Low-Rank Tensor Approximation in Post Hartree-Fock Methods

Total Page:16

File Type:pdf, Size:1020Kb

Low-Rank Tensor Approximation in Post Hartree-Fock Methods Fakult¨at fur¨ Naturwissenschaften Honorarprofessur fur¨ Computergestutzte¨ Quantenchemie Low-Rank Tensor Approximation in post Hartree-Fock Methods von der Fakult¨at fur¨ Naturwissenschaften der Technischen Universit¨at Chemnitz genehmigte Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt von Dipl.-Chem. Udo Benedikt geboren am 20.07.1983 in Annaberg-Buchholz eingereicht am 15.05.2013 Gutachter: Prof. Dr. Alexander A. Auer Prof. Dr. Sibylle Gemming Tag der Verteidigung: 21.01.2014 Benedikt, Udo Low-Rank Tensor Approximation in post Hartree-Fock Methods Dissertation, Fakult¨at fur¨ Naturwissenschaften Technische Universit¨at Chemnitz, Mai 2013 Bibliografische Beschreibung und Referat Udo Benedikt Low-Rank Tensor Approximation in post Hartree-Fock Methods Technische Universit¨at Chemnitz, Fakult¨at fur¨ Naturwissenschaften Dissertation 2013, 145 Seiten Die vorliegende Arbeit besch¨aftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das ho- he Skalierungsverhalten dieser Verfahren mit steigender Systemgr¨oße zu verringern und somit den \Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschie- dener Representationsformate wird auf die Anwendung des \canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zun¨achst die Umwandlung eines normalen, index- basierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) fur¨ Zweielektronenintegrale in der AO Basis im Vorder- grund. Die entscheidende Gr¨oße fur¨ die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgr¨oße, da der Speicheraufwand und die Berechnungskosten fur¨ Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abh¨angen, allerdings auch mit der Expansionsl¨ange (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgr¨oße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Dar- stellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion w¨ahrend der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpflanzung durch An- wendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexit¨at des gesamten Verfahrens bewertet und Verbesserungsm¨oglichkeiten der Reduktionsprozedur auf- gezeigt. Stichworte: Niedrigrang Tensor Approximation, Tensorzerlegung, Elektronenstrukturmetho- den, post Hartree-Fock Methoden, Coupled-Cluster Abstract Udo Benedikt Low-Rank Tensor Approximation in post Hartree-Fock Methods Technische Universit¨at Chemnitz, Fakult¨at fur¨ Naturwissenschaften PhD thesis 2013, 145 Seiten In this thesis the application of novel tensor decomposition and tensor representation tech- niques in highly accurate post Hartree-Fock methods is evaluated. These representation techniques can help to overcome the steep scaling behaviour of high level ab-initio calcula- tions with increasing system size and therefore break the \curse of dimensionality". After a comparison of various tensor formats the application of the \canonical polyadic" format (CP) is described in detail. There, especially the casting of a normal, index based tensor into the CP format (tensor decomposition) and a method for a low rank approximation (rank reduc- tion) of the two-electron integrals in the AO basis are investigated. The decisive quantity for the applicability of the CP format is the scaling of the rank with increasing system and basis set size. The memory requirements and the computational effort for tensor manipulations in the CP format are only linear in the number of dimensions but still depend on the expansion length (rank) of the approximation. Furthermore, the AO-MO transformation and a MP2 algorithm with decomposed tensors in the CP format is evaluated and the scaling with in- creasing system and basis set size is investigated. Finally, a Coupled-Cluster algorithm based only on low-rank CP representation of the MO integrals is developed. There, especially the successive tensor contraction during the iterative solution of the amplitude equations and the error propagation upon multiple application of the reduction procedure are discussed. In conclusion the overall complexity of a Coupled-Cluster