Enteroendocrine Cell Models: General Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Enteroendocrine Cell Models: General Introduction Part IV Enteroendocrine Cell Models: General Introduction During and after a meal, ingested nutrients modulate the release of a variety of hormones, many of which serve roles to enhance nutrient digestion. A number of these gut hormones, most notably cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), are key players in infl uencing eating behaviour and food intake, largely through induction of satiety (Begg and Woods 2013 ). Some of these hormones (glucose-dependent insulinotropic peptide (GIP) and GLP-1)) are also incretins, enhancing glucose-dependent insulin secretion. Identifying food com- ponents that alter the gastrointestinal hormonal milieu may aid in our ‘battle of the bulge’ as well as in the treatment of related metabolic diseases (Bruen et al. 2012 ). Mammalian enteroendocrine cell lines provide the starting framework to measure gut hormonal responses to food. In vitro models of enteroendocrine cell lines have proven diffi cult to develop, primarily because enteroendocrine cells are sparsely dispersed throughout the gastro-intestinal tract and are co-localized with abundant enterocytes. However, several groups have successfully established enteroendocrine cell models that are available for in vitro screening bioassays (Table 1 ). The NCI-H716 cell line is the only human enteroendocrine cell line available and it provides a unique L-cell model to screen food components for their ability to modulate secretion of the incretin hormone, GLP-1. This cell line was originally derived from cells present in the ascites fl uid of a male 33 year old patient with a poorly differenti- ated adenocarcinoma of the cecum (Park et al. 1987 ). When propagated in vitro, these cells have been described to exhibit endocrine differentiation including the expression of secretory granules and chromogranin A (de Bruine et al. 1993 ). However, they do require attachment matrices (de Bruine et al. 1993 ; Anini and Brubaker 2003 ) which could limit their ease of use in high throughput assays. The NCI-H716 cells express both GLP-1 and PYY but not CCK (Reimer et al. 2001 ; Jang et al. 2007 ). GLP-1 expression in these cells is mostly homogenous but PYY expression is much less uniform, with only ~30 % of cells containing PYY immunoreactivity (Jang et al. 2007 ). The NCI- H716 cell line is discussed in more detail in Chap. 20 . 208 Part IV Enteroendocrine Cell Models: General Introduction c lab c c lab c cult to transfect (University of California, L-cell models can be pro- ailable (Anini and Brubaker cult to transfect cult to culture; small number of Heterogeneous cell population; so may murine- and tumour-derived not recapitulate primary human L-cells Murine- and tumour-derived so may Murine- and tumour-derived not recapitulate human L-cells; requires basement membrane to attach to some surfaces Possibly heterogeneous as not single-cell cloned; is tumour-derived so may not recapitulate primary human L-cell; requires basement membrane to attach culture plate Heterogeneous cell population; obtained from fetal rats and may therefore not be representative of the adult human L-cell; small number of L-cells precludes cell-specifi western techniques (i.e. RT-PCR, blot); diffi Diffi L-cells precludes cell-specifi western techniques (i.e. RT-PCR, blot); may be diffi ed mice can be used as Representative of proximal L-cell; all lab techniques possible; secretes several gut hormones Representative of distal L-cell; subcloned homogenous cells; all lab techniques possible; easy to transfect Representative of distal L-cell; all lab techniques possible; easy to transfect Primary cells derived from normal intestine Primary cells derived from normal intestine; genetically- modifi tissue source; can be used to study single cells if derived from L-cell reporter mice 1 %) 1 %) ≅ ≅ Poorly differentiated; secretes CCK, GLP-1, pancreatic PYY, GIP, polypeptide, neurotensin, GLP-2 and oxyntomodulin Single-cell subcloned population of L-cells; secretes GLP-1 and CCK Heterogeneous population of intestinal cells (L-cells Undifferentiated Undifferentiated tumour cell line with endocrine morphology; secretes and mucin GLP-1, PYY Heterogeneous population of intestinal cells (L-cells ) ) 1990 ) 1994 1987 ) proglucagon-SV40 Large T T proglucagon-SV40 Large antigen transgenic mice (Drucker et al. combined from fetal rat (Park et al. from proinsulin-SV40 Large T T from proinsulin-SV40 Large antigen/proinsulin-polyoma x antigen transgenic T Small mice (Rindi et al. colon from adult mouse 2008 Human Spontaneous colorectal tumour Enteroendocrine cell models ; Reimann et al. GLUTag GLUTag Mouse Large bowel tumour in FRIC Rat Small and large intestines Model NCI- Species H716 Cell source Characteristics Advantages Disadvantages STC-1 Mouse Duodenal secretin tumour cells AMIC Mouse Duodenum, jejunum, ileum or Table Table 1 2003 The NCI-H716 cells are available from American Type Culture Collection (ATCC). STC-1 cells are available from Dr. D. Hanahan STC-1 cells are available from Dr. Culture Collection (ATCC). Type American The NCI-H716 cells are available from primary Additionally, Toronto). Daniel J. Drucker (University of cells can be requested from Dr. San Francisco, CA), and GLUTag duced in-house. Fetal rat intestinal culture (FRIC) protocols and adult mouse (AMIC) are widely av Part IV Enteroendocrine Cell Models: General Introduction 209 To study GLP-1 secretion, researchers also routinely use the alternative, albeit non-human, cell lines; STC-1 and GLUTag, which were developed from murine genetically-induced proximal and distal intestinal tumours, respectively. The STC-1 (secretin tumour cell) cell line is a heterogeneous enteroendocrine cell line which expresses several satiety and incretin hormones, including CCK, GIP, PYY, pancre- atic polypeptide, neurotensin and the proglucagon-derived peptides: GLP-1, glucagon- like peptide-2 (GLP-2) and oxyntomodulin (Rindi et al. 1990 ). The pluri- hormonal nature of these cells appears to be consistent with recent fi ndings on the primary murine duodenal L-cell (Habib et al. 2012 , 2013 ). Molecular mechanisms underlying stimulus-hormone secretion coupling have been well defi ned in the STC-1 cell line. Primarily because of its ability to secrete several satiety hormones, it remains a popular choice for primary screening platforms, as detailed in the accompanying chapter. In contrast to STC-1 cells, the GLUTag (proglucagon SV40-large T antigen) cell line appears quite differentiated and demonstrates a stable pattern of proglucagon gene expression over a 4–8 week period (Drucker et al. 1994 ). However, unlike the NCI-H716 and STC-1 cells, the GLUTag cells express GLP-1 and CCK, but not PYY (Drucker et al. 1994 ). The absence of PYY is somewhat surprising given the colonic origin of the GLUTag cell line and the fact that most colonic L-cells express this hormone in vivo (Habib et al. 2013 ). Notwithstanding, GLUTag cells recapitu- late the responsiveness of both of the other cell lines as well as of primary murine L-cells and fetal rat intestinal cultures, secreting multiple fully-processed glucagon- like peptides in response to known physiological and pharmacological secreta- gogues (Lim et al. 2009 ). For use in high throughput assays, it is worth noting that GLUTag cells require a matrix for proper attachment to multi-well plates. Further details regarding the GLUTag cell line can be found in the accompanying chapter. It is important to note that species-specifi c differences in nutrient sensitivity in vivo do exist and non-human cell lines may therefore not be appropriate beyond primary screens (Brubaker 1991 ; Brubaker et al. 1998 ; Habib et al. 2013 ). For example, while GIP is an effective stimulator of GLP-1 release in canine and rodent L-cells (Brubaker 1991 ; Brubaker et al. 1998 ) it has little effect on GLP-1 secretion in human L-cells in vivo (Kreymann et al. 1987 ). Moreover, it has been demon- strated that the transcription factors and promoter regions important for human proglucagon gene expression are distinct from those utilised by the rat proglucagon gene (Nian et al. 1999 ). Findings made in any cell line may not completely recapitu- late those made in vivo, due to the extremely high likelihood that the L-cell con- stantly integrates multiple signals, from luminal, endocrine and neural inputs. It is thus imperative that all fi ndings made in vitro ultimately be confi rmed in the in vivo setting. With these limitations in mind, the enteroendocrine cell models still provide a set of powerful tools that enable a detailed examination of hormonal responses to food bioactives. 