Dimensional Analysis for Fluids

Total Page:16

File Type:pdf, Size:1020Kb

Dimensional Analysis for Fluids Introducing fluid dynamics using dimensional analysis Jens Højgaard Jensen Citation: Am. J. Phys. 81, 688 (2013); doi: 10.1119/1.4813064 View online: http://dx.doi.org/10.1119/1.4813064 View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v81/i9 Published by the American Association of Physics Teachers Related Articles Towards the Kelvin wake and beyond Am. J. Phys. 81, 245 (2013) Why do bubbles in Guinness sink? Am. J. Phys. 81, 88 (2013) The Electric Whirl in the 19th and 21st Centuries Phys. Teach. 50, 536 (2012) Beyond the Van Der Waals loop: What can be learned from simulating Lennard-Jones fluids inside the region of phase coexistence Am. J. Phys. 80, 1099 (2012) The Enigma of the Aerofoil: Rival Theories in Aerodynamics, 1909–1930. Am. J. Phys. 80, 649 (2012) Additional information on Am. J. Phys. Journal Homepage: http://ajp.aapt.org/ Journal Information: http://ajp.aapt.org/about/about_the_journal Top downloads: http://ajp.aapt.org/most_downloaded Information for Authors: http://ajp.dickinson.edu/Contributors/contGenInfo.html Downloaded 10 Sep 2013 to 129.25.7.39. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission Introducing fluid dynamics using dimensional analysis Jens Højgaard Jensena) IMFUFA and “Glass and Time,” Department of Sciences, Roskilde University, DK-4000 Roskilde, Denmark (Received 25 October 2012; accepted 21 June 2013) Many aspects of fluid dynamics can be introduced using dimensional analysis, combined with some basic physical principles. This approach is concise and allows exploration of both the laminar and turbulent limits—including important phenomena that are not normally dealt with when fluid dynamics is first introduced as a precise mathematical discipline. In this paper, we use dimensional analysis to understand drag forces on bodies, flow speeds through tubes, and lift forces. VC 2013 American Association of Physics Teachers. [http://dx.doi.org/10.1119/1.4813064] I. INTRODUCTION arguments. In Sec. VI, we discuss how the usual mathemati- cal way of presenting fluid dynamics has overshadowed the In this article, we describe a method, using dimensional more intuitive approach of Secs. III–V. Finally, in Sec. VII, analysis, for introducing fluid dynamics to undergraduate the pros and cons of the approach are discussed. physics students. Dimensional analysis, which emphasizes thinking more than memorizing, is not commonly used in in- 1–6 II. DIMENSIONAL ANALYSIS troductory textbooks when discussing fluids, even though such as approach facilitates a clearer understanding of the In recognition of the centenary of its introduction, we will effects of turbulence when considering drag and lift forces, use the Bohr model of the hydrogen atom as an example to and flow resistance in tubes. introduce the method of dimensional analysis. Fluid dynamics is a huge and difficult subject, with a long When presenting his model in 1913, Niels Bohr gave a history, not only in the field of physics but also in the fields dimensional analysis argument in the introduction of his arti- of mathematics and engineering. In spite of this, a complete cle.10 The classical mechanical problem of calculating the understanding of turbulence remains an unsolved problem, orbits of the electron around the proton involves only two 7 as several famous physicists have noted. input variables: the mass of the electron and the constant 2 Turbulence is common in daily life. The transition from kC ¼ e =4p0 that determines the strength of the force laminar to turbulent flow is seen, for example, in smoke ris- between the two particles. But these two input variables can- ing from a cigarette. Turbulence affects the air resistance act- not be combined into a physical quantity with dimensions of 8 ing on a bicyclist and on falling objects such as the coffee length, needed to explain the size of the atom. On the other 9 filters or muffin forms often used in physics teaching. In hand, when Planck’s constant is introduced as a third vari- these cases, the air resistance is proportional to the square of able, dimensional analysis gives a characteristic length—the the object’s velocity, and this quadratic dependence on ve- Bohr radius—that agrees with the known order of magnitude locity, in