Cascades and Transitions in Turbulent Flows

Total Page:16

File Type:pdf, Size:1020Kb

Cascades and Transitions in Turbulent Flows Cascades and transitions in turbulent flows1 A. Alexakisa, L. Biferaleb a Laboratoire de physique statistique, D´epartementde physique de l’ Ecole´ normale sup´erieure, PSL Research University, Universit´eParis Diderot, Sorbonne Paris Cit´e,Sorbonne Universit´es,UPMC Univ. Paris 06, CNRS, 75005 Paris, France b Department of Physics and INFN University of Rome ’Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy Abstract Turbulent flows are characterized by the non-linear cascades of energy and other inviscid invariants across a huge range of scales, from where they are injected to where they are dissipated. Recently, new experimental, numerical and theoretical works have revealed that many turbulent configurations deviate from the ideal three and two dimensional homo- geneous and isotropic cases characterized by the presence of a strictly direct and inverse energy cascade, respectively. New phenomena appear that alter the global and local trans- fer properties. In this review, we provide a critical summary of historical and recent works from a unified point of view and we present a classification of all known transfer mecha- nisms. Beside the classical cases of direct and inverse energy cascades, the different sce- narios include: split cascades for which an invariant flows both to small and large scales si- multaneously, multiple/dual cascades of different quantities, bi-directional cascades where direct and inverse transfers of the same invariant coexist in the same scale-range and finally equilibrium states where no cascades are present, including the case when a large scale condensate is formed. We classify all possible transitions from one scenario to another as the control parameters are changed and we analyse when and why different configurations are observed. Our discussion is based on a set of paradigmatic applications: helical tur- bulence, rotating and/or stratified flows, magnetohydrodynamics (MHD) turbulence, and passive/active scalars where the transfer properties are altered as one changes the embed- ding dimensions, the thickness of the domain or other relevant control parameters, as, e.g., the Reynolds, Rossby, Froude, Peclet,´ or Alfven´ numbers. We briefly discuss the presence of anomalous scaling laws in 3D hydrodynamics and in other configurations, in connec- tion with the intermittent nature of the energy dissipation in configuration space. A quick overview is also provided concerning the importance of cascades in other applications such as bounded flows, quantum fluids, relativistic and compressible turbulence, and active mat- ter, together with a discussion of the implications for turbulent modelling. Finally, we present a series of open problems and challenges that future work needs to address. Keywords: Homogeneous and isotropic turbulence, two dimensional turbulence, wave arXiv:1808.06186v2 [physics.flu-dyn] 9 Oct 2018 turbulence, rotating flows, thick layers, MHD, turbulent diffusion, passive and active scalars, stratified flows, helicity, convection, Lagrangian turbulence, Richardson cascade, inverse energy cascade, direct energy cascade, intermittency, anomalous scaling laws, energy condensate, absolute equilibrium. 1Post print version of the article published on Physics Reports 2018. https://doi.org/10.1016/j.physrep.2018.08.001 Preprint submitted to Physics Reports October 10, 2018 Contents 1 Introduction 4 2 Theoretical Setup 6 2.1 Dynamical equations and control parameters . .7 2.2 Inviscid Invariants and balance equations . .7 2.3 Fourier space representation . .8 2.4 Configuration space representation . 11 2.5 Scale-filtered representations . 13 3 Definitions of Turbulent Cascades 14 3.1 3D Direct Energy Cascade and the Kolmogorov 1941 theory . 14 3.1.1 Fourier space . 15 3.1.2 Configuration space . 16 3.2 2D Inverse Energy Cascade and the Batchelor-Kraichnan theory . 17 3.2.1 Fourier space . 18 3.2.2 Configuration space . 22 3.3 Split Energy Cascade . 22 3.4 Statistical Equilibrium . 24 3.5 Multiple invariants . 27 3.6 Definitions . 28 3.6.1 Forward, Inverse & Split cascades . 29 3.6.2 Partial Fluxes and bidirectional cascades . 31 3.6.3 Dual and Multiple cascades . 31 3.6.4 Finite domains and Asymptotically Equilibrium states . 32 3.7 Classification of Cascade transitions . 33 4 Applications 35 4.1 Helicity . 36 4.1.1 Homogeneous and Isotropic Helical Turbulence . 37 4.1.2 Inverse energy cascades in homochiral turbulence . 40 4.1.3 Energy cascade transitions in Helical variants of the Navier-Stokes equations . 44 4.1.4 Summary . 46 4.2 Turbulence in layers of finite thickness . 47 4.2.1 Formulation . 47 4.2.2 Extremely thin layers, H Hc .................... 52 4.2.3 Critical layer thickness, H ∼ Hc ................... 52 4.2.4 Finite horizontal size and finite Reynolds . 55 4.2.5 Summary . 57 4.3 Rotation . 57 4.3.1 Formulation . 57 4.3.2 Decomposition in the 2D3C and 3D manifolds . 60 4.3.3 Rotating turbulence at finite thickness, H, and at changing Re . 62 4.3.4 Dependency on the forcing . 65 4.3.5 Finite horizontal size . 66 4.3.6 Summary . 68 4.4 Stratification . 68 4.4.1 Stable stratification . 69 4.4.2 Stratified flows at finite thickness, H ................. 72 4.4.3 2D vertically stratified flows . 73 4.4.4 Unstable stratification . 73 2 4.4.5 Summary . 74 4.5 Rotating and stratified flows . 74 4.5.1 Summary . 77 4.6 MHD (3D and 2D) . 78 4.6.1 Formulation and invariants for 3D MHD . 78 4.6.2 Isotropic 3D MHD turbulence . 80 4.6.3 Anisotropic MHD . 81 4.6.4 2D MHD . 84 4.6.5 Quasi-static MHD flows . 86 4.6.6 Magnetic helicity . 87 4.6.7 Summary . 89 4.7 Passive and active scalars . 89 4.7.1 Background definitions . 90 4.7.2 Passive scalar cascades . 91 4.7.3 Active scalar cascades . 93 4.7.4 Active vs Passive scalar cascades in Lagrangian coordinates . 95 4.7.5 Compressible flows and transitions to inverse cascades . 97 4.7.6 Summary . 98 5 Further topics about cascades 99 5.1 Wave turbulence . 99 5.2 Intermittency and multi-scaling . 101 5.2.1 Turbulence under unconventional Galerkin truncation . 105 5.2.2 Scaling in anisotropic flows . 107 5.3 Modeling . 108 5.3.1 Large Eddy Simulations . 108 5.3.2 Shell Models . 109 5.3.3 Eddy Dumped Quasi Normal Markovian Approximation . 111 5.4 Cascades in bounded flows and with multi-scale injections . 111 5.5 Guided tour across different turbulent systems . 113 5.5.1 Gravito-Capillary surface waves . 113 5.5.2 Quantum turbulence . 114 5.5.3 Elastic wave turbulence . 115 5.5.4 Compressible and Relativistic turbulence . 115 5.5.5 Active matter . 116 6 Conclusions and open problems 116 7 Acknowledgements 119 3 1. Introduction “Big whorls have little whorls that feed on their velocity, and little whorls have smaller whorls and so on to viscosity - in the molecular sense”. This is the celebrated poem com- posed by Lewis Fry Richardson in 1922 [1], where it was proposed that turbulent cascades are the fundamental driving mechanism of the atmosphere, moving energy from the large injections scales down to the dissipative small scales. It is a visionary way to summarize many fundamental aspects of the turbulent energy transfer which is empirically observed in the three dimensional Navier-Stokes equations (NSE). The Richardson cascade descrip- tion, first quantified by A.N. Kolmogorov [2], constitutes the most fundamental concept of turbulence theory. In more words, in a turbulent flow, the energy externally injected is redistributed among length scales due to non-linear eddy (whorls) interactions. If this energy is removed from the flow (or accumulated) at a scale `out significantly different than the injection scale, `in, a cascade can build up with a continuous transfer of energy from `in to `out. Depending on the system, the energy transfer can be towards the small scales and/or towards the large scales, leading to what it is referred to as a forward or inverse cascade, respectively. In three dimensional (3D) homogeneous and isotropic turbulence (HIT) the energy is transferred to the small scales while in two dimensions (2D) it cas- cades to the large scales. Despite the simplicity of the cascade description, after almost 100 years, we are still fighting to define the exact terms of the game and fail to have a com- plete statistical description even for the simplest case of HIT. When and why Richardson’s cascade is correct? What happens when it fails? These and many other questions have chal- lenged mathematicians, physicists and engineers for more than a century without reaching, to this date, clear answers, rightfully titling turbulence as the last open problem of classical physics. There are various text books written over the years reviewing both findings and open questions of different aspects of turbulence [3–5]. A recent overview can be found in [6], where the historical developments in engineering, mathematical, and physical sciences have been analysed from the ”shoulders of twelve historical fathers of turbulence research”. The situation, however, can be very complex. First, any inviscid invariant of the system is also subject to a non-linear transfer. The interaction of the transfer of different quantities plays an important role in determining the direction of their cascade. For example, it is the conservation of enstrophy that forces an inverse cascade of energy in 2D. In 3D, the second invariant is helicity and it is not sign-definite and all experimental investigations, numeri- cal simulations and phenomenological theories indicate that both energy and helicity have a simultaneous mean transfer to the small scales. However, this is an empirical observation and it is not proven from basic principles yet. The dual cascade of helicity and energy is important for 3D hydrodynamical turbulence [7–10]. In the latter case, recent studies have shown that even in the idealized case of 3D HIT, there exists a bi-directional trans- fer of energy with some helical-Fourier channels that cascade energy forward and others that transfer energy backward [11–21], with potential applications to rotating turbulence also.
Recommended publications
  • AST242 LECTURE NOTES PART 3 Contents 1. Viscous Flows 2 1.1. the Velocity Gradient Tensor 2 1.2. Viscous Stress Tensor 3 1.3. Na
    AST242 LECTURE NOTES PART 3 Contents 1. Viscous flows 2 1.1. The velocity gradient tensor 2 1.2. Viscous stress tensor 3 1.3. Navier Stokes equation { diffusion 5 1.4. Viscosity to order of magnitude 6 1.5. Example using the viscous stress tensor: The force on a moving plate 6 1.6. Example using the Navier Stokes equation { Poiseuille flow or Flow in a capillary 7 1.7. Viscous Energy Dissipation 8 2. The Accretion disk 10 2.1. Accretion to order of magnitude 14 2.2. Hydrostatic equilibrium for an accretion disk 15 2.3. Shakura and Sunyaev's α-disk 17 2.4. Reynolds Number 17 2.5. Circumstellar disk heated by stellar radiation 18 2.6. Viscous Energy Dissipation 20 2.7. Accretion Luminosity 21 3. Vorticity and Rotation 24 3.1. Helmholtz Equation 25 3.2. Rate of Change of a vector element that is moving with the fluid 26 3.3. Kelvin Circulation Theorem 28 3.4. Vortex lines and vortex tubes 30 3.5. Vortex stretching and angular momentum 32 3.6. Bernoulli's constant in a wake 33 3.7. Diffusion of vorticity 34 3.8. Potential Flow and d'Alembert's paradox 34 3.9. Burger's vortex 36 4. Rotating Flows 38 4.1. Coriolis Force 38 4.2. Rossby and Ekman numbers 39 4.3. Geostrophic flows and the Taylor Proudman theorem 39 4.4. Two dimensional flows on the surface of a planet 41 1 2 AST242 LECTURE NOTES PART 3 4.5. Thermal winds? 42 5.
    [Show full text]
  • Energy Literacy Essential Principles and Fundamental Concepts for Energy Education
    Energy Literacy Essential Principles and Fundamental Concepts for Energy Education A Framework for Energy Education for Learners of All Ages About This Guide Energy Literacy: Essential Principles and Intended use of this document as a guide includes, Fundamental Concepts for Energy Education but is not limited to, formal and informal energy presents energy concepts that, if understood and education, standards development, curriculum applied, will help individuals and communities design, assessment development, make informed energy decisions. and educator trainings. Energy is an inherently interdisciplinary topic. Development of this guide began at a workshop Concepts fundamental to understanding energy sponsored by the Department of Energy (DOE) arise in nearly all, if not all, academic disciplines. and the American Association for the Advancement This guide is intended to be used across of Science (AAAS) in the fall of 2010. Multiple disciplines. Both an integrated and systems-based federal agencies, non-governmental organizations, approach to understanding energy are strongly and numerous individuals contributed to the encouraged. development through an extensive review and comment process. Discussion and information Energy Literacy: Essential Principles and gathered at AAAS, WestEd, and DOE-sponsored Fundamental Concepts for Energy Education Energy Literacy workshops in the spring of 2011 identifies seven Essential Principles and a set of contributed substantially to the refinement of Fundamental Concepts to support each principle. the guide. This guide does not seek to identify all areas of energy understanding, but rather to focus on those To download this guide and related documents, that are essential for all citizens. The Fundamental visit www.globalchange.gov. Concepts have been drawn, in part, from existing education standards and benchmarks.
    [Show full text]
  • Toolkit 1: Energy Units and Fundamentals of Quantitative Analysis
    Energy & Society Energy Units and Fundamentals Toolkit 1: Energy Units and Fundamentals of Quantitative Analysis 1 Energy & Society Energy Units and Fundamentals Table of Contents 1. Key Concepts: Force, Work, Energy & Power 3 2. Orders of Magnitude & Scientific Notation 6 2.1. Orders of Magnitude 6 2.2. Scientific Notation 7 2.3. Rules for Calculations 7 2.3.1. Multiplication 8 2.3.2. Division 8 2.3.3. Exponentiation 8 2.3.4. Square Root 8 2.3.5. Addition & Subtraction 9 3. Linear versus Exponential Growth 10 3.1. Linear Growth 10 3.2. Exponential Growth 11 4. Uncertainty & Significant Figures 14 4.1. Uncertainty 14 4.2. Significant Figures 15 4.3. Exact Numbers 15 4.4. Identifying Significant Figures 16 4.5. Rules for Calculations 17 4.5.1. Addition & Subtraction 17 4.5.2. Multiplication, Division & Exponentiation 18 5. Unit Analysis 19 5.1. Commonly Used Energy & Non-energy Units 20 5.2. Form & Function 21 6. Sample Problems 22 6.1. Scientific Notation 22 6.2. Linear & Exponential Growth 22 6.3. Significant Figures 23 6.4. Unit Conversions 23 7. Answers to Sample Problems 24 7.1. Scientific Notation 24 7.2. Linear & Exponential Growth 24 7.3. Significant Figures 24 7.4. Unit Conversions 26 8. References 27 2 Energy & Society Energy Units and Fundamentals 1. KEY CONCEPTS: FORCE, WORK, ENERGY & POWER Among the most important fundamentals to be mastered when studying energy pertain to the differences and inter-relationships among four concepts: force, work, energy, and power. Each of these terms has a technical meaning in addition to popular or colloquial meanings.
    [Show full text]
  • Gy Use Units and the Scales of Ener
    The Basics: SI Units A tour of the energy landscape Units and Energy, power, force, pressure CO2 and other greenhouse gases conversion The many forms of energy Common sense and computation 8.21 Lecture 2 Units and the Scales of Energy Use September 11, 2009 8.21 Lecture 2: Units and the scales of energy use 1 The Basics: SI Units A tour of the energy landscape Units and Energy, power, force, pressure CO2 and other greenhouse gases conversion The many forms of energy Common sense and computation Outline • The basics: SI units • The principal players:gy ener , power, force, pressure • The many forms of energy • A tour of the energy landscape: From the macroworld to our world • CO2 and other greenhouse gases: measurements, units, energy connection • Perspectives on energy issues --- common sense and conversion factors 8.21 Lecture 2: Units and the scales of energy use 2 The Basics: SI Units tour of the energy landscapeA Units and , force, pressure, powerEnergy CO2 and other greenhouse gases conversion The many forms of energy Common sense and computation SI ≡ International System MKSA = MeterKilogram, , Second,mpereA Unit s Not cgs“English” or units! Electromagnetic units Deriud v n e its ⇒ Char⇒ geCoulombs EnerJ gy oul es ⇒ Current ⇒ Amperes Po werW a tts ⇒ Electrostatic potentialV⇒ olts Pr e ssuP a r s e cals ⇒ Resistance ⇒ Ohms Fo rNe c e wto n s T h erma l un i ts More about these next... TemperatureK⇒ elvinK) ( 8.21 Lecture 2: Units and the scales of energy use 3 The Basics: SI Units A tour of the energy landscape Units and Energy, power,
    [Show full text]
  • TURBULENCE Weak Wave Turbulence
    TURBULENCE terval of scales in a cascade-like process. The cascade Turbulence is a state of a nonlinear physical system that idea explains the basic macroscopic manifestation of has energy distribution over many degrees of freedom turbulence: the rate of dissipation of the dynamical in- strongly deviated from equilibrium. Turbulence is tegral of motion has a finite limit when the dissipation irregular both in time and in space. Turbulence can coefficient tends to zero. In other words, the mean rate be maintained by some external influence or it can of the viscous energy dissipation does not depend on decay on the way to relaxation to equilibrium. The viscosity at large Reynolds numbers. That means that term first appeared in fluid mechanics and was later symmetry of the inviscid equation (here, time-reversal generalized to include far-from-equilibrium states in invariance) is broken by the presence of the viscous solids and plasmas. term, even though the latter might have been expected If an obstacle of size L is placed in a fluid of viscosity to become negligible in the limit Re →∞. ν that is moving with velocity V , a turbulent wake The cascade idea fixes only the mean flux of the emerges for sufficiently large values of the Reynolds respective integral of motion, requiring it to be constant number across the inertial interval of scales. To describe an Re ≡ V L/ν. entire turbulence statistics, one has to solve problems on a case-by-case basis with most cases still unsolved. At large Re, flow perturbations produced at scale L experience, a viscous dissipation that is small Weak Wave Turbulence compared with nonlinear effects.
    [Show full text]
  • 3. Energy, Heat, and Work
    3. Energy, Heat, and Work 3.1. Energy 3.2. Potential and Kinetic Energy 3.3. Internal Energy 3.4. Relatively Effects 3.5. Heat 3.6. Work 3.7. Notation and Sign Convention In these Lecture Notes we examine the basis of thermodynamics – fundamental definitions and equations for energy, heat, and work. 3-1. Energy. Two of man's earliest observations was that: 1)useful work could be accomplished by exerting a force through a distance and that the product of force and distance was proportional to the expended effort, and 2)heat could be ‘felt’ in when close or in contact with a warm body. There were many explanations for this second observation including that of invisible particles traveling through space1. It was not until the early beginnings of modern science and molecular theory that scientists discovered a true physical understanding of ‘heat flow’. It was later that a few notable individuals, including James Prescott Joule, discovered through experiment that work and heat were the same phenomenon and that this phenomenon was energy: Energy is the capacity, either latent or apparent, to exert a force through a distance. The presence of energy is indicated by the macroscopic characteristics of the physical or chemical structure of matter such as its pressure, density, or temperature - properties of matter. The concept of hot versus cold arose in the distant past as a consequence of man's sense of touch or feel. Observations show that, when a hot and a cold substance are placed together, the hot substance gets colder as the cold substance gets hotter.