210 Part IV Enteroendocrine Cell Models: General Introduction References Anini Y, Brubaker PL (2003) Role of leptin in the regulation of glucagon-like peptide-1 secretion. Diabetes 52(2):252–259 Begg DP, Woods SC (2013) The endocrinology of food intake. Nat Rev Endocrinol 9(10): 584–597 Brubaker PL (1991) Regulation of intestinal proglucagon-derived peptide secretion by intestinal regulatory peptides. Endocrinology 128(6):3175–3182 Brubaker PL, Schloos J, Drucker DJ (1998) Regulation of glucagon-like peptide-1 synthesis and secretion in the GLUTag enteroendocrine cell line. Endocrinology 139(10):4108–4114. doi: 10.1210/endo.139.10.6228 Bruen CM, O’Halloran F, Cashman KD, Giblin L (2012) The effects of food components on hormonal signalling in gastrointestinal enteroendocrine cells. Food Funct 3(11):1131–1143 de Bruine AP, Dinjens WN, van der Linden EP, Pijls MM, Moerkerk PT, Bosman FT (1993) Extracellular matrix components induce endocrine differentiation in vitro in NCI-H716 cells. Am J Pathol 142(3):773–782 Drucker DJ, Jin T, Asa SL, Young TA, Brubaker PL (1994) Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line. Mol Endocrinol 8(12):1646–1655 Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CA, Parker HE, Morley TC, Yeo GS, Reimann F, Gribble FM (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profi ling and fl ow cytometry.
Recommended publications
  • 1488.Full.Pdf
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity Catherine S. Lee,1 Nathalie Perreault,1 John E. Brestelli, and Klaus H. Kaestner2 Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA The notch signaling pathway is essential for the endocrine cell fate in various tissues including the enteroendocrine system of the gastrointestinal tract. Enteroendocrine cells are one of the four major cell types found in the gastric epithelium of the glandular stomach. To understand the molecular basis of enteroendocrine cell development, we have used gene targeting in mouse embryonic stem cells to derive an EGFP-marked null allele of the bHLH transcription factor, neurogenin 3 (ngn3). In ngn3−/− mice, glucagon secreting A-cells, somatostatin secreting D-cells, and gastrin secreting G-cells are absent from the epithelium of the glandular stomach, whereas the number of serotonin-expressing enterochromaffin (EC) cells is decreased dramatically. In addition, ngn3−/− mice display intestinal metaplasia of the gastric epithelium. Thus, ngn3 is required for the differentiation of enteroendocrine cells in the stomach and the maintenance of gastric epithelial cell identity. [Key Words: Basic-helix-loop-helix (bHLH) protein; neurogenin 3 (ngn3); notch signaling; metaplasia; enteroendocrine cells; iFABP; Muc 2] Received February 15, 2002; revised version accepted May 2, 2002. The mouse stomach is divided into two domains, the tors including the neurogenin genes (Sommer et al. 1996; proximal third, which is known as the forestomach and Artavanis-Tsakonas et al.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Endocrinology
    Endocrinology INTRODUCTION Endocrinology 1. Endocrinology is the study of the endocrine system secretions and their role at target cells within the body and nervous system are the major contributors to the flow of information between different cells and tissues. 2. Two systems maintain Homeostasis a. b 3. Maintain a complicated relationship 4. Hormones 1. The endocrine system uses hormones (chemical messengers/neurotransmitters) to convey information between different tissues. 2. Transport via the bloodstream to target cells within the body. It is here they bind to receptors on the cell surface. 3. Non-nutritive Endocrine System- Consists of a variety of glands working together. 1. Paracrine Effect (CHEMICAL) Endocrinology Spring 2013 Page 1 a. Autocrine Effect i. Hormones released by cells that act on the membrane receptor ii. When a hormone is released by a cell and acts on the receptors located WITHIN the same cell. Endocrine Secretions: 1. Secretions secreted Exocrine Secretion: 1. Secretion which come from a gland 2. The secretion will be released into a specific location Nervous System vs tHe Endocrine System 1. Nervous System a. Neurons b. Homeostatic control of the body achieved in conjunction with the endocrine system c. Maintain d. This system will have direct contact with the cells to be affected e. Composed of both the somatic and autonomic systems (sympathetic and parasympathetic) Endocrinology Spring 2013 Page 2 2. Endocrine System a. b. c. 3. Neuroendocrine: a. These are specialized neurons that release chemicals that travel through the vascular system and interact with target tissue. b. Hypothalamus à posterior pituitary gland History of tHe Endocrine System Bertold (1849)-FATHER OF ENDOCRINOLOGY 1.