incompressible fluids, is connected to turbulence. of the size of the atom. Let us see how. Nevertheless, in physics instruction drag forces are often We stress that the symbols used in physics formulas refer assumed to be linear in the velocity (as is the case for lami- to physical quantities—not merely to the numerical values of nar flow) rather than quadratic, even though the latter is these quantities in a particular system of units. For example, more commonly encountered. if we write d1 ¼ 2d2, to indicate that one distance is twice as Within the paradigm of fluid dynamics as an exact mathe- large as another, we are making a statement that is independ- matical discipline, drag forces proportional to velocity ent of the particular units and numbers used to specify d1 and (Stokes’ law) and other phenomena (e.g., Poiseuille’s law for d2. the flow speed through tubes) in the laminar flow regime can We also note that it is not possible to add quantities of dif- be derived. But due to the nonlinearity of the fundamental ferent dimension—for example, a length and a mass. On the equations, this approach does not give results in the turbulent other hand, quantities with different dimensions can be mul- limit. In such situations dimensional analysis is especially tiplied and divided to obtain quantities with new dimensions useful, in that much of the behavior can be revealed without (for example, when we calculate a density from a mass di- actually solving the nonlinear equations. vided by a length cubed). In general, if a physical formula In Sec. II, we give a brief introduction to dimensional expresses some output quantity Q1 in terms of several input analysis, meant for readers unfamiliar with the method. In quantities Q2, Q3,…, then this formula must take the form Secs. III and IV, we estimate drag forces on bodies and flow speeds through tubes in both the turbulent and laminar limits a b c Q1 ¼ g Á Q2 Á Q3 Á Q4…; (1) using dimensional analysis combined with work/energy-flow arguments. Instead of comparing the relative strengths of the where the powers a, b, c,… yield the correct dimensions for terms (with dimensions of force) in the Navier-Stokes’ equa- Q1 and the dimensionless factor g can be either a pure num- tion, as is usually done in introductory textbooks on fluid dy- ber or a function of dimensionless power-law combinations 11 namics, we ask whether the work done by driving forces is of Q2, Q3, …, if such dimensionless combinations exist. converted primarily into thermal energy or primarily into Returning to the Bohr atom, we denote the Bohr radius a0, macroscopic kinetic energy. In Sec. V, we calculate lift the mass of the electron me, and write the Coulomb force 2 forces in both the turbulent and laminar limits using dimen- between the electron and the proton as kC=r . We will use sional analysis combined with force/momentum-flow square brackets to denote the dimensions of a quantity, and 688 Am. J. Phys. 81 (9), September 2013 http://aapt.org/ajp VC 2013 American Association of Physics Teachers 688 Downloaded 10 Sep 2013 to 129.25.7.39. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission the symbols L, T, and M to denote the fundamental mechani- It is not common for physicists to follow Niels Bohr and cal dimensions length, time, and mass, respectively. We can present dimensional analysis in their formal writings. But 3 À2 then write ½a0¼L; ½me¼M, and ½kC¼M Á L Á T (note dimensional analysis is a powerful tool that physicists often that the final expression is equivalent to force times L2). use before developing a more formal line of reasoning. Now suppose that a0 were a function of only me and kC. Solving problems using dimensional analysis is also a good Then, following the form of Eq. (1), we could write approach for teaching students how to think like a physicist.11 a b a0 ¼ g ðmeÞ ðkCÞ (2) III. DRAG for some a and b. Taking the dimensions of both sides of this equation gives We now turn to fluid dynamics, and use dimensional anal- ysis to calculate the drag force on a body moving through a L ¼ Ma ðM Á L3 Á TÀ2Þb ¼ Maþb Á L3b Á TÀ2b: (3) fluid. For motion through air, drag is often called air resist- ance. But the formulas we derive below are valid for the Since none of the fundamental dimensions L, T, and M can motion of bodies in both gases and liquids. We consider the be written in terms of the others, the powers of each dimen- steady motion of a body pulled though a fluid, as sketched in sion must match up separately between the two sides. But Fig. 1. The drag D is the force exerted by the fluid in the this is impossible—matching powers of L implies b ¼ 1=3, direction opposite to the motion. If the motion is steady, the while matching powers of T implies b ¼ 0. drag has the same magnitude as the pulling force. Bohr’s dimensional analysis thus shows that classical The first thing to do is to ask which physical quantities the mechanics cannot produce a characteristic atomic length. drag can depend on. The pulling force and the drag depend But including Planck’s constant (divided by 2p), which has on the velocity v of the body; they also depend on the shape dimension ½h¼M Á L2 Á TÀ1, changes the situation.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Drag Force Calculation
    DRAG FORCE CALCULATION “Drag is the component of force on a body acting parallel to the direction of relative motion.” [1] This can occur between two differing fluids or between a fluid and a solid. In this lab, the drag force will be explored between a fluid, air, and a solid shape. Drag force is a function of shape geometry, velocity of the moving fluid over a stationary shape, and the fluid properties density and viscosity. It can be calculated using the following equation, ퟏ 푭 = 흆푨푪 푽ퟐ 푫 ퟐ 푫 Equation 1: Drag force equation using total profile where ρ is density determined from Table A.9 or A.10 in your textbook A is the frontal area of the submerged object CD is the drag coefficient determined from Table 1 V is the free-stream velocity measured during the lab Table 1: Known drag coefficients for various shapes Body Status Shape CD Square Rod Sharp Corner 2.2 Circular Rod 0.3 Concave Face 1.2 Semicircular Rod Flat Face 1.7 The drag force of an object can also be calculated by applying the conservation of momentum equation for your stationary object. 휕 퐹⃗ = ∫ 푉⃗⃗ 휌푑∀ + ∫ 푉⃗⃗휌푉⃗⃗ ∙ 푑퐴⃗ 휕푡 퐶푉 퐶푆 Assuming steady flow, the equation reduces to 퐹⃗ = ∫ 푉⃗⃗휌푉⃗⃗ ∙ 푑퐴⃗ 퐶푆 The following frontal view of the duct is shown below. Integrating the velocity profile after the shape will allow calculation of drag force per unit span. Figure 1: Velocity profile after an inserted shape. Combining the previous equation with Figure 1, the following equation is obtained: 푊 퐷푓 = ∫ 휌푈푖(푈∞ − 푈푖)퐿푑푦 0 Simplifying the equation, you get: 20 퐷푓 = 휌퐿 ∑ 푈푖(푈∞ − 푈푖)훥푦 푖=1 Equation 2: Drag force equation using wake profile The pressure measurements can be converted into velocity using the Bernoulli’s equation as follows: 2Δ푃푖 푈푖 = √ 휌퐴푖푟 Be sure to remember that the manometers used are in W.C.
    [Show full text]
  • Experimental Analysis of a Low Cost Lift and Drag Force Measurement System for Educational Sessions
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 Experimental Analysis of a Low Cost Lift and Drag Force Measurement System for Educational Sessions Asutosh Boro B.Tech National Institute of Technology Srinagar Indian Institute of Science, Bangalore 560012 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - A low cost Lift and Drag force measurement wind- tunnel and used for educational learning with good system was designed, fabricated and tested in wind tunnel accuracy. In addition, an indirect wind tunnel velocity to be used for basic practical lab sessions. It consists of a measurement capability of the designed system was mechanical linkage system, piezo-resistive sensors and tested. NACA airfoil 4209 was chosen as the test subject to NACA Airfoil to test its performance. The system was tested measure its performance and tests were done at various at various velocities and angle of attacks and experimental angles of attack and velocities 11m/s, 12m/s and 14m/s. coefficient of lift and drag were then compared with The force and coefficient results obtained were compared literature values to find the errors. A decent accuracy was with literature data from airfoil tools[1] to find the deduced from the lift data and the considerable error in system’s accuracy. drag was due to concentration of drag forces across a narrow force range and sensor’s fluctuations across that 1.1 Methodology range. It was inferred that drag system will be as accurate as the lift system when the drag forces are large.
    [Show full text]
  • Chapter 4: Immersed Body Flow [Pp
    MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively.
    [Show full text]
  • Sailing for Performance
    SD2706 Sailing for Performance Objective: Learn to calculate the performance of sailing boats Today: Sailplan aerodynamics Recap User input: Rig dimensions ‣ P,E,J,I,LPG,BAD Hull offset file Lines Processing Program, LPP: ‣ Example.bri LPP_for_VPP.m rigdata Hydrostatic calculations Loading condition ‣ GZdata,V,LOA,BMAX,KG,LCB, hulldata ‣ WK,LCG LCF,AWP,BWL,TC,CM,D,CP,LW, T,LCBfpp,LCFfpp Keel geometry ‣ TK,C Solve equilibrium State variables: Environmental variables: solve_Netwon.m iterative ‣ VS,HEEL ‣ TWS,TWA ‣ 2-dim Netwon-Raphson iterative method Hydrodynamics Aerodynamics calc_hydro.m calc_aero.m VS,HEEL dF,dM Canoe body viscous drag Lift ‣ RFC ‣ CL Residuals Viscous drag Residuary drag calc_residuals_Newton.m ‣ RR + dRRH ‣ CD ‣ dF = FAX + FHX (FORCE) Keel fin drag ‣ dM = MH + MR (MOMENT) Induced drag ‣ RF ‣ CDi Centre of effort Centre of effort ‣ CEH ‣ CEA FH,CEH FA,CEA The rig As we see it Sail plan ≈ Mainsail + Jib (or genoa) + Spinnaker The sail plan is defined by: IMSYC-66 P Mainsail hoist [m] P E Boom leech length [m] BAD Boom above deck [m] I I Height of fore triangle [m] J Base of fore triangle [m] LPG Perpendicular of jib [m] CEA CEA Centre of effort [m] R Reef factor [-] J E LPG BAD D Sailplan modelling What is the purpose of the sails on our yacht? To maximize boat speed on a given course in a given wind strength ‣ Max driving force, within our available righting moment Since: We seek: Fx (Thrust vs Resistance) ‣ Driving force, FAx Fy (Side forces, Sails vs. Keel) ‣ Heeling force, FAy (Mx (Heeling-righting moment)) ‣ Heeling arm, CAE Aerodynamics of sails A sail is: ‣ a foil with very small thickness and large camber, ‣ with flexible geometry, ‣ usually operating together with another sail ‣ and operating at a large variety of angles of attack ‣ Environment L D V Each vertical section is a differently cambered thin foil Aerodynamics of sails TWIST due to e.g.
    [Show full text]
  • How Do Wings Generate Lift? 2
    GENERAL ARTICLE How Do Wings Generate Lift? 2. Myths, Approximate Theories and Why They All Work M D Deshpande and M Sivapragasam A cambered surface that is moving forward in a fluid gen- erates lift. To explain this interesting fact in terms of sim- pler models, some preparatory concepts were discussed in the first part of this article. We also agreed on what is an accept- able explanation. Then some popular models were discussed. Some quantitative theories will be discussed in this conclud- ing part. Finally we will tie up all these ideas together and connect them to the rigorous momentum theorem. M D Deshpande is a Professor in the Faculty of Engineering The triumphant vindication of bold theories – are these not the and Technology at M S Ramaiah University of pride and justification of our life’s work? Applied Sciences. Sherlock Holmes, The Valley of Fear Sir Arthur Conan Doyle 1. Introduction M Sivapragasam is an We start here with two quantitative theories before going to the Assistant Professor in the momentum conservation principle in the next section. Faculty of Engineering and Technology at M S Ramaiah University of Applied 1.1 The Thin Airfoil Theory Sciences. This elegant approximate theory takes us further than what was discussed in the last two sections of Part 111, and quantifies the Resonance, Vol.22, No.1, ideas to get expressions for lift and moment that are remarkably pp.61–77, 2017. accurate. The pressure distribution on the airfoil, apart from cre- ating a lift force, leads to a nose-up or nose-down moment also.
