Exact Simulation of the SABR Model

Total Page:16

File Type:pdf, Size:1020Kb

Exact Simulation of the SABR Model This article was downloaded by: [137.189.59.117] On: 28 August 2017, At: 23:13 Publisher: Institute for Operations Research and the Management Sciences (INFORMS) INFORMS is located in Maryland, USA Operations Research Publication details, including instructions for authors and subscription information: http://pubsonline.informs.org Exact Simulation of the SABR Model http://orcid.org/0000-0002-3235-3340Ning Cai, Yingda Song, Nan Chen To cite this article: http://orcid.org/0000-0002-3235-3340Ning Cai, Yingda Song, Nan Chen (2017) Exact Simulation of the SABR Model. Operations Research 65(4):931-951. https://doi.org/10.1287/opre.2017.1617 Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval, unless otherwise noted. For more information, contact [email protected]. The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support of claims made of that product, publication, or service. Copyright © 2017, INFORMS Please scroll down for article—it is on subsequent pages INFORMS is the largest professional society in the world for professionals in the fields of operations research, management science, and analytics. For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org OPERATIONS RESEARCH Vol. 65, No. 4, July–August 2017, pp. 931–951 http://pubsonline.informs.org/journal/opre/ ISSN 0030-364X (print), ISSN 1526-5463 (online) CONTEXTUAL AREAS Exact Simulation of the SABR Model Ning Cai,a Yingda Song,b Nan Chenc a Department of Industrial Engineering and Logistics Management, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; b Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China 200030; c Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong Contact: [email protected], http://orcid.org/0000-0002-3235-3340 (NiC); [email protected] (YS); [email protected] (NaC) Received: July 16, 2011 Abstract. The stochastic alpha-beta-rho (SABR) model becomes popular in the financial Revised: April 13, 2013; December 17, 2014 industry because it is capable of providing good fits to various types of implied volatility Accepted: January 25, 2017 curves observed in the marketplace. However, no analytical solution to the SABR model Published Online in Articles in Advance: exists that can be simulated directly. This paper explores the possibility of exact simulation June 30, 2017 for the SABR model. Our contribution is threefold. (i) We propose an exact simulation Subject Classifications: finance: asset pricing; method for the forward price and its volatility in two special but practically interesting simulation: efficiency, application cases, i.e., when the elasticity β 1, or when β < 1 and the price and volatility processes Area of Review: Financial Engineering are instantaneously uncorrelated. Primary difficulties involved are how to simulate two random variables whose distributions can be expressed in terms of the Hartman-Watson https://doi.org/10.1287/opre.2017.1617 and the noncentral chi-squared distribution functions, respectively. Two novel simulation Copyright: © 2017 INFORMS schemes are proposed to achieve numerical accuracy, efficiency, and stability. One stems from numerical Laplace inversion and Asian option literature, and the other is based on recent developments in evaluating the noncentral chi-squared distribution functions in a robust way. Numerical examples demonstrate that our method is fast and accurate under various market environments. (ii) When β < 1 but the price and volatility processes are correlated, our simulation method becomes a semi-exact one. Numerical results suggest that it is still quite accurate when the time horizon is not long, e.g., no greater than one year. For long time horizons, a piecewise semi-exact simulation scheme is developed that reduces the biases substantially. (iii) For European option pricing under the SABR model, we propose a conditional simulation method, which reduces the variance of the plain simulation significantly, e.g., by more than 99%. Funding: The research of the first author is partially supported by the General Research Fund of the Hong Kong Research Grants Council (Project No. 16206415) and University Grants Committee grant (Project DAG12EG07-11). The research of the second author is supported by Natural Science Foundation of China [Grant 71571129]. Part of the research of the third author is supported by Hong Kong Research Grant Council via the General Research Fund Scheme (Project No. 14201114). Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2017.1617. Keywords: exact simulation • SABR model • semi-exact simulation • piecewise semi-exact simulation • time change • Asian options • noncentral chi-squared distributions • Hartman-Watson distributions 1. Introduction implied volatilities indicates that we have to model It has long been observed in the derivatives markets these smiles accurately to achieve an accurate and sta- that the implied volatility is not constant across options ble hedging. contingent on the same underlying but with different Stimulated by practitioners’ need to deal with the strike prices. The implied volatility is often relatively smile risk, there is a growing interest in stochastic lower for near-the-money foreign currency options, volatility models in the area of financial engineering; and tends to rise in the in-the-money and the out-of- see, for example, Hull and White (1987, 1988), Scott the-money directions. Traders refer to this stylized pat- (1987), Wiggins (1987), Johnson and Shanno (1987), tern as the volatility smile. In the equity and interest Stein and Stein (1991), Heston (1993), Duffie et al. Downloaded from informs.org by [137.189.59.117] on 28 August 2017, at 23:13 . For personal use only, all rights reserved. rate markets, a typical shape of the implied volatil- (2000), Fouque et al. (2000), Barndorff-Nielsen and ity known as the volatility skew is that it decreases as Shephard (2001), and so forth. The stochastic alpha- the strike price increases. The ubiquitous existence of beta-rho (SABR) model introduced by Hagan et al. volatility smiles and skews poses a great challenge to (2002) has gained popularity in the financial indus- the practice of risk management in fixed income and try to model foreign exchange and interest rate mar- foreign exchange trading desks. These desks usually kets. On the one hand, the SABR model can fit implied have large exposure across a wide range of strikes. volatility smiles very well with only a few parameters; The fact that different options correspond to different on the other hand, it is capable of generating correct 931 Cai et al.: Exact Simulation of the SABR Model 932 Operations Research, 2017, vol. 65, no. 4, pp. 931–951, © 2017 INFORMS comovements between the underlying and the smile the same time, to increase the number of time steps curves, which overcomes a salient drawback of con- in each path to reduce the discretization bias. This ventional local volatility models proposed by Dupire may incur a huge computational burden. More seri- (1994, 1997) and Derman and Kani (1994, 1998). ously, the discretization methods potentially lead to Despite the above attractive features of the SABR an extra distortion of the price distribution for the model, its complicated structure prevents us from SABR model besides the conventional one caused by obtaining closed-form solutions to related pricing the discretization. Under the SABR model, the price problems of financial derivatives, including European process is governed by a constant elasticity of variance options, swaptions, and other path-dependent options (CEV)-type diffusion whose value ranges in the inter- such as forward starting options. The literature so far val 0; + . However, the discretization methods may » 1º mainly relies on partial differential equation (PDE) generate negative values in the intermediate steps with based approaches to find asymptotic expansions for a significant probability. Therefore we have to restrict option prices under the SABR model. Hagan et al. the values within the domain by, e.g., truncating the (2002) apply the singular perturbation technique in the negative values to zero. This would then bring a new PDE to obtain an explicit asymptotic expansion for the distortion to the original price distribution. implied volatility, and then substitute it into Black’s for- In light of the absence of closed-form option pric- mula to yield an analytical approximation to the Euro- ing formulas and the drawbacks of PDE-based asymp- pean option price. Obłój (2008) points out an inconsis- totic expansions and conventional discretization simu- tency between the results in Hagan et al. (2002) and lation, the aim of this paper is to explore the possibility Berestycki et al. (2004) under a more general framework of exact simulation for the SABR model. Apparently, this and obtains a corrected version of the implied volatility relies heavily on the knowledge about the exact joint dis- formula. Wu (2012) constructs a series expansion for tribution of the forward price and the volatility. Unfor- the joint density of the price and the volatility for the tunately, in general cases, it seems very difficult to SABR model through a hierarchy of parabolic equa- derive it, if not impossible. To the authors’ best knowl- tions and a near-Gaussian coordinate transformation. edge, there exists no “complete” answer to this ques- However, the aforementioned approaches may have tion in the literature. A “partial” solution is given as three limitations. First, to the best knowledge of follows.
