Introduction to DFT and the Plane-Wave Pseudopotential Method

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to DFT and the Plane-Wave Pseudopotential Method Introduction to DFT and the plane-wave pseudopotential method Keith Refson STFC Rutherford Appleton Laboratory Chilton, Didcot, OXON OX11 0QX 23 Apr 2014 Parallel Materials Modelling Packages @ EPCC 1 / 55 Introduction Synopsis Motivation Some ab initio codes Quantum-mechanical approaches Density Functional Theory Electronic Structure of Condensed Phases Total-energy calculations Introduction Basis sets Plane-waves and Pseudopotentials How to solve the equations Parallel Materials Modelling Packages @ EPCC 2 / 55 Synopsis Introduction A guided tour inside the “black box” of ab-initio simulation. Synopsis • Motivation • The rise of quantum-mechanical simulations. Some ab initio codes Wavefunction-based theory • Density-functional theory (DFT) Quantum-mechanical • approaches Quantum theory in periodic boundaries • Plane-wave and other basis sets Density Functional • Theory SCF solvers • Molecular Dynamics Electronic Structure of Condensed Phases Recommended Reading and Further Study Total-energy calculations • Basis sets Jorge Kohanoff Electronic Structure Calculations for Solids and Molecules, Plane-waves and Theory and Computational Methods, Cambridge, ISBN-13: 9780521815918 Pseudopotentials • Dominik Marx, J¨urg Hutter Ab Initio Molecular Dynamics: Basic Theory and How to solve the Advanced Methods Cambridge University Press, ISBN: 0521898633 equations • Richard M. Martin Electronic Structure: Basic Theory and Practical Methods: Basic Theory and Practical Density Functional Approaches Vol 1 Cambridge University Press, ISBN: 0521782856 • C. Pisani (ed) Quantum Mechanical Ab-Initio Calculation of the properties of Crystalline Materials, Springer, Lecture Notes in Chemistry vol.67 ISSN 0342-4901. Parallel Materials Modelling Packages @ EPCC 3 / 55 Motivation Introduction Synopsis The underlying physical laws necessary for the mathematical theory Motivation of a large part of physics and the whole of chemistry are thus Some ab initio codes completely known, and the difficulty is only that the application of Quantum-mechanical approaches these laws leads to equations much too complicated to be soluble. Density Functional Theory P.A.M. Dirac, Proceedings of the Royal Society A123, 714 (1929) Electronic Structure of Condensed Phases Total-energy calculations Basis sets Plane-waves and Nobody understands quantum mechanics. Pseudopotentials How to solve the R. P. Feynman equations Parallel Materials Modelling Packages @ EPCC 4 / 55 Some ab initio codes Introduction Synopsis Numerical Motivation Planewave Gaussian Some ab initio codes CRYSTAL FHI-Aims Quantum-mechanical CASTEP PEtot approaches CP2K SIESTA Density Functional VASP PARATEC Dmol Theory AIMPRO PWscf Da Capo Electronic Structure of ADF-band Condensed Phases Abinit CPMD OpenMX Total-energy calculations Qbox fhi98md Basis sets DFT GPAW Plane-waves and PWPAW SFHIngX PARSEC Pseudopotentials (r), n(r) How to solve the DOD-pw NWchem equations Octopus JDFTx LAPW LMTO O(N) WIEN2k LMTART ONETEP Fleur LMTO Conquest exciting FPