On Urobilin and Its Production from Bilirubin and Biliverdin

Total Page:16

File Type:pdf, Size:1020Kb

On Urobilin and Its Production from Bilirubin and Biliverdin 510 On Urobilin from Bilirubin and Biliverdin. tympani permanently increases in area or relaxes under the atmos- pheric pressure, so it shortens permanently under the long-continued contraction of collodion. I have, perhaps, in the opinion of some, entered upon this subject too fully. I do not think so, however. I have endeavoured to avoid a mistake too common in medicine and surgery--of hastily con- cluding that a certain effect was owing to a particular cause, when it might be really owing to another cause or combination of causes. I am the more particular in dealing with this question in a strictly logical way, as I desire that a method of treatment which has been so successful in my hands should be adopted by my professional brethren, not simply on my representations, but because it is rational. ART. XXIV.--0n Urobilin and its production from Bilirubin and Biliverdin. By C. A. MACMU~N, B.A., M.D., Univ. Dubl. ; Wolverhampton. ACCORDING to M'Kendrick's Physiology,a urobilin and indican are the principal urinary pigments. I have shown elsewhere b that urobilin is constantly present in healthy human urine, and so far as the researches which I am about to describe have gone, I have no reason to change this opinion. Urobilin is, therefore, a pigment of very great importance to the physician, and the study of its chemical and optical characters, and of its parentage, if I may be allowed to use this term, will help us to form more accurate ideas as to the value which its absence from, or its increase in, urine may possess. Moreover, as I shall endeavour to explain, the urobilin of health differs from urobilin excreted in some diseases in certain particulars, the reason of which, I think, can be explained. Method of obtaining Urobilin from Urine.--In a paper read before the Royal Society,c I have described a method for the separation of urobilin from urine, which was arrived at after many unsuccess- ful attempts had been made to isolate urobilin by other methods. The urine is precipitated with neutral and basic acetate of lead, and filtered--the precipitate in the filter is washed with water; it is then extracted with alcohol acidulated with sulphuric or hydro- AOutlines of Physiology. 1878. b Spectroscope in Medicine. 1880. Proceedings Royal Society,No. 202. 1880. [By DR. MAcMuNN. 511 chlorie acid, and again filtered. The filtrate, in small quantities at a time, is put into a separating funnel, a large quantity of water added, and then pure chloroform; the whole is repeatedly shaken, and then allowed to stand. The red chloroform layer is separated off and filtered, the chloroform driven off, and the residue repeat- edly dissolved in chlorofbrm, or preferably in absolute alcohol; finally, on evaporation we obtain a brown-red, amorphous, shiny residue, which is perfectly soluble in alcohol, chloroform, certain acids, and acidulated water, partially soluble in ether, in water, and in benzol, but quite insoluble in bisulphide of carbon. Uro- bilin is found, when thus prepared, to contain carbon, hydrogen, oxygen, and nitrogen. Its various solutions all show a black band at F. This band can be made to disappear by adding to these solutions ammonia in excess, and is replaced by another band nearer the red end of the spectrum on the addition of caustic soda or caustic potash--in fact, the solutions of urobilin thus obtained behave, as regards their spectra, in the same manner as urine itself which contains enough urobilin to allow of thin layers of it to be examined satisfactorily by means of the spectroscope. If a solution of urobilin be first treated with caustic soda, and then with ammonia, the band nearer the red produced by the caustic soda will not disappear. The pigment itself gets redder when exposed to the air. I have not examined its solutions for fluorescence s on the addition of chloride of zinc, but the characters given above are quite sufficient to enable the pigment to be diagnosed from others giving a band in the same part of the spectrum. The urobilin which I obtained from the urine of a case of phthisis, in which large portions of the lungs had been destroyed, presented in deep layers of its chloro- tbrmie and alcoholic solutions a feeble band on each side of D, in addition to the band at F, It was suggested to me by a well- known physiological chemist that these two bands indicated an impurity in the pigment obtained--indeed he suggested that, by the adoption of my method, "omicholine" had been separated--so I set to work to find out the cause of the appearance of these bands. The result was very interesting. I found not only that these bands were not due to the presence of an impurity, but that Hoppe-Seyler. Handb. d. Phy. und Path. Chem. Analy. 4th Edition. 1875. Urobilin contains, according to Ma]y, C3~H40N407 ; larobably it will be found nearer Ci6HlsN~O 6 or O e (?) 512 On Urobilin from Bilirubin and Biliverdin. the urobilin .found in this case of phthisis had not been completely oxidised in the body of the man from whom it was obtained. This statement may appear startling to those who believe that urobilin is produced by reduction, a and, on the other hand, to those who believe, with Rokitansky, that the blood is hyperoxidised in phthisis; but the experiments which I am about to relate will, I am sure, eonvinee the one, and the fact that half the lung- substance was destroyed will convince the other, that the deduction is legitimate. ~lT~e Spectrum of Gmelin's Reaction.--The well-known play of eolours which takes place when bile-pigment is treated with nitric acid, is accompanied by a series of alterations in the spectrum,b which may be thus summed up:--A black band at :F, and two bands on each side of D, at an intermediate stage of oxidation, but only the band at ]~" at the completion of the oxidation process. Therefore, the pigment which gives the bands near D, as well as that at :F, is produced by a less complete oxidation than that which gives the band at :F alone. We can isolate the pigment which gives the band at F. Thus I have isolated it by the following method :-- A chloroformie solution of bilirubin, which had become partially changed into biliverdin by exposure to the air, was evaporated over the water-bath; the residue, dissolved in water, was treated with nitric acid, and this solution was observed with the spectro- scope until the bands on each side of D disappeared, and that at F only was left. It was then put into a separating funnel, and shaken with chloroform; the chloroformic solution evaporated down, and after solution in chloroform and filtering, it was again evaporated over the water-bath. The pigment thus obtained was similar in every respect to the urobilin which I have got by the method mentioned above from healthy urine, the same solvents dissolved it, and re- agents produced the same changes in the respective spectra of its solutions. The urobilin obtained from healthy chrome-yellow urine gives, in solution, only a band at F, which disappears on adding ammorrla, and which is replaced by another band nearer the red when treated with excess of caustic soda; so also did this pigment. The best way of studying the spectrum of Gmelin's reaction is to shake up human bile with chloroform, and act upon the chloro- formic solution of the pigment in "t watch-glass with nitric acid. When this method is adopted, and the solution examined spectro- i Hoppe-Seyler. Loc. eit. b Spectroscopein Medicine. Chart 1L, Sp. 5. By DR. MACMUNN. 513 scoplcally, we'see, at a certain stage of the reaction, three bands-- a dark one at F, and two others, one on each side of D; and these bands are identical, not only in position, but also as regards their shading, with those got when the urobilin of the case of phthisis was dissolved in chloroform, and treated in the same way. Hydrochloric acid acts in a similar manner on the spectrum of a chloroformic solution of bile-pigment, but sulphuric acid produces an orange-red coloured fluid, which gives two bands between D and :F, and in deep layers another band on the red side of D ; this spectrum is remarkably like that which is fbund when a hot alcoholic solution of the brick-red urates of rheumatic fever is examined, and it also somewhat resembles the spectrum of a similar solution of pink urates, which owe their colour to urersthrin, a It also resembles a pigment which is got from the urine of the pig, when an acidulated alcoholic extract of the lead precipitate fi'om this urine is treated with nitric acid. But I need not here go further into the colouring matter of pig's urine; it will suffice to say that, so far as I have gone, I can find no urobilin in the urine of this animal. As urobilin, then, is produced by the action of hydrochloric acid as well as nitric acid, it becomes necessary to see whether we cannot get urobilin from bile by other methods wherein oxygen is the agent concerned. Action of Air alone on Bilirubin.--Human bile, obtained from the gall-bladder of a man who died from cerebral hmmorrhage, was treated with absolute alcohol to precipitate the mucus, &c. This method is preferable to the acetic acid one, as acetic acid is apt to slightly change bilirubin, as the spectroscope shows.
Recommended publications
  • Hyperbilirubinemia
    Porphyrins Porphyrins (Porphins) are cyclic tetrapyrol compounds formed by the linkage )). of four pyrrole rings through methenyl bridges (( HC In the reduced porphyrins (Porphyrinogens) the linkage of four pyrrole rings (tetrapyrol) through methylene bridges (( CH2 )) The characteristic property of porphyrins is the formation of complexes with the metal ion bound to nitrogen atoms of the pyrrole rings. e.g. Heme (iron porphyrin). Proteins which contain heme ((hemoproteins)) are widely distributed e.g. Hemoglobin, Myoglobin, Cytochromes, Catalase & Tryptophan pyrrolase. Natural porphyrins have substituent side chains on the eight hydrogen atoms numbered on the pyrrole rings. These side chains are: CH 1-Methyl-group (M)… (( 3 )) 2-Acetate-group (A)… (( CH2COOH )) 3-Propionate-group (P)… (( CH2CH2COOH )) 4-Vinyl-group (V)… (( CH CH2 )) Porphyrins with asymmetric arrangement of the side chains are classified as type III porphyrins while those with symmetric arrangement of the side chains are classified as type I porphyrins. Only types I & III are present in nature & type III series is more important because it includes heme. 1 Heme Biosynthesis Heme biosynthesis occurs through the following steps: 1-The starting reaction is the condensation between succinyl-CoA ((derived from citric acid cycle in the mitochondria)) & glycine, this reaction is a rate limiting reaction in the hepatic heme synthesis, it occurs in the mitochondria & is catalyzed by ALA synthase (Aminolevulinate synthase) enzyme in the presence of pyridoxal phosphate as a cofactor. The product of this reaction is α-amino-β-ketoadipate which is rapidly decarboxylated to form δ-aminolevulinate (ALA). 2-In the cytoplasm condensation reaction between two molecules of ALA is catalyzed by ALA dehydratase enzyme to form two molecules of water & one 2 molecule of porphobilinogen (PBG) which is a precursor of pyrrole.
    [Show full text]
  • Nobel Lecture by Roger Y. Tsien
    CONSTRUCTING AND EXPLOITING THE FLUORESCENT PROTEIN PAINTBOX Nobel Lecture, December 8, 2008 by Roger Y. Tsien Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647, USA. MOTIVATION My first exposure to visibly fluorescent proteins (FPs) was near the end of my time as a faculty member at the University of California, Berkeley. Prof. Alexander Glazer, a friend and colleague there, was the world’s expert on phycobiliproteins, the brilliantly colored and intensely fluorescent proteins that serve as light-harvesting antennae for the photosynthetic apparatus of blue-green algae or cyanobacteria. One day, probably around 1987–88, Glazer told me that his lab had cloned the gene for one of the phycobilipro- teins. Furthermore, he said, the apoprotein produced from this gene became fluorescent when mixed with its chromophore, a small molecule cofactor that could be extracted from dried cyanobacteria under conditions that cleaved its bond to the phycobiliprotein. I remember becoming very excited about the prospect that an arbitrary protein could be fluorescently tagged in situ by genetically fusing it to the phycobiliprotein, then administering the chromophore, which I hoped would be able to cross membranes and get inside cells. Unfortunately, Glazer’s lab then found out that the spontane- ous reaction between the apoprotein and the chromophore produced the “wrong” product, whose fluorescence was red-shifted and five-fold lower than that of the native phycobiliprotein1–3. An enzyme from the cyanobacteria was required to insert the chromophore correctly into the apoprotein. This en- zyme was a heterodimer of two gene products, so at least three cyanobacterial genes would have to be introduced into any other organism, not counting any gene products needed to synthesize the chromophore4.
    [Show full text]
  • Determination of Urinary Porphyrin by DEAE-Cellulose Chromatography and Visual Spectrophotometry
    A n n a l s o f C l i n i c a l a n d L a b o r a t o r y S c i e n c e , Vol. 4, No. 1 Copyright © 1974, Institute for Clinical Science Determination of Urinary Porphyrin by DEAE-Cellulose Chromatography and Visual Spectrophotometry MARTHA I. WALTERS, P h .D.* Ohio Valley Hospital, Steubenville, OH 43952 ABSTRACT A simple, reliable and rapid method for the isolation and determination of urinary porphyrins is described. Both uroporphyrin and coproporphyrin are quantitatively adsorbed by DEAE cellulose. Urobilinogen, urobilin, and bili­ rubin are removed with sodium acetate. The isolated porphyrins, eluted with 1 N HC1, are measured spectrophotometrically, and the excretion is related to that of creatinine. Porphyrin excretion was studied in normal adults and children, and in patients with disorders of porphyrin metabolism ( e.g., in lead poisoning, hemolytic anemia, hepatic disease and porphyria) in order to eval­ uate the method. The coefficient of variation of replicate analyses of a sample containing 200 ¡xg porphyrin per gm creatinine was 3.5 percent. The correlation coefficient between 83 duplicate analyses was 0.993. Introduction or adsorption onto an adsorbant followed Patients with porphyria show great in­ by elution. Methods combining extraction creases in the excretion of uroporphyrin, and adsorption have been the most com­ coproporphyrin and their precursors indi­ monly used,3’12 but procedures employing cating a primary abnormality of porphyrin ion-exchange chromatography,11’13 electro­ synthesis (figure 1). In addition to these phoresis,4’10 and thin-layer chromatogra­ disorders, there are a number of diseases phy15’16 also have been described.
    [Show full text]
  • Surprising Roles for Bilins in a Green Alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland
    COMMENTARY COMMENTARY Surprising roles for bilins in a green alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland It is well established that the origin of plastids which serves as chromophore of phyto- can be traced to an endosymbiotic event in chromes (Fig. 1). An intriguing feature of which a free-living photosynthetic prokaryote all sequenced chlorophyte genomes is that, invaded a eukaryotic cell more than 1 billion although they lack phytochromes, their years ago. Most genes from the intruder genomes encode two HMOXs, HMOX1 were gradually transferred to the host nu- andHMOX2,andPCYA.InPNAS,Duanmu cleus whereas a small number of these genes et al. (6) investigate the role of these genes in were maintained in the plastid and gave the green alga Chlamydomonas reinhardtii rise to the plastid genome with its associated and made unexpected findings. protein synthesizing system. The products of Duanmu et al. first show that HMOX1, many of the genes transferred to the nucleus HMOX2, and PCYA are catalytically active were then retargeted to the plastid to keep it and produce bilins in vitro (6). They also functional. Altogether, approximately 3,000 demonstrate in a very elegant way that these nuclear genes in plants and algae encode proteins are functional in vivo by expressing plastid proteins, whereas chloroplast ge- a cyanobacteriochrome in the chloroplast Fig. 1. Tetrapyrrole biosynthetic pathways. The heme nomes contain between 100 and 120 genes of C. reinhardtii, where, remarkably, the and chlorophyll biosynthetic pathways diverge at pro- (1). A major challenge for eukaryotic pho- photoreceptor is assembled with bound toporphyrin IX (ProtoIX).
    [Show full text]
  • Expanding the Eggshell Colour Gamut: Uroerythrin and Bilirubin from Tinamou (Tinamidae) Eggshells Randy Hamchand1, Daniel Hanley2, Richard O
    www.nature.com/scientificreports OPEN Expanding the eggshell colour gamut: uroerythrin and bilirubin from tinamou (Tinamidae) eggshells Randy Hamchand1, Daniel Hanley2, Richard O. Prum3 & Christian Brückner1* To date, only two pigments have been identifed in avian eggshells: rusty-brown protoporphyrin IX and blue-green biliverdin IXα. Most avian eggshell colours can be produced by a mixture of these two tetrapyrrolic pigments. However, tinamou (Tinamidae) eggshells display colours not easily rationalised by combination of these two pigments alone, suggesting the presence of other pigments. Here, through extraction, derivatization, spectroscopy, chromatography, and mass spectrometry, we identify two novel eggshell pigments: yellow–brown tetrapyrrolic bilirubin from the guacamole- green eggshells of Eudromia elegans, and red–orange tripyrrolic uroerythrin from the purplish-brown eggshells of Nothura maculosa. Both pigments are known porphyrin catabolites and are found in the eggshells in conjunction with biliverdin IXα. A colour mixing model using the new pigments and biliverdin reproduces the respective eggshell colours. These discoveries expand our understanding of how eggshell colour diversity is achieved. We suggest that the ability of these pigments to photo- degrade may have an adaptive value for the tinamous. Birds’ eggs are found in an expansive variety of shapes, sizes, and colourings 1. Te diverse array of appearances found across Aves is achieved—in large part—through a combination of structural features, solid or patterned colorations, the use of two diferent dyes, and diferential pigment deposition. Eggshell pigments are embedded within the white calcium carbonate matrix of the egg and within a thin outer proteinaceous layer called the cuticle2–4. Tese pigments are believed to play a key role in crypsis5,6, although other, possibly dynamic 7,8, roles in inter- and intra-species signalling5,9–12 are also possible.
