineers to replicating solutions that had emerged as the most suitable after millions of years of natural selection. In their turn, engineers in electronics and microelectronics fields have turned their attention to nature and biology as a potential source of inspiration to solving problems that turned out intricate to tackling using established concepts and methods.
    [Show full text]