    [Show full text]
  • A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy Tech Library Kafb, Nm
    I A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY TECH LIBRARY KAFB, NM OL3042b NASA TN D-3767 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center SUMMARY A concept for the calculation of the vortex lift of sharp-edge delta wings is pre­ sented and compared with experimental data. The concept is based on an analogy between the vortex lift and the leading-edge suction associated with the potential flow about the leading edge. This concept, when combined with potential-flow theory modified to include the nonlinearities associated with the exact boundary condition and the loss of the lift component of the leading-edge suction, provides excellent prediction of the total lift for a wide range of delta wings up to angles of attack of 20° or greater. INTRODUCTION The aerodynamic characteristics of thin sharp-edge delta wings are of interest for supersonic aircraft and have been the subject of theoretical and experimental studies for many years in both the subsonic and supersonic speed ranges. Of particular interest at subsonic speeds has been the formation and influence of the leading-edge separation vor­ tex that occurs on wings having sharp, highly swept leading edges.
    [Show full text]
  • Dimensional Analysis and the Theory of Natural Units
    LIBRARY TECHNICAL REPORT SECTION SCHOOL NAVAL POSTGRADUATE MONTEREY, CALIFORNIA 93940 NPS-57Gn71101A NAVAL POSTGRADUATE SCHOOL Monterey, California DIMENSIONAL ANALYSIS AND THE THEORY OF NATURAL UNITS "by T. H. Gawain, D.Sc. October 1971 lllp FEDDOCS public This document has been approved for D 208.14/2:NPS-57GN71101A unlimited release and sale; i^ distribution is NAVAL POSTGRADUATE SCHOOL Monterey, California Rear Admiral A. S. Goodfellow, Jr., USN M. U. Clauser Superintendent Provost ABSTRACT: This monograph has been prepared as a text on dimensional analysis for students of Aeronautics at this School. It develops the subject from a viewpoint which is inadequately treated in most standard texts hut which the author's experience has shown to be valuable to students and professionals alike. The analysis treats two types of consistent units, namely, fixed units and natural units. Fixed units include those encountered in the various familiar English and metric systems. Natural units are not fixed in magnitude once and for all but depend on certain physical reference parameters which change with the problem under consideration. Detailed rules are given for the orderly choice of such dimensional reference parameters and for their use in various applications. It is shown that when transformed into natural units, all physical quantities are reduced to dimensionless form. The dimension- less parameters of the well known Pi Theorem are shown to be in this category. An important corollary is proved, namely that any valid physical equation remains valid if all dimensional quantities in the equation be replaced by their dimensionless counterparts in any consistent system of natural units.
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • UNIT – 4 FORCES on IMMERSED BODIES Lecture-01
    1 UNIT – 4 FORCES ON IMMERSED BODIES Lecture-01 Forces on immersed bodies When a body is immersed in a real fluid, which is flowing at a uniform velocity U, the fluid will exert a force on the body. The total force (FR) can be resolved in two components: 1. Drag (FD): Component of the total force in the direction of motion of fluid. 2. Lift (FL): Component of the total force in the perpendicular direction of the motion of fluid. It occurs only when the axis of the body is inclined to the direction of fluid flow. If the axis of the body is parallel to the fluid flow, lift force will be zero. Expression for Drag & Lift Forces acting on the small elemental area dA are: i. Pressure force acting perpendicular to the surface i.e. p dA ii. Shear force acting along the tangential direction to the surface i.e. τ0dA (a) Drag force (FD) : Drag force on elemental area = p dAcosθ + τ0 dAcos(90 – θ = p dAosθ + τ0dAsinθ Hence Total drag (or profile drag) is given by, Where �� = ∫ � cos � �� + ∫�0 sin � �� = pressure drag or form drag, and ∫ � cos � �� = shear drag or friction drag or skin drag (b) Lift0 force (F ) : ∫ � sin � ��L Lift force on the elemental area = − p dAsinθ + τ0 dA sin(90 – θ = − p dAsiθ + τ0dAcosθ Hence, total lift is given by http://www.rgpvonline.com �� = ∫�0 cos � �� − ∫ p sin � �� 2 The drag & lift for a body moving in a fluid of density at a uniform velocity U are calculated mathematically as 2 � And �� = � � � 2 � Where A = projected area of the body or�� largest= � project� � area of the immersed body.