    [Show full text]
  • Biliverdin Reductase: a Major Physiologic Cytoprotectant
    Biliverdin reductase: A major physiologic cytoprotectant David E. Baran˜ ano*, Mahil Rao*, Christopher D. Ferris†, and Solomon H. Snyder*‡§¶ Departments of *Neuroscience, ‡Pharmacology and Molecular Sciences, and §Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and †Department of Medicine, Division of Gastroenterology, C-2104 Medical Center North, Vanderbilt University Medical Center, Nashville, TN 37232-2279 Contributed by Solomon H. Snyder, October 16, 2002 Bilirubin, an abundant pigment that causes jaundice, has long hypothesize that bilirubin acts in a catalytic fashion whereby lacked any clear physiologic role. It arises from enzymatic reduction bilirubin oxidized to biliverdin is rapidly reduced back to bili- by biliverdin reductase of biliverdin, a product of heme oxygenase rubin, a process that could readily afford 10,000-fold amplifica- activity. Bilirubin is a potent antioxidant that we show can protect tion (13). Here we establish that a redox cycle based on BVRA cells from a 10,000-fold excess of H2O2. We report that bilirubin is activity provides physiologic cytoprotection as BVRA depletion a major physiologic antioxidant cytoprotectant. Thus, cellular de- exacerbates the formation of reactive oxygen species (ROS) and pletion of bilirubin by RNA interference markedly augments tissue augments cell death. levels of reactive oxygen species and causes apoptotic cell death. Depletion of glutathione, generally regarded as a physiologic Methods antioxidant cytoprotectant, elicits lesser increases in reactive ox- All chemicals were obtained from Sigma unless otherwise ygen species and cell death. The potent physiologic antioxidant indicated. actions of bilirubin reflect an amplification cycle whereby bilirubin, acting as an antioxidant, is itself oxidized to biliverdin and then Cell Culture and Viability Measurements.
    [Show full text]
  • Urine Bag As a Modern Day Matula
    Hindawi Publishing Corporation ISRN Nephrology Volume 2013, Article ID 215690, 8 pages http://dx.doi.org/10.5402/2013/215690 Review Article Urine Bag as a Modern Day Matula Stalin Viswanathan Department of General Medicine, Indira Gandhi Medical College, Kathirkamam, Pondicherry 605009, India Correspondence should be addressed to Stalin Viswanathan; [email protected] Received 18 April 2013; Accepted 8 May 2013 Academic Editors: S. Assimakopoulos, C. Fourtounas, and A. H. Tzamaloukas Copyright © 2013 Stalin Viswanathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Since time immemorial uroscopic analysis has been a staple of diagnostic medicine. It received prominence during the middle ages with the introduction of the matula. Urinary discoloration is generally due to changes in urochrome concentration associated with the presence of other endogenous or exogenous pigments. Observation of urine colors has received less attention due to the advances made in urinalysis. A gamut of urine colors can be seen in urine bags of hospitalized patients that may give clue to presence of infections, medications, poisons, and hemolysis. Although worrisome to the patient, urine discoloration is mostly benign and resolves with removal of the offending agent. Twelve urine bags with discolored urine (and their predisposing causes) have been shown as examples. Urine colors (blue-green, yellow, orange, pink, red, brown, black, white, and purple) and their etiologies have been reviewed following a literature search in these databases: Pubmed, EBSCO, Science Direct, Proquest, Google Scholar, Springer, and Ovid.