    [Show full text]
  • Numerical Analysis and Fluid Flow Modeling of Incompressible Navier-Stokes Equations
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2019 Numerical Analysis and Fluid Flow Modeling of Incompressible Navier-Stokes Equations Tahj Hill Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Aerodynamics and Fluid Mechanics Commons, Applied Mathematics Commons, and the Mathematics Commons Repository Citation Hill, Tahj, "Numerical Analysis and Fluid Flow Modeling of Incompressible Navier-Stokes Equations" (2019). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3611. http://dx.doi.org/10.34917/15778447 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. NUMERICAL ANALYSIS AND FLUID FLOW MODELING OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS By Tahj Hill Bachelor of Science { Mathematical Sciences University of Nevada, Las Vegas 2013 A thesis submitted in partial fulfillment of the requirements
    [Show full text]
  • Selective Energy and Enstrophy Modification of Two-Dimensional
    Selective energy and enstrophy modification of two-dimensional decaying turbulence Aditya G. Nair∗, James Hanna & Matteo Aureli Department of Mechanical Engineering, University of Nevada, Reno Abstract In two-dimensional decaying homogeneous isotropic turbulence, kinetic energy and enstrophy are respectively transferred to larger and smaller scales. In such spatiotemporally complex dynamics, it is challenging to identify the important flow structures that govern this behavior. We propose and numerically employ two flow modification strategies that leverage the inviscid global conservation of energy and enstrophy to design external forcing inputs which change these quantities selectively and simultaneously, and drive the system towards steady-state or other late-stage behavior. One strategy employs only local flow-field information, while the other is global. We observe various flow structures excited by these inputs and compare with recent literature. Energy modification is characterized by excitation of smaller wavenumber structures in the flow than enstrophy modification. 1 Introduction Turbulent flows exhibit nonlinear interactions over a wide range of spatiotemporal scales. In two-dimensional (2D) decaying turbulence, the rate of energy dissipation is considerably slowed by kinetic energy transfer to large-scale coherent vortex cores through the inverse energy flux mechanism [2,3,5, 13, 14], while the enstrophy dissipation rate is enhanced by enstrophy transfer to small scale eddies [21]. The identification and modification of collective structures in the flow that accelerate or decelerate the inverse energy flux mechanism or alter the enstrophy cascade is a fundamental question [9, 10]. This is unlikely to be addressed by flow modification strategies based on linearization of the Navier–Stokes equations and reduced-order/surrogate representations that lack strict adherence to conservation laws.
    [Show full text]
  • Notes on Thermodynamics the Topic for the Last Part of Our Physics Class
    Notes on Thermodynamics The topic for the last part of our physics class this quarter will be thermodynam- ics. Thermodynamics deals with energy transfer processes. The key idea is that materials have "internal energy". The internal energy is the energy that the atoms and molecules of the material possess. For example, in a gas and liquid the molecules are moving and have kinetic energy. The molecules can also rotate and vibrate, and these motions also contribute to the gases total internal energy. In a solid, the atoms can oscillate about their equilibrium position and also possess energy. The total internal energy is defined as: The total internal energy of a substance = the sum of the energies of the constituents of the substance. When two substances come in contact, internal energy from one substance can de- crease while the internal energy of the other increases. The first law of thermody- namics states that the energy lost by one substance is gained by the other. That is, that there exists a quantity called energy that is conserved. We will develop this idea and more over the next 4 weeks. We will be analyzing gases, liquids, and solids, so we need to determine which properties are necessary for an appropriate description of these materials. Although we will be making models about the constituents of these materials, what is usually measured are their macroscopic quantities or "large scale" properties of the sys- tems. We have already some of these when we studied fluids in the beginning of the course: Volume (V ): The volume that the material occupies.
    [Show full text]
  • On the “Arrest” of Inverse Energy Cascade and the Rhines Scale
    On the “arrest” of inverse energy cascade and the Rhines scale Semion Sukoriansky,∗ Nadejda Dikovskaya, Department of Mechanical Engineering and Perlstone Center for Aeronautical Engineering Studies Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel Boris Galperin College of Marine Science, University of South Florida 140 7th Avenue South, St. Petersburg, FL 33701, USA Submitted to the Journal of the Atmospheric Sciences on December 17, 2006 Abstract quency domain demonstrates that Rossby waves co- exist with turbulence on all scales including those much smaller than LR thus indicating that the Rhines We revise the notion of the cascade “arrest” in a β- scale cannot be viewed as a crossover between turbu- plane turbulence in the context of continuously forced lence and Rossby wave ranges. flows using both theoretical analysis and numerical simulations. We demonstrate that the upscale en- ergy propagation cannot be stopped by a β-effect and can only be absorbed by friction. A fundamental 1. Introduction dimensional parameter in flows with a β-effect, the Rhines scale, LR, has traditionally been associated with the cascade “arrest” or with the scale separat- Terrestrial and planetary circulations are described ing turbulence and Rossby wave dominated spectral by nonlinear equations that support various types of ranges. We show that rather than being a measure waves in the linear limit. The real flows exhibit a of the inverse cascade arrest, LR is a characteris- complicated interplay between turbulence and waves. tic of different processes in different flow regimes. While in a certain range of scales, turbulent scram- In unsteady flows, LR can be identified with the bling may overwhelm the wave behavior and lead moving “energy front” propagating towards the de- to the disappearance of the dispersion relation (such creasing wavenumbers.
    [Show full text]
  • Analyzing the Spectral Energy Cascade in Turbulent Channel Flow João Rodrigo Andrade
    Old Dominion University ODU Digital Commons CCPO Publications Center for Coastal Physical Oceanography 2018 Analyzing the Spectral Energy Cascade in Turbulent Channel Flow João Rodrigo Andrade Ramon Silva Martins Gilmar Mompean Laurent Thais Thomas B. Gatski Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/ccpo_pubs Part of the Fluid Dynamics Commons, and the Thermodynamics Commons Repository Citation Andrade, João Rodrigo; Martins, Ramon Silva; Mompean, Gilmar; Thais, Laurent; and Gatski, Thomas B., "Analyzing the Spectral Energy Cascade in Turbulent Channel Flow" (2018). CCPO Publications. 271. https://digitalcommons.odu.edu/ccpo_pubs/271 Original Publication Citation Andrade, J. R., Martins, R. S., Mompean, G., Thais, L., & Gatski, T. B. (2018). Analyzing the spectral energy cascade in turbulent channel flow. Physics of Fluids, 30(6), 065110. doi:10.1063/1.5022653 This Article is brought to you for free and open access by the Center for Coastal Physical Oceanography at ODU Digital Commons. It has been accepted for inclusion in CCPO Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. PHYSICS OF FLUIDS 30, 065110 (2018) Analyzing the spectral energy cascade in turbulent channel flow Joao˜ Rodrigo Andrade,1,2,a) Ramon Silva Martins,1,3,b) Gilmar Mompean,1,c) Laurent Thais,1,d) and Thomas B. Gatski4,e) 1Unite´ de Mecanique´ de Lille (UML), Polytech’Lille, Universite´ de Lille, Cite´ Scientifique, Av. Paul Langevin, 59650 Villeneuve d’Ascq, France 2Fluid Mechanics Laboratory, Dept. of Mechanical Engineering, Federal University of Uberlandia,ˆ Campus Santa Monica,ˆ Uberlandia,ˆ Minas Gerais, Brazil 3Mechanical Engineering Coordination, Instituto Federal do Esp´ırito Santo, Av.
    [Show full text]
  • Enstrophy Transfers in Helical Turbulence
    Enstrophy transfers in helical turbulence Shubhadeep Sadhukhan,1, ∗ Roshan Samuel,2, y Franck Plunian,3, z Rodion Stepanov,4, x Ravi Samtaney,5, { and Mahendra Kumar Verma6, ∗∗ 1Department of Physics, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India 2Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India 3Universit´eGrenoble Alpes, Universit´eSavoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France 4Institute of Continuous Media Mechanics UB RAS, Perm, Russian Federation 5Mechanical Engineering, Division of Physical Science and Engineering, King Abdullah University of Science and Technology - Thuwal 23955-6900, Kingdom of Saudi Arabia 6Department of Physics, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016 (Dated: April 23, 2020) In this paper we study the enstrophy transers in helical turbulence using direct numerical simu- lation. We observe that the helicity injection does not have significant effects on the inertial-range energy and helicity spectra (∼ k−5=3) and fluxes (constants). We also calculate the separate con- tributions to enstrophy transfers via velocity to vorticity and vorticity to vorticity channels. There are four different enstrophy fluxes associated with the former channel or vorticity stretching, and one flux associated with the latter channel or vorticity advection. In the inertial range, the fluxes due to vorticity stretching are larger than that due to advection. These transfers too are insensitive to helicity injection. I. INTRODUCTION tensively studied [7{26]. Andr´eand Lesieur [9] studied the effect of helicity on the evolution of isotropic turbu- Turbulence is a classic and still open problem in fluid lence at high Reynolds numbers using a variant of Marko- dynamics.
    [Show full text]