Recommended publications
  • Variance Reduction with Control Variate for Pricing Asian Options in a Geometric Lévy Model
    IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_05 ______________________________________________________________________________________ Variance Reduction with Control Variate for Pricing Asian Options in a Geometric Levy´ Model Wissem Boughamoura and Faouzi Trabelsi Abstract—This paper is concerned with Monte Carlo simu- use of the path integral formulation. [19] studied a cer- lation of generalized Asian option prices where the underlying tain one-dimensional, degenerate parabolic partial differential asset is modeled by a geometric (finite-activity) Levy´ process. equation with a boundary condition which arises in pricing A control variate technique is proposed to improve standard Monte Carlo method. Some convergence results for plain Monte of Asian options. [25] considered the approximation of Carlo simulation of generalized Asian options are proven, and a the optimal stopping problem associated with ultradiffusion detailed numerical study is provided showing the performance processes in valuating Asian options. The value function is of the variance reduction compared to straightforward Monte characterized as the solution of an ultraparabolic variational Carlo method. inequality. Index Terms—Levy´ process, Asian options, Minimal-entropy martingale measure, Monte Carlo method, Variance Reduction, For discontinuous markets, [8] generalized Laplace trans- Control variate. form for continuously sampled Asian option where under- lying asset is driven by a Levy´ Process, [18] presented a binomial tree method for Asian options under a particular I. INTRODUCTION jump-diffusion model. But such Market may be incomplete. He pricing of Asian options is a delicate and interesting Therefore, it will be a big class of equivalent martingale T topic in quantitative finance, and has been a topic of measures (EMMs). For the choice of suitable one, many attention for many years now.
    [Show full text]
  • Unified Pricing of Asian Options
    Unified Pricing of Asian Options Jan Veˇceˇr∗ ([email protected]) Assistant Professor of Mathematical Finance, Department of Statistics, Columbia University. Visiting Associate Professor, Institute of Economic Research, Kyoto University, Japan. First version: August 31, 2000 This version: April 25, 2002 Abstract. A simple and numerically stable 2-term partial differential equation characterizing the price of any type of arithmetically averaged Asian option is given. The approach includes both continuously and discretely sampled options and it is easily extended to handle continuous or dis- crete dividend yields. In contrast to present methods, this approach does not require to implement jump conditions for sampling or dividend days. Asian options are securities with payoff which depends on the average of the underlying stock price over certain time interval. Since no general analytical solution for the price of the Asian option is known, a variety of techniques have been developed to analyze arithmetic average Asian options. There is enormous literature devoted to study of this option. A number of approxima- tions that produce closed form expressions have appeared, most recently in Thompson (1999), who provides tight analytical bounds for the Asian option price. Geman and Yor (1993) computed the Laplace transform of the price of continuously sampled Asian option, but numerical inversion remains problematic for low volatility and/or short maturity cases as shown by Fu, Madan and Wang (1998). Very recently, Linetsky (2002) has derived new integral formula for the price of con- tinuously sampled Asian option, which is again slowly convergent for low volatility cases. Monte Carlo simulation works well, but it can be computationally expensive without the enhancement of variance reduction techniques and one must account for the inherent discretization bias result- ing from the approximation of continuous time processes through discrete sampling as shown by Broadie, Glasserman and Kou (1999).
    [Show full text]
  • A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model
    risks Article A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model Emilio Russo Department of Economics, Statistics and Finance, University of Calabria, Ponte Bucci cubo 1C, 87036 Rende (CS), Italy; [email protected] Received: 29 November 2019; Accepted: 25 January 2020 ; Published: 29 January 2020 Abstract: This paper provides a discrete-time approach for evaluating financial and actuarial products characterized by path-dependent features in a regime-switching risk model. In each regime, a binomial discretization of the asset value is obtained by modifying the parameters used to generate the lattice in the highest-volatility regime, thus allowing a simultaneous asset description in all the regimes. The path-dependent feature is treated by computing representative values of the path-dependent function on a fixed number of effective trajectories reaching each lattice node. The prices of the analyzed products are calculated as the expected values of their payoffs registered over the lattice branches, invoking a quadratic interpolation technique if the regime changes, and capturing the switches among regimes by using a transition probability matrix. Some numerical applications are provided to support the model, which is also useful to accurately capture the market risk concerning path-dependent financial and actuarial instruments. Keywords: regime-switching risk; market risk; path-dependent derivatives; insurance policies; binomial lattices; discrete-time models 1. Introduction With the aim of providing an accurate evaluation of the risks affecting financial markets, a wide range of empirical research evidences that asset returns show stochastic volatility patterns and fatter tails with respect to the standard normal model.