    [Show full text]
  • Urine Bag As a Modern Day Matula
    Hindawi Publishing Corporation ISRN Nephrology Volume 2013, Article ID 215690, 8 pages http://dx.doi.org/10.5402/2013/215690 Review Article Urine Bag as a Modern Day Matula Stalin Viswanathan Department of General Medicine, Indira Gandhi Medical College, Kathirkamam, Pondicherry 605009, India Correspondence should be addressed to Stalin Viswanathan; [email protected] Received 18 April 2013; Accepted 8 May 2013 Academic Editors: S. Assimakopoulos, C. Fourtounas, and A. H. Tzamaloukas Copyright © 2013 Stalin Viswanathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Since time immemorial uroscopic analysis has been a staple of diagnostic medicine. It received prominence during the middle ages with the introduction of the matula. Urinary discoloration is generally due to changes in urochrome concentration associated with the presence of other endogenous or exogenous pigments. Observation of urine colors has received less attention due to the advances made in urinalysis. A gamut of urine colors can be seen in urine bags of hospitalized patients that may give clue to presence of infections, medications, poisons, and hemolysis. Although worrisome to the patient, urine discoloration is mostly benign and resolves with removal of the offending agent. Twelve urine bags with discolored urine (and their predisposing causes) have been shown as examples. Urine colors (blue-green, yellow, orange, pink, red, brown, black, white, and purple) and their etiologies have been reviewed following a literature search in these databases: Pubmed, EBSCO, Science Direct, Proquest, Google Scholar, Springer, and Ovid.
    [Show full text]
  • Catabolism of Tetrapyrroles As the Final Product of Heme Catabolism (Cf Scheme 1)
    CHEMIE IN FREIBURG/CHIMIE A FRIBOURG 352 CHIMIA 48 (199~) Nr. 9 (Scl'lcmhcr) ns itu Chimia 48 (/994) 352-36/ heme (1), at the a-methene bridge (C(5)) €> Neue Sclnveizerische Chemische Gesellschaft producing CO and an unstable Felli com- /SSN 0009-4293 plex. The latter loses the metal ion to yield the green pigment protobiliverdin IXa (usually abbreviated to biliverdin (2)), which is excreted by birds and amphibia, Catabolism of Tetrapyrroles as the final product of heme catabolism (cf Scheme 1). The iron is recovered in the protein called ferritin and can be reutilized Albert Gossauer* for the biosynthesis of new heme mole- cules. As biliverdin (2) has been recog- nized to be a precursor in the biosynthesis of phycobilins [9], a similar pathway is Abstract. The enzymatic degradation of naturally occurring tetrapyrrolic pigments probably followed for the biosynthesis of (heme, chlorophylls, and vitamin B 12) is shortly reviewed. this class oflight-harvesting chromophores 1. Introduction pounds known so far are synthesized, have Scheme I. Catabolism (!{ Heme ill Mammals been already elucidated, it may be antici- In contrast to the enormous amount of pated that the study of catabolic processes work accomplished by chemists in the will attract the interest of more chemists elucidation of biosynthetic pathways of and biochemists in the near future. secondary metabolites (terpenes, steroids, alkaloids, among others), only a few at- tempts have been made until now to un- 2. Heme Catabolism derstand the mechanisms oftheirdegrada- tion in living organisms. A possible rea- It has been known for over half a cen- son for this fact is the irrational association tury that heme, the oxygen-carrier mole- of degradation (catabolism: greek Kara= cule associated with the blood pigment down) with decay and, thus, with unattrac- hemoglobin, is converted in animal cells tive dirty colors and unpleasant odors.