    [Show full text]
  • Enteroendocrine K and L Cells in Healthy and Type 2 Diabetic Individuals
    Diabetologia DOI 10.1007/s00125-017-4450-9 ARTICLE Enteroendocrine K and L cells in healthy and type 2 diabetic individuals Tina Jorsal1 & Nicolai A. Rhee1,2 & Jens Pedersen3,4 & Camilla D. Wahlgren1 & Brynjulf Mortensen1,5 & Sara L. Jepsen3,4 & Jacob Jelsing6 & Louise S. Dalbøge6,7 & Peter Vilmann8,9 & Hazem Hassan8,9 & Jakob W. Hendel8,9 & Steen S. Poulsen3,4 & Jens J. Holst3,4 & Tina Vilsbøll 1,10,11 & Filip K. Knop1,4,10 Received: 18 April 2017 /Accepted: 14 August 2017 # Springer-Verlag GmbH Germany 2017 Abstract dependent insulinotropic polypeptide, peptide YY, prohormone Aims/hypothesis Enteroendocrine K and L cells are pivotal in convertase (PC) 1/3 and PC2 were observed along the intes- regulating appetite and glucose homeostasis. Knowledge of tinal tract. The expression of CHGA did not vary along the their distribution in humans is sparse and it is unknown intestinal tract, but the mRNA expression of GCG, GIP, PYY, whether alterations occur in type 2 diabetes. We aimed to PCSK1 and PCSK2 differed along the intestinal tract. Lower evaluate the distribution of enteroendocrine K and L cells and counts of CgA-positive and PC1/3-positive cells, respectively, relevant prohormone-processing enzymes (using immuno- were observed in the small intestine of individuals with type 2 histochemical staining), and to evaluate the mRNA expression diabetes compared with healthy participants. In individuals of the corresponding genes along the entire intestinal tract in with type 2 diabetes compared with healthy participants, the individuals with type 2 diabetes and healthy participants. expression of GCG and PYY was greater in the colon, while Methods In this cross-sectional study, 12 individuals with type 2 the expression of GIP and PCSK1 was greater in the small diabetes and 12 age- and BMI-matched healthy intestine and colon, and the expression of PCSK2 was greater individuals underwent upper and lower double-balloon in the small intestine.
    [Show full text]
  • Generation of Enteroendocrine Cell Diversity in Midgut Stem Cell Lineages Ryan Beehler-Evans and Craig A
    © 2015. Published by The Company of Biologists Ltd | Development (2015) 142, 654-664 doi:10.1242/dev.114959 RESEARCH ARTICLE STEM CELLS AND REGENERATION Generation of enteroendocrine cell diversity in midgut stem cell lineages Ryan Beehler-Evans and Craig A. Micchelli* ABSTRACT epithelium act broadly on endocrine, nervous and immune systems to The endocrine system mediates long-range peptide hormone encode adaptive physiologic responses. Such peptides (also called signaling to broadcast changes in metabolic status to distant target neuropeptides) belong to distinct families, such as allatostatins, tissues via the circulatory system. In many animals, the diffuse diuretic hormones and tachykinins (Bendena et al., 1999; Gäde, 2004; endocrine system of the gut is the largest endocrine tissue, with the Nässel and Wegener, 2011; Van Loy et al., 2010). Knowledge differs full spectrum of endocrine cell subtypes not yet fully characterized. widely with respect to each peptide family member and their Here, we combine molecular mapping, lineage tracing and genetic experimentally defined roles within a given species. However, analysis in the adult fruit fly to gain new insight into the cellular and neuropeptide hormones have been implicated in processes such as molecular mechanisms governing enteroendocrine cell diversity. growth control, muscle activity, feeding behavior, osmotic balance, Neuropeptide hormone distribution was used as a basis to generate a reproduction and epithelial secretion. The prodigious number of high-resolution cellular map of the diffuse endocrine system. Our enteroendocrine cells and their varied neuropeptide expression studies show that cell diversity is seen at two distinct levels: regional combine to make the gut the largest endocrine organ in the body.