    [Show full text]
  • Computational Fluid Dynamic Analysis of Scaled Hypersonic Re-Entry Vehicles
    Computational Fluid Dynamic Analysis of Scaled Hypersonic Re-Entry Vehicles A project presented to The Faculty of the Department of Aerospace Engineering San Jose State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Simon H.B. Sorensen March 2019 approved by Dr. Periklis Papadopoulous Faculty Advisor 1 i ABSTRACT With the advancement of technology in space, reusable re-entry space planes have become a focus point with their ability to save materials and utilize existing flight data. Their ability to not only supply materials to space stations or deploy satellites, but also in atmosphere flight makes them versatile in their deployment and recovery. The existing design of vehicles such as the Space Shuttle Orbiter and X-37 Orbital Test Vehicle can be used to observe the effects of scaling existing vehicle geometry and how it would operate in identical conditions to the full-size vehicle. These scaled vehicles, if viable, would provide additional options depending on mission parameters without losing the advantages of reusable re-entry space planes. 2 Table of Contents Abstract . i Nomenclature . .1 1. Introduction. .1 2. Literature Review. 2 2.1 Space Shuttle Orbiter. 2 2.2 X-37 Orbital Test Vehicle. 3 3. Assumptions & Equations. 3 3.1 Assumptions. 3 3.2 Equations to Solve. 4 4. Methodology. 5 5. Base Sized Vehicles. 5 5.1 Space Shuttle Orbiter. 5 5.2 X-37. 9 6. Scaled Vehicles. 11 7. Simulations. 12 7.1 Initial Conditions. 12 7.2 Initial Test Utilizing X-37. .13 7.3 X-37 OTV.
    [Show full text]
  • Three-Dimensional Analysis of the Hot-Spot Fuel Temperature in Pebble Bed and Prismatic Modular Reactors
    Transactions of the Korean Nuclear Society Spring Meeting Chuncheon, Korea, May 25-26 2006 Three-Dimensional Analysis of the Hot-Spot Fuel Temperature in Pebble Bed and Prismatic Modular Reactors W. K. In,a S. W. Lee,a H. S. Lim,a W. J. Lee a a Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon, Korea, 305-600, [email protected] 1. Introduction thousands of fuel particles. The pebble diameter is 60mm High temperature gas-cooled reactors(HTGR) have with a 5mm unfueled layer. Unstaggered and 2-D been reviewed as potential sources for future energy needs, staggered arrays of 3x3 pebbles as shown in Fig. 1 are particularly for a hydrogen production. Among the simulated to predict the temperature distribution in a hot- HTGRs, the pebble bed reactor(PBR) and a prismatic spot pebble core. Total number of nodes is 1,220,000 and modular reactor(PMR) are considered as the nuclear heat 1,060,000 for the unstaggered and staggered models, source in Korea’s nuclear hydrogen development and respectively. demonstration project. PBR uses coated fuel particles The GT-MHR(PMR) reactor core is loaded with an embedded in spherical graphite fuel pebbles. The fuel annular stack of hexahedral prismatic fuel assemblies, pebbles flow down through the core during an operation. which form 102 columns consisting of 10 fuel blocks PMR uses graphite fuel blocks which contain cylindrical stacked axially in each column. Each fuel block is a fuel compacts consisting of the fuel particles. The fuel triangular array of a fuel compact channel, a coolant blocks also contain coolant passages and locations for channel and a channel for a control rod.
    [Show full text]