procedure with tensors in CP format is evaluated and some possibilities for improvements of the rank reduction procedure tailored to the needs in electronic structure calculations are shown. keywords: low-rank tensor approximation, tensor decomposition, electronic structure meth- ods, post Hartree-Fock methods, Coupled-Cluster Die vorliegende Arbeit wurde in der Zeit von September 2008 bis Dezember 2009 unter Lei- tung von Prof. Dr. Alexander A. Auer in der Juniorprofessur fur¨ Theoretische Chemie der Technischen Universit¨at Chemnitz begonnen, von Januar 2010 bis Februar 2012 am Max- Planck-Institut fur¨ Eisenforschung in Dusseldorf¨ fortgefuhrt¨ und von M¨arz 2012 bis Mai 2013 am Max-Planck-Institut fur¨ Chemische Energieumwandlung in Mulheim¨ an der Ruhr abge- schlossen. Herrn Prof. Dr. Alexander A. Auer danke ich fur¨ die Einfuhrung¨ in die Tiefen der ab-initio Methoden mit allen Vorzugen¨ und Klippen der zugrunde liegenden Physik. Fur¨ die gew¨ahr- te Freiheit bei der Bearbeitung des Themas, die zahlreichen, anregenden Diskussionen, die großzugige¨ Unterstutzung¨ dieser Arbeit und die M¨oglichkeit auch an anderen, praktisch ori- entierten Projekten zu arbeiten m¨ochte ich mich ganz besonders bedanken. Prof. Dr. Sibylle Gemming und Prof. Dr. Alexander A. Auer gilt mein Dank fur¨ die Begut- achtung diese Arbeit. Prof. Dr. Dr. h.c. Wolfgang Hackbusch und besonders Dr. Mike Espig danke ich fur¨ die fruchtbare Zusammenarbeit und die ausfuhrliche¨ Einfuhrung¨ in das Gebiet der Tensorrepre- sentationstechniken. Auch wenn der Dialog am Anfang schwer fiel, konnte mir dennoch das Verst¨andnis fur¨ verschiedene Tensorformate und die Funktionsweise des Rangreduktionsal- gorithmus nahe gebracht werden. Dabei m¨ochte ich vor allem Dr. Mike Espig fur¨ das zur Verfugung¨ stellen der Routinen zur Rangreduktion und die stetige Weiterentwicklung der TensorCalculus Bibliothek sowie fur¨ die Einfuhrung¨ in die objektorientierte C++ Program- mierung danken. Fur¨ die Nutzung verschiedener Großrechner m¨ochte ich mich beim Team des Chemnitzer Hochleistungs-Linux-Cluster (CHiC), vor allem bei Frank Mietke und Ren´eOertel fur¨ die technische Unterstutzung¨ bei Compiler und Queueing-System Problemen, sowie beim Team des Rechenzentrums am MPI fur¨ Eisenforschung und am MPI fur¨ Chemische Energieum- wandlung recht herzlich bedanken. Bei meinen Kollegen Wolfgang Schneider und Karl-Heinz B¨ohm bedanke ich mich fur¨ die angenehme Arbeitsatmosph¨are im Buro¨ sowie die zahllosen Diskussionen zu den verschieden- sten, nicht zwingend arbeitsrelevanten Themen. Ein ganz besonderer Dank gilt meiner Familie, vor allem meinen Eltern und meinen Geschwi- stern, die immer zu mir gehalten, mich auch in schwierigen Zeiten unterstutzt¨ und mir die wichtigen Dinge im Leben nahe gebracht haben. Abschließend m¨ochte ich mich bei meiner Frau Annemarie Benedikt ganz herzlich bedanken. Sie stand mir in den letzten Jahren immer treu zur Seite, auch wenn die Zeiten in Dusseldorf¨ bzw. Mulheim¨ und die damit verbundenen zahllosen, oft viel zu langen Bahnfahrten zwischen Chemnitz und Dusseldorf¨ sehr hart waren. "Was wir mathematisch festlegen, ist nur zum kleinen Teil ein objektives Faktum, zum gr¨oßeren Teil eine Ubersicht¨ uber¨ M¨oglichkeiten." Werner Heisenberg (1901 { 1976) Meiner Familie Contents List of Figures iii List of Tables v Nomenclature vii 1 Introduction 1 2 Theoretical Background 7 2.1 Molecular Electronic Structure Theory . .7 2.1.1 Hartree-Fock Method (HF) . .8 2.1.2 Perturbation Theory . 14 2.1.3 Configuration Interaction (CI) . 16 2.1.4 Coupled-Cluster Theory (CC) . 19 2.1.4.1 Coupled-Cluster Doubles (CCD) . 23 2.1.4.2 Coupled-Cluster Singles and Doubles (CCSD) . 24 2.2 Tensor Representation Techniques . 25 2.2.1 Canonical Polyadic Format (CP) . 26 2.2.2 Tucker Format . 29 2.2.3 Hierarchical Format . 30 2.2.4 Tensor Train or Matrix Product State Format . 31 2.2.5 Comparison of Tensor Formats . 32 3 Application of the CP Format in post Hartree-Fock Methods 35 3.1 Casting of Indexed Based Tensors to CP Format . 35 3.1.1 Trivial Decomposition . 36 3.1.2 Decomposition using Singular Value Decomposition . 37 3.1.3 Casting Two-Electron Integrals using Resolution of the Identity (RI) . 40 3.2 Rank Reduction Algorithm . 42 3.2.1 Rank Reduction for a Test-Matrix . 44 3.3 Adaptation of Reduction Algorithm for Quantum Chemistry . 47 3.3.1 First Examples: Water using STO-3G and 6-31G Basis Set . 47 3.3.2 Improved Reduction Scheme by Slicing Procedure . 52 3.3.3 Comparison of Sliced and Full Reduction Procedure . 54 3.3.4 Lowering of Initial Ranks by SVD-based Casting Procedure . 56 3.3.5 Slicing Scheme based on SVD Casting Procedure . 58 i Contents 3.4 Benchmark: Scaling of Reduced Ranks . 60 3.4.1 Violation of Permutational Symmetry . 64 3.5 AO-MO Transformation with Integrals in CP Format . 65 3.6 MP2 Algorithm with Integrals in CP Format . 74 3.6.1 Definition of MP2 Amplitudes . 74 3.6.2 MP2 Energy Equation . 79 3.7 LCCD Algorithm with Tensors
Recommended publications
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • Basis Sets Running a Calculation • in Performing a Computational
    Session 2: Basis Sets • Two of the major methods (ab initio and DFT) require some understanding of basis sets and basis functions • This session describes the essentials of basis sets: – What they are – How they are constructed – How they are used – Significance in choice 1 Running a Calculation • In performing a computational chemistry calculation, the chemist has to make several decisions of input to the code: – The molecular geometry (and spin state) – The basis set used to determine the wavefunction – The properties to be calculated – The type(s) of calculations and any accompanying assumptions 2 Running a calculation •For ab initio or DFT calculations, many programs require a basis set choice to be made – The basis set is an approx- imate representation of the atomic orbitals (AOs) – The program then calculates molecular orbitals (MOs) using the Linear Combin- ation of Atomic Orbitals (LCAO) approximation 3 Computational Chemistry Map Chemist Decides: Computer calculates: Starting Molecular AOs determine the Geometry AOs O wavefunction (ψ) Basis Set (with H H ab initio and DFT) Type of Calculation LCAO (Method and Assumptions) O Properties to HH be Calculated MOs 4 Critical Choices • Choice of the method (and basis set) used is critical • Which method? • Molecular Mechanics, Ab initio, Semiempirical, or DFT • Which approximation? • MM2, MM3, HF, AM1, PM3, or B3LYP, etc. • Which basis set (if applicable)? • Minimal basis set • Split-valence • Polarized, Diffuse, High Angular Momentum, ...... 5 Why is Basis Set Choice Critical? • The
    [Show full text]
  • An Introduction to Hartree-Fock Molecular Orbital Theory
    An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental to much of electronic structure theory. It is the basis of molecular orbital (MO) theory, which posits that each electron's motion can be described by a single-particle function (orbital) which does not depend explicitly on the instantaneous motions of the other electrons. Many of you have probably learned about (and maybe even solved prob- lems with) HucÄ kel MO theory, which takes Hartree-Fock MO theory as an implicit foundation and throws away most of the terms to make it tractable for simple calculations. The ubiquity of orbital concepts in chemistry is a testimony to the predictive power and intuitive appeal of Hartree-Fock MO theory. However, it is important to remember that these orbitals are mathematical constructs which only approximate reality. Only for the hydrogen atom (or other one-electron systems, like He+) are orbitals exact eigenfunctions of the full electronic Hamiltonian. As long as we are content to consider molecules near their equilibrium geometry, Hartree-Fock theory often provides a good starting point for more elaborate theoretical methods which are better approximations to the elec- tronic SchrÄodinger equation (e.g., many-body perturbation theory, single-reference con¯guration interaction). So...how do we calculate molecular orbitals using Hartree-Fock theory? That is the subject of these notes; we will explain Hartree-Fock theory at an introductory level. 2 What Problem Are We Solving? It is always important to remember the context of a theory.
    [Show full text]
  • User Manual for the Uppsala Quantum Chemistry Package UQUANTCHEM V.35
    User manual for the Uppsala Quantum Chemistry package UQUANTCHEM V.35 by Petros Souvatzis Uppsala 2016 Contents 1 Introduction 6 2 Compiling the code 7 3 What Can be done with UQUANTCHEM 9 3.1 Hartree Fock Calculations . 9 3.2 Configurational Interaction Calculations . 9 3.3 M¨ollerPlesset Calculations (MP2) . 9 3.4 Density Functional Theory Calculations (DFT)) . 9 3.5 Time Dependent Density Functional Theory Calculations (TDDFT)) . 10 3.6 Quantum Montecarlo Calculations . 10 3.7 Born Oppenheimer Molecular Dynamics . 10 4 Setting up a UQANTCHEM calculation 12 4.1 The input files . 12 4.1.1 The INPUTFILE-file . 12 4.1.2 The BASISFILE-file . 13 4.1.3 The BASISFILEAUX-file . 14 4.1.4 The DENSMATSTARTGUESS.dat-file . 14 4.1.5 The MOLDYNRESTART.dat-file . 14 4.1.6 The INITVELO.dat-file . 15 4.1.7 Running Uquantchem . 15 4.2 Input parameters . 15 4.2.1 CORRLEVEL ................................. 15 4.2.2 ADEF ..................................... 15 4.2.3 DOTDFT ................................... 16 4.2.4 NSCCORR ................................... 16 4.2.5 SCERR .................................... 16 4.2.6 MIXTDDFT .................................. 16 4.2.7 EPROFILE .................................. 16 4.2.8 DOABSSPECTRUM ............................... 17 4.2.9 NEPERIOD .................................. 17 4.2.10 EFIELDMAX ................................. 17 4.2.11 EDIR ..................................... 17 4.2.12 FIELDDIR .................................. 18 4.2.13 OMEGA .................................... 18 2 CONTENTS 3 4.2.14 NCHEBGAUSS ................................. 18 4.2.15 RIAPPROX .................................. 18 4.2.16 LIMPRECALC (Only openmp-version) . 19 4.2.17 DIAGDG ................................... 19 4.2.18 NLEBEDEV .................................. 19 4.2.19 MOLDYN ................................... 19 4.2.20 DAMPING ................................... 19 4.2.21 XLBOMD ..................................
    [Show full text]
  • Introduction to DFT and the Plane-Wave Pseudopotential Method
    Introduction to DFT and the plane-wave pseudopotential method Keith Refson STFC Rutherford Appleton Laboratory Chilton, Didcot, OXON OX11 0QX 23 Apr 2014 Parallel Materials Modelling Packages @ EPCC 1 / 55 Introduction Synopsis Motivation Some ab initio codes Quantum-mechanical approaches Density Functional Theory Electronic Structure of Condensed Phases Total-energy calculations Introduction Basis sets Plane-waves and Pseudopotentials How to solve the equations Parallel Materials Modelling Packages @ EPCC 2 / 55 Synopsis Introduction A guided tour inside the “black box” of ab-initio simulation. Synopsis • Motivation • The rise of quantum-mechanical simulations. Some ab initio codes Wavefunction-based theory • Density-functional theory (DFT) Quantum-mechanical • approaches Quantum theory in periodic boundaries • Plane-wave and other basis sets Density Functional • Theory SCF solvers • Molecular Dynamics Electronic Structure of Condensed Phases Recommended Reading and Further Study Total-energy calculations • Basis sets Jorge Kohanoff Electronic Structure Calculations for Solids and Molecules, Plane-waves and Theory and Computational Methods, Cambridge, ISBN-13: 9780521815918 Pseudopotentials • Dominik Marx, J¨urg Hutter Ab Initio Molecular Dynamics: Basic Theory and How to solve the Advanced Methods Cambridge University Press, ISBN: 0521898633 equations • Richard M. Martin Electronic Structure: Basic Theory and Practical Methods: Basic Theory and Practical Density Functional Approaches Vol 1 Cambridge University Press, ISBN: 0521782856
    [Show full text]
  • Powerpoint Presentation
    Session 2 Basis Sets CCCE 2008 1 Session 2: Basis Sets • Two of the major methods (ab initio and DFT) require some understanding of basis sets and basis functions • This session describes the essentials of basis sets: – What they are – How they are constructed – How they are used – Significance in choice CCCE 2008 2 Running a Calculation • In performing ab initio and DFT computa- tional chemistry calculations, the chemist has to make several decisions of input to the code: – The molecular geometry (and spin state) – The basis set used to determine the wavefunction – The properties to be calculated – The type(s) of calculations and any accompanying assumptions CCCE 2008 3 Running a calculation • For ab initio or DFT calculations, many programs require a basis set choice to be made – The basis set is an approx- imate representation of the atomic orbitals (AOs) – The program then calculates molecular orbitals (MOs) using the Linear Combin- ation of Atomic Orbitals (LCAO) approximation CCCE 2008 4 Computational Chemistry Map Chemist Decides: Computer calculates: Starting Molecular AOs determine the Geometry AOs O wavefunction (ψ) Basis Set (with H H ab initio and DFT) Type of Calculation LCAO (Method and Assumptions) O Properties to HH be Calculated MOs CCCE 2008 5 Critical Choices • Choice of the method (and basis set) used is critical • Which method? • Molecular Mechanics, Ab initio, Semiempirical, or DFT • Which approximation? • MM2, MM3, HF, AM1, PM3, or B3LYP, etc. • Which basis set (if applicable)? • Minimal basis set • Split-valence
    [Show full text]
  • Towards Efficient Data Exchange and Sharing for Big-Data Driven Materials Science: Metadata and Data Formats
    www.nature.com/npjcompumats PERSPECTIVE OPEN Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats Luca M. Ghiringhelli1, Christian Carbogno1, Sergey Levchenko1, Fawzi Mohamed1, Georg Huhs2,3, Martin Lüders4, Micael Oliveira5,6 and Matthias Scheffler1,7 With big-data driven materials research, the new paradigm of materials science, sharing and wide accessibility of data are becoming crucial aspects. Obviously, a prerequisite for data exchange and big-data analytics is standardization, which means using consistent and unique conventions for, e.g., units, zero base lines, and file formats. There are two main strategies to achieve this goal. One accepts the heterogeneous nature of the community, which comprises scientists from physics, chemistry, bio-physics, and materials science, by complying with the diverse ecosystem of computer codes and thus develops “converters” for the input and output files of all important codes. These converters then translate the data of each code into a standardized, code- independent format. The other strategy is to provide standardized open libraries that code developers can adopt for shaping their inputs, outputs, and restart files, directly into the same code-independent format. In this perspective paper, we present both strategies and argue that they can and should be regarded as complementary, if not even synergetic. The represented appropriate format and conventions were agreed upon by two teams, the Electronic Structure Library (ESL) of the European Center for Atomic and Molecular Computations (CECAM) and the NOvel MAterials Discovery (NOMAD) Laboratory, a European Centre of Excellence (CoE). A key element of this work is the definition of hierarchical metadata describing state-of-the-art electronic-structure calculations.