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • Single Cell Transcriptomic Profiling of Large Intestinal Enteroendocrine
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2019-11-01 Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice - Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co- expressing cells Lawrence J. Billing University of Cambridge Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Cell Biology Commons, Cellular and Molecular Physiology Commons, Digestive System Commons, Gastroenterology Commons, and the Molecular Biology Commons Repository Citation Billing LJ, Larraufie ,P Lewis J, Leiter AB, Li JH, Lam B, Yeo GS, Goldspink DA, Kay RG, Gribble FM, Reimann F. (2019). Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice - Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Open Access Articles. https://doi.org/10.1016/j.molmet.2019.09.001. Retrieved from https://escholarship.umassmed.edu/oapubs/4069 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Original Article Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice e Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells Lawrence J. Billing 1,3, Pierre Larraufie 1,3, Jo Lewis 1, Andrew Leiter 2, Joyce Li 2, Brian Lam 1, Giles SH.
    [Show full text]
  • The Gut As a Sensory Organ
    The gut as a sensory organ John B. Furness, Leni R. Rivera, Hyun-Jung Cho, David M. Bravo and Brid Callaghan Abstract | The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine–neuro–immune–organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen. Furness, J. B. et al. Nat. Rev. Gastroenterol. Hepatol. advance online publication. XX Month 2013; doi:10.1038/ Department of Anatomy & Neuroscience, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia (J. B. Furness, L. R. Rivera, H.-J. Cho, B. Callaghan). Pancosma S. A., Voie-des-Traz 6, Geneva 1218, Switzerland (D.
    [Show full text]
  • Gastrointestinal Neuroendocrine Cells in Various Types of Hypertension – a Review
    Prog Health Sci 2017, Vol 7, No 2 GIT neuroendocrine cells in hypertension Gastrointestinal neuroendocrine cells in various types of hypertension – a review Niezgoda M.B,D,F, Kasacka I.A,E,F* Department of Histology and Cytophysiology, Medical University of Bialystok, Poland ____________________________________________________________________________________________________ A- Conception and study design; B - Collection of data; C - Data analysis; D - Writing the paper; E- Review article; F - Approval of the final version of the article; G - Other ___________________________________________________________________________________________________ ABSTRACT ____________________________________________________________________________________________________ Recent years have witnessed a progressive increase biological and therapeutic properties of various in the number of people suffering from hypertension, substances synthesized by them have been which is one of the most serious health problems in confirmed in clinical trials and in various the world. Hypertension results in changes leading to experimental models. Results obtained in many function disorders, not only of the organs and tissues, research studies indicate intense activity of but also changes leading to the activation of many enteroendocrine cells in the gastrointestinal tract in defense mechanisms in the cells in order to prevent various pathological conditions, including damage. One of them is the expression of hypertension. In the present review, we discuss the neuroendocrine
    [Show full text]
  • Secretin Cell Ablation
    Development 126, 4149-4156 (1999) 4149 Printed in Great Britain © The Company of Biologists Limited 1999 DEV4179 Targeted ablation of secretin-producing cells in transgenic mice reveals a common differentiation pathway with multiple enteroendocrine cell lineages in the small intestine Guido Rindi1,*, Christelle Ratineau2, Anne Ronco2, Maria Elena Candusso1, Ming-Jer Tsai3 and Andrew B. Leiter2,‡ 1Department of Human Pathology, University of Pavia, Italy 2Division of Gastroenterology, GRASP Digestive Disease Center, and Tupper Research Institute, New England Medical Center, Boston, MA 02111, USA 3Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA *Present address: Department of Anatomic Pathology, University of Brescia, Brescia, Italy ‡Author for correspondence (e-mail: [email protected]) Accepted 18 June; published on WWW 23 August 1999 SUMMARY The four cell types of gut epithelium, enteroendocrine the enteroendocrine cells repopulated the intestine in cells, enterocytes, Paneth cells and goblet cells, arise from normal numbers, suggesting that a common early a common totipotent stem cell located in the mid portion endocrine progenitor was spared. Expression of BETA2, a of the intestinal gland. The secretin-producing (S) cell is basic helix-loop-helix protein essential for differentiation one of at least ten cell types belonging to the diffuse of secretin and cholecystokinin cells was examined in the neuroendocrine system of the gut. We have examined the proximal small intestine. BETA2 expression was seen in developmental relationship between secretin cells and all enteroendocrine cells and not seen in nonendocrine other enteroendocrine cell types by conditional ablation cells. These results suggest that most small intestinal of secretin cells in transgenic mice expressing herpes endocrine cells are developmentally related and that a simplex virus 1 thymidine kinase (HSVTK).