    [Show full text]
  • Pricing and Hedging of Asian Option Under Jumps
    IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_04 ______________________________________________________________________________________ Pricing And Hedging of Asian Option Under Jumps Wissem Boughamoura, Anand N. Pandey and Faouzi Trabelsi Abstract—In this paper we study the pricing and hedging To price Asian options in such setting, [12] presents gener- problems of ”generalized” Asian options in a jump-diffusion alized Laplace transform for continuously sampled Asian op- model. We choose the minimal entropy martingale measure tion where underlying asset is driven by a Levy´ Process, [29] (MEMM) as equivalent martingale measure and we derive a partial-integro differential equation for their price. We discuss proposes a binomial tree method under a particular jump- the minimal variance hedging including the optimal hedging diffusion model. For the case of semimartingale models, [36] ratio and the optimal initial endowment. When the Asian payoff shows that the pricing function is satisfying a partial-integro is bounded, we show that for the exponential utility function, differential equation. For the precise numerical computation the utility indifference price goes to the Asian option price of the PIDE using difference schemes we refer interested evaluated under the MEMM as the Arrow-Pratt measure of absolute risk-aversion goes to zero. readers to explore with [11]. In [3] is derived the range of price for Asian option when underlying stock price is Index Terms—Geometric Levy´ process, Generalized Asian following geometric Brownian motion and jump (Poisson). In options, Minimal entropy martingale measure, Partial-integro differential equation, Utility indifference pricing, Exponential [30] is derived bounds for the price of a discretely monitored utility function.
    [Show full text]
  • On the Equivalence of Floating and Fixed-Strike Asian Options
    Applied Probability Trust (5 September 2001) ON THE EQUIVALENCE OF FLOATING AND FIXED-STRIKE ASIAN OPTIONS VICKY HENDERSON,∗ University of Oxford RAFALWOJAKOWSKI, ∗∗ Lancaster University Abstract There are two types of Asian options in the financial markets which differ according to the role of the average price. We give a symmetry result between the floating and fixed-strike Asian options. The proof involves a change of num´eraireand time reversal of Brownian motion. Symmetries are very useful in option valuation and in this case, the result allows the use of more established fixed-strike pricing methods to price floating-strike Asian options. Keywords: Asian options, floating strike Asian options, put call symmetry, change of num´eraire,time reversal, Brownian motion AMS 2000 Subject Classification: Primary 60G44 Secondary 91B28 1. Introduction The purpose of this paper is to establish a useful symmetry result between floating and fixed-strike Asian options. A change of probability measure or num´eraireand a time reversal argument are used to prove the result for models where the underlying asset follows exponential Brownian motion. There are many known symmetry results in financial option pricing. Such results are useful for transferring knowledge about one type of option to another and may be used to simplify coding of one type of option when the other is already coded. However, one must take care as the transformed option may not exist in the market or have a sensible economic interpretation. These tricks become very useful for exotic options, when perhaps no closed form solution exists, but an equivalence relation holds, together with an accurate compu- tational procedure for the related class.
    [Show full text]
  • Arxiv:1605.00307V1 [Q-Fin.CP] 1 May 2016 Arteei H Etnadshoe-H 2]Models
    Semi-analytic path integral solution of SABR and Heston equations: pricing Vanilla and Asian options Jan Kuklinski and Kevin Tyloo Facult´edes HEC, Universit´ede Lausanne, CH-1015 Lausanne, Switzerland (Dated: September 14, 2018) We discuss a semi-analytical method for solving SABR-type equations based on path integrals. In this approach, one set of variables is integrated analytically while the second set is integrated numerically via Monte-Carlo. This method, known in the literature as Conditional Monte-Carlo, leads to compact expressions functional on three correlated stochastic variables. The methodology is practical and efficient when solving Vanilla pricing in the SABR, Heston and Bates models with time depending parameters. Further, it can also be practically applied to pricing Asian options in the β = 0 SABR model and to other β = 0 type models. Keywords: SABR/Heston semi-analytical solutions, Asian options with skew and smile I. INTRODUCTION 100 MC1 MC2 10-1 The SABR model introduced by Hagan et al. [10, 20] N−0.5 is a canonical Stochastic Volatility model: 10-2 -3 ˜ β 10 St 2 3.5 dS˜t = S0 σ˜t ρdV˜t + 1 ρ dW˜ t (1) speed ratio MC2/MC1 S0 -4 { − } 10 p Std. error 3.0 dσ˜t = νσ˜tdV˜t (2) 10-5 This framework provides a natural extension of the 2.5 Bachelier/Normal, Black-Scholes models and of the 10-6 2.0 Shifted Log-Normal equation. As discussed in [15, 17], 102 103 104 105 106 107 108 setting β = 0 and ρ = 1 leads to the Shifted Log- 10-7 ± 102 103 104 105 106 107 108 Normal model.