    [Show full text]
  • APW+Lo Basis Sets
    Computer Physics Communications 179 (2008) 784–790 Contents lists available at ScienceDirect Computer Physics Communications www.elsevier.com/locate/cpc Force calculation for orbital-dependent potentials with FP-(L)APW + lo basis sets ∗ Fabien Tran a, , Jan Kuneš b,c, Pavel Novák c,PeterBlahaa,LaurenceD.Marksd, Karlheinz Schwarz a a Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria b Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, Augsburg 86135, Germany c Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, CZ-162 53 Prague 6, Czech Republic d Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA article info abstract Article history: Within the linearized augmented plane-wave method for electronic structure calculations, a force Received 8 April 2008 expression was derived for such exchange–correlation energy functionals that lead to orbital-dependent Received in revised form 14 May 2008 potentials (e.g., LDA + U or hybrid methods). The forces were implemented into the WIEN2k code and Accepted 27 June 2008 were tested on systems containing strongly correlated d and f electrons. The results show that the Availableonline5July2008 expression leads to accurate atomic forces. © PACS: 2008 Elsevier B.V. All rights reserved. 61.50.-f 71.15.Mb 71.27.+a Keywords: Computational materials science Density functional theory Forces Structure optimization Strongly correlated materials 1. Introduction The majority of present day electronic structure calculations on periodic solids are performed with the Kohn–Sham (KS) formulation [1] of density functional theory [2] using the local density (LDA) or generalized gradient approximations (GGA) for the exchange–correlation energy.
    [Show full text]
  • Lecture 8 Gaussian Basis Sets CHEM6085: Density Functional
    CHEM6085: Density Functional Theory Lecture 8 Gaussian basis sets C.-K. Skylaris CHEM6085 Density Functional Theory 1 Solving the Kohn-Sham equations on a computer • The SCF procedure involves solving the Kohn-Sham single-electron equations for the molecular orbitals • Where the Kohn-Sham potential of the non-interacting electrons is given by • We all have some experience in solving equations on paper but how we do this with a computer? CHEM6085 Density Functional Theory 2 Linear Combination of Atomic Orbitals (LCAO) • We will express the MOs as a linear combination of atomic orbitals (LCAO) • The strength of the LCAO approach is its general applicability: it can work on any molecule with any number of atoms Example: B C A AOs on atom A AOs on atom B AOs on atom C CHEM6085 Density Functional Theory 3 Example: find the AOs from which the MOs of the following molecules will be built CHEM6085 Density Functional Theory 4 Basis functions • We can take the LCAO concept one step further: • Use a larger number of AOs (e.g. a hydrogen atom can have more than one s AO, and some p and d AOs, etc.). This will achieve a more flexible representation of our MOs and therefore more accurate calculated properties according to the variation principle • Use AOs of a particular mathematical form that simplifies the computations (but are not necessarily equal to the exact AOs of the isolated atoms) • We call such sets of more general AOs basis functions • Instead of having to calculate the mathematical form of the MOs (impossible on a computer) the problem
    [Show full text]
  • Systematically Improvable Tensor Hypercontraction: Interpolative Separable Density-Fitting for Molecules Applied to Exact Exchan
    Systematically Improvable Tensor Hypercontraction: Interpolative Separable Density-Fitting for Molecules Applied to Exact Exchange, Second- and Third-Order Møller-Plesset Perturbation Theory , , Joonho Lee,∗ y Lin Lin,z and Martin Head-Gordon∗ y Department of Chemistry, University of California, Berkeley, California 94720, USA y Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Department of Mathematics, University of California, Berkeley, California 94720, USA z Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA E-mail: [email protected]; [email protected] arXiv:1911.00470v1 [physics.chem-ph] 1 Nov 2019 1 Abstract We present a systematically improvable tensor hypercontraction (THC) factoriza- tion based on interpolative separable density fitting (ISDF). We illustrate algorith- mic details to achieve this within the framework of Becke's atom-centered quadra- ture grid. A single ISDF parameter cISDF controls the tradeoff between accuracy and cost. In particular, cISDF sets the number of interpolation points used in THC, N = c N with N being the number of auxiliary basis functions. In con- IP ISDF × X X junction with the resolution-of-the-identity (RI) technique, we develop and investigate the THC-RI algorithms for cubic-scaling exact exchange for Hartree-Fock and range- separated hybrids (e.g., !B97X-V) and quartic-scaling second- and third-order Møller- Plesset theory (MP2 and MP3). These algorithms were evaluated over the W4-11 thermochemistry (atomization energy) set and A24 non-covalent interaction bench- mark set with standard Dunning basis sets (cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ). We demonstrate the convergence of THC-RI algorithms to numerically exact RI results using ISDF points.