    [Show full text]
  • Distributions and Relationships of Chemically Defined Enteroendocrine Cells in the Rat Gastric Mucosa
    Cell and Tissue Research (2019) 378:33–48 https://doi.org/10.1007/s00441-019-03029-3 REGULAR ARTICLE Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa Billie Hunne1 & Martin J. Stebbing1,2 & Rachel M. McQuade1,2 & John B. Furness1,2 Received: 22 January 2019 /Accepted: 4 April 2019 /Published online: 2 May 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract This paper provides quantitative data on the distributions of enteroendocrine cells (EEC), defined by the hormones they contain, patterns of colocalisation between hormones and EEC relations to nerve fibres in the rat gastric mucosa. The rat stomach has three mucosal types: non-glandular stratified squamous epithelium of the fundus and esophageal groove, a region of oxyntic glands in the corpus, and pyloric glands of the antrum and pylorus. Ghrelin and histamine were both contained in closed cells, not contacting the lumen, and were most numerous in the corpus. Gastrin cells were confined to the antrum, and 5- hydroxytryptamine (5-HT) and somatostatin cells were more frequent in the antrum than the corpus. Most somatostatin cells had basal processes that in the antrum commonly contacted gastrin cells. Peptide YY (PYY) cells were rare and mainly in the antrum. The only numerous colocalisations were 5-HT and histamine, PYYand gastrin and gastrin and histamine in the antrum, but each of these populations was small. Peptide-containing nerve fibres were found in the mucosa. One of the most common types was vasoactive intestinal peptide (VIP) fibres. High-resolution analysis showed that ghrelin cells were closely and selec- tively approached by VIP fibres.
    [Show full text]
  • Characterisation of L-Cell Secretory Mechanisms and Colonic
    Characterisation of L -cell secretory mechanisms and colonic enteroendocrine cell subpopulations Lawrence Billing Downing College, Cambridge This dissertation is submitted for the degree of Doctor of Philosophy September 2018 Abstract Enteroendocrine cells (EECs) are chemosensitive cells of the gastrointestinal epithelium that exert a wide range of physiological effects via production and secretion of hormones in response to ingested nutrients, bacterial metabolites and systemic signals. Glucagon-like peptide-1 (GLP-1) is one such hormone secreted from so-called L-cells found in both the small and large intestines. GLP-1 exerts an anorexigenic effect and together with glucose- dependent insulinotropic polypeptide (GIP), restores postprandial normoglycaemia through the incretin effect. These effects are exploited by GLP-1 analogues in the treatment of type 2 diabetes. GLP-1 may also contribute to weight-loss and remission of type 2 diabetes following bariatric surgery which increases postprandial GLP-1 excursions. Here we investigated stimulus secretion coupling in L-cells. A novel 2D culture system from murine small intestinal organoids was established as an in vitro model. This was used to characterise synergistic stimulation of GLP-1 secretion in response to concomitant stimulation by bile acids through the Gs-protein coupled receptor GPBAR1 and free fatty acids through the Gq-coupled receptor FFAR1. Roughly half of colonic, but not small intestinal, L-cells co-produce the orexigenic peptide insulin-like peptide 5 (INSL5). This hitherto poorly examined subpopulation of L-cells was characterised through transcriptomic analysis, intracellular calcium imaging (using a novel GCaMP6F-based transgenic mouse model), LC/MS peptide quantification and 3D super resolution microscopy (3D-SIM).
    [Show full text]