    [Show full text]
  • Air Force Blue (Raf) {\Color{Airforceblueraf}\#5D8aa8
    Air Force Blue (Raf) {\color{airforceblueraf}\#5d8aa8} #5d8aa8 Air Force Blue (Usaf) {\color{airforceblueusaf}\#00308f} #00308f Air Superiority Blue {\color{airsuperiorityblue}\#72a0c1} #72a0c1 Alabama Crimson {\color{alabamacrimson}\#a32638} #a32638 Alice Blue {\color{aliceblue}\#f0f8ff} #f0f8ff Alizarin Crimson {\color{alizarincrimson}\#e32636} #e32636 Alloy Orange {\color{alloyorange}\#c46210} #c46210 Almond {\color{almond}\#efdecd} #efdecd Amaranth {\color{amaranth}\#e52b50} #e52b50 Amber {\color{amber}\#ffbf00} #ffbf00 Amber (Sae/Ece) {\color{ambersaeece}\#ff7e00} #ff7e00 American Rose {\color{americanrose}\#ff033e} #ff033e Amethyst {\color{amethyst}\#9966cc} #9966cc Android Green {\color{androidgreen}\#a4c639} #a4c639 Anti-Flash White {\color{antiflashwhite}\#f2f3f4} #f2f3f4 Antique Brass {\color{antiquebrass}\#cd9575} #cd9575 Antique Fuchsia {\color{antiquefuchsia}\#915c83} #915c83 Antique Ruby {\color{antiqueruby}\#841b2d} #841b2d Antique White {\color{antiquewhite}\#faebd7} #faebd7 Ao (English) {\color{aoenglish}\#008000} #008000 Apple Green {\color{applegreen}\#8db600} #8db600 Apricot {\color{apricot}\#fbceb1} #fbceb1 Aqua {\color{aqua}\#00ffff} #00ffff Aquamarine {\color{aquamarine}\#7fffd4} #7fffd4 Army Green {\color{armygreen}\#4b5320} #4b5320 Arsenic {\color{arsenic}\#3b444b} #3b444b Arylide Yellow {\color{arylideyellow}\#e9d66b} #e9d66b Ash Grey {\color{ashgrey}\#b2beb5} #b2beb5 Asparagus {\color{asparagus}\#87a96b} #87a96b Atomic Tangerine {\color{atomictangerine}\#ff9966} #ff9966 Auburn {\color{auburn}\#a52a2a} #a52a2a Aureolin
    [Show full text]
  • Studies on Urobilin Physiology and Pathology
    STUDIES ON UROBILIN PHYSIOLOGY AND PATHOLOGY. I. THE QUANTITATIVE DETERMINATION OF UROBILIN. BY ROBERT ELMAN, M.D., AD PHILIP D. McMASTER, M.D. (From the Laboratoriesof The Rockefeller Institute for Medical Research.) (Received for publication, January 29, 1925.) Numerous methods for the quantitation of urobilin have been reported and a great many estimations have been made with their aid in clinical conditions. There has been no semblance of accord among workers as concerns the origin and fate of the pigment; and analysis of the literature 2". accounts for this in making clear the conflicting nature of the evidence accumulated. On the whole it is not surprising that interest in the pigment has lagged in recent years despite a general feeling among workers that it has a weighty significance. The possession of an experimental method s adapted to a precise study of bile, an element supposedly of primary importance in the metabolism of urobilin, has led us to take up the study of it. The present paper deals with the quantitative estimation of the pigment in bile, urine, and stool. Subsequent papers will be concerned with its variations under experimental conditions. The term urobilin as used in these studies will be taken to include all of the reduction products of bilirubin capable of causing a green fluorescence in alco- holic zinc acetate solution. With urobilinogen, as such, we have not been concerned, since it is easily oxidized to the more readily re- cognizable urobilin. The discovery in 1869 of urobilin was made possible by its spectroscopic properties. Jaffe4 while examining a specimen of urine noted an absorption band 'Meyer-Beti, F., Ergebn.
    [Show full text]
  • The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins
    UC San Diego UC San Diego Previously Published Works Title The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Permalink https://escholarship.org/uc/item/6jx417t1 Journal Trends in biochemical sciences, 42(2) ISSN 0968-0004 Authors Rodriguez, Erik A Campbell, Robert E Lin, John Y et al. Publication Date 2017-02-01 DOI 10.1016/j.tibs.2016.09.010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Trends Biochem Manuscript Author Sci. Author Manuscript Author manuscript; available in PMC 2018 February 01. Published in final edited form as: Trends Biochem Sci. 2017 February ; 42(2): 111–129. doi:10.1016/j.tibs.2016.09.010. The growing and glowing toolbox of fluorescent and photoactive proteins Erik A. Rodriguez1, Robert E. Campbell2, John Y. Lin3, Michael Z. Lin4, Atsushi Miyawaki5, Amy E. Palmer6, Xiaokun Shu7, Jin Zhang1, and Roger Y. Tsien1,8 1Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093, USA. 2Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada. 3School of Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia. 4Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA and Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA. 5Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. 6Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder, CO, 80303, USA. 7Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
    [Show full text]