    [Show full text]
  • VASP: Basics (DFT, PW, PAW, … )
    VASP: Basics (DFT, PW, PAW, … ) University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria Outline ● Density functional theory ● Translational invariance and periodic boundary conditions ● Plane wave basis set ● The Projector-Augmented-Wave method ● Electronic minimization The Many-Body Schrödinger equation Hˆ (r1,...,rN )=E (r1,...,rN ) 1 1 ∆i + V (ri)+ (r1,...,rN )=E (r1,...,rN ) 0−2 ri rj 1 i i i=j X X X6 | − | @ A For instance, many-body WF storage demands are prohibitive: N (r1,...,rN ) (#grid points) 5 electrons on a 10×10×10 grid ~ 10 PetaBytes ! A solution: map onto “one-electron” theory: (r ,...,r ) (r), (r),..., (r) 1 N ! { 1 2 N } Hohenberg-Kohn-Sham DFT Map onto “one-electron” theory: N (r ,...,r ) (r), (r),..., (r) (r ,...,r )= (r ) 1 N ! { 1 2 N } 1 N i i i Y Total energy is a functional of the density: E[⇢]=T [ [⇢] ]+E [⇢]+E [⇢] + E [⇢]+U[Z] s { i } H xc Z The density is computed using the one-electron orbitals: N ⇢(r)= (r) 2 | i | i X The one-electron orbitals are the solutions of the Kohn-Sham equation: 1 ∆ + V (r)+V [⇢](r)+V [⇢](r) (r)=✏ (r) −2 Z H xc i i i ⇣ ⌘ BUT: Exc[⇢]=??? Vxc[⇢](r)=??? Exchange-Correlation Exc[⇢]=??? Vxc[⇢](r)=??? • Exchange-Correlation functionals are modeled on the uniform-electron-gas (UEG): The correlation energy (and potential) has been calculated by means of Monte- Carlo methods for a wide range of densities, and has been parametrized to yield a density functional. • LDA: we simply pretend that an inhomogeneous electronic density locally behaves like a homogeneous electron gas.
    [Show full text]
  • Probing the Basis Set Limit for Thermochemical Contributions of Inner-Shell Correlation: Balance of Core-Core and Core- Valence Contributions1
    Probing the basis set limit for thermochemical contributions of inner-shell correlation: Balance of core-core and core- valence contributions1 Nitai Sylvetsky and Jan M. L. Martin Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel a)Corresponding author: [email protected] Abstract. The inner-shell correlation contributions to the total atomization energies (TAEs) of the W4-17 computational thermochemistry benchmark have been determined at the CCSD(T) level near the basis set limit using several families of core correlation basis sets, such as aug-cc-pCVnZ (n=3-6), aug-cc-pwCVnZ (n=3-5), and nZaPa-CV (n=3-5). The three families of basis sets agree very well with each other (0.01 kcal/mol RMS) when extrapolating from the two largest available basis sets: however, there are considerable differences in convergence behavior for the smaller basis sets. nZaPa- CV is superior for the core-core term and awCVnZ for the core-valence term. While the aug-cc-pwCV(T+d)Z basis set of Yockel and Wilson is superior to aug-cc-pwCVTZ, further extension of this family proved unproductive. The best compromise between accuracy and computational cost, in the context of high-accuracy computational thermochemistry methods such as W4 theory, is CCSD(T)/awCV{T,Q}Z, where the {T,Q} notation stands for extrapolation from the awCVTZ and awCVQZ basis set pair. For lower-cost calculations, a previously proposed combination of CCSD-F12b/cc- pCVTZ-F12 and CCSD(T)/pwCVTZ(no f) appears to ‘give the best bang for the buck’.
    [Show full text]