    [Show full text]
  • Valuation of Asian Options -With Levy Approximation
    Valuation of Asian Options -with Levy Approximation Master thesis in Economics Jan 2014 Author: Aleksandra Mraovic, Qian Zhang Supervisor: Frederik Lundtofte Department of Economics Abstract Asian options are difficult to price analytically. Even though they have attracted much attention in recent years, there is still no closed-form solution available for pricing the arithmetic Asian options, because the distribution of the density function is unknown. However, various studies have attempted to solve this problem, Levy (1992) approximates the unknown density function using lognormal distribution by matching the first two moments. This paper investigates how accurate the Levy approach is by comparing values of Asian options from Levy’s approach with Monte Carlo simulations. We find that Levy’s analytic solution tends to over-estimate Asian option values when volatility is constant, but under-estimates under the scenario of having stochastic volatility. Key words: Asian options, Monte Carlo simulation, constant volatility, stochastic volatility Acknowledgement To start with, we first would like to express sincere thanks to our supervisor Frederik Lundtofte, for his constant guidance and useful suggestions throughout the work of this paper. 2 Table of Contents 1. Introduction .................................................................................................... 4 2. Options ........................................................................................................... 6 2.1 Exotic Options ......................................................................................................
    [Show full text]
  • The Pricing Theory of Asian Options
    THE PRICING THEORY OF ASIAN OPTIONS By Ngenisile Grace Zanele Mkhize A dissertation submitted to the School of Mathematical Science, in the Faculty of Sciences and Agriculture, University of KwaZulu-Natal, Durban, South Africa in partial fulfillment of the requirements, for the degree of Master of Science June 2007 Supervisor: Prof. Hong-Kun Xu Abstract An Asian option is an example of exotic options. Its payoff depends on the average of the underlying asset prices. The average may be over the entire time period between initiation and expiration or may be over some period of time that begins later than the initiation of the option and ends with the options expiration. The average may be from continuous sampling or may be from discrete sampling. The primary reason to base an option payoff on an average asset price is to make it more difficult for anyone to significantly affect the payoff by manipulation of the underlying asset price. The price of Asian options is not known in closed form, in general, if the arithmetic average is taken into effect. In this dissertation, we shall investigate the pricing theory for Asian options. After a brief introduction to the Black-Scholes theory, we derive the partial differential equations for the value process of an Asian option to satisfy. We do this in several approaches, including the usual extension to Asian options of the Black-Scholes, and the sophisticated martingale approach. Both fixed and floating strike are considered. In the case of the geometric average, we derive a closed form solution for the Asian option.
    [Show full text]
  • Evaluation of Hedging Strategies of Asian Options on Electricity at Nord Pool
    Evaluation of Hedging Strategies of Asian Options on Electricity at Nord Pool Ella Zackrisson June 1, 2015 Abstract This thesis empirically evaluates a geometric Brownian motion and a stochas- tic volatility model for modeling futures prices and hedging Asian call options on the electricity spot price. Estimation of parameters for the models is done based on historical futures prices of futures contracts with a one month deliv- ery period using nonlinear regression and Maximum Likelihood techniques. The models are tested on 2014 data and tracking error for each model is presented. The tracking error is investigated through the median value, the spread between minimum and maximum value along with value at risk at a 95% level. In addition, a third model for modeling spot and futures prices is pre- sented theoretically. It is an exponential additive model with the advantage that it models the future price process from the spot price, instead of mod- eling the future price process immediately. This bypasses the issue of no information about the future price process during the delivery period, when there is no prices of the futures contracts. The aim of this thesis is to compare the simpler geometric Brownian motion to the more complex stochastic volatility model. It is found that the stochastic volatility model performs better when tested on out-of-sample data. The geometric Brownian motion tends to underestimate the electricity prices, despite that 2014 had low pricest compared to the other years in the data sample. In addition, the approximation of the distribution of the future price process under the geometric Brownian motion model gave a bad fit and led to difficulties when estimating the parameters.
    [Show full text]
  • IF400 – Financial Derivatives Erwin Hammer, H19-V20 Notatark Skrevet for Emnet IF400 – Finansielle Instrumenter
    IF400 – Financial Derivatives Erwin Hammer, H19-V20 Notatark skrevet for emnet IF400 – Finansielle instrumenter. Notatarket her er omfattende og dekker anslagsvis 95% av pensumet. Kapittel 1 til 6 er gjennomgått i større detalj med flere utledninger enn det som er gitt i forelesninger og i læreboken. Fra kapittel 7 og utover har jeg heller forsøkt å komprimere stoffet til det aller viktigste. Ellers følger notasjonen i stor grad læreboken «Derivatives Markets» av McDonald. Contents IF400 – Financial Derivatives ............................................................................................................. 1 Chapter 1: Fixed Income ..................................................................................................................... 4 Bonds .................................................................................................................................................. 4 Forward Rates ................................................................................................................................... 5 Duration and Immunization ............................................................................................................. 7 Convexity ......................................................................................................................................... 10 Chapter 2: Forwards and Futures .................................................................................................... 11 Forwards .........................................................................................................................................
    [Show full text]
  • Exotic Option II Asian and Forward Options
    Malardalen University Vasteras 2005-10-11 Mathematics and Physics Department Project in Analytical Finance I Exotic Option II Asian and Forward Options Izabela Matusiak Kwok-wai Choy Maziar Saei Asian and Forward Options TABLE OF CONTENTS 1. ASIAN OPTION........................................................................................... 3 1.1 INTRODUCTION ......................................................................................... 3 1.2 BINOMIAL MODEL ..................................................................................... 4 1.3 A MEAN VALUE OPTION ............................................................................ 6 1.4 PRICING .................................................................................................... 7 1.5 CONCLUSION .......................................................................................... 10 2. FORWARD OPTIONS.............................................................................. 11 2.1 INTRODUCTION ....................................................................................... 11 2.2 PRICING .................................................................................................. 11 2.3 CONCLUSION .......................................................................................... 15 3. REFERENCES ........................................................................................... 16 2 Asian and Forward Options 1. Asian Option 1.1 Introduction The Asian Option (also called Average Option) is the option whose payoff
    [Show full text]
  • Pricing Asian Options Using Monte Carlo Methods
    U.U.D.M. Project Report 2009:7 Pricing Asian Options using Monte Carlo Methods Hongbin Zhang Examensarbete i matematik, 30 hp Handledare och examinator: Johan Tysk Juni 2009 Department of Mathematics Uppsala University Acknowledgements First of all, I hereby would like to acknowledge the master program in Financial Mathematics at Uppsala University that enabled me to have such a wonderful experience in Sweden. Meanwhile, special thanks go to my advisor Johan Tysk, for his patient tutorship, in-depth comment and invaluable advice in writing this paper. It has been a great joy to study under his guidance and encouragement. Besides, I want to acknowledge all the teachers who gave me lectures during the two years, and I would like to express my gratitude for their enlightening instruction and warm-hearted assistance. Finally, I want to thank my parents for all their sympathetic understanding and unfailingly support. Abstract Asian options are of particular importance for commodity products which have low trading volumes (e.g. crude oil), since price manipulation is inhibited. Hence, the pricing of such options becomes one of the most interesting fields. Since there are no known closed form analytical solutions to arithmetic average Asian options, many numerical methods are applied. This paper deals with pricing of arithmetic average Asian options with the help of Monte Carlo methods. We also investigate ways to improve the precision of the simulation estimates through the variation reduction techniques: the control variate and the antithetic variate methods. We then compare the results from these two methods. 1. Introduction 1.1 Financial Derivatives Derivatives are financial contracts, or financial instruments, whose values are derived from the value of something else which is known as the underlying.
    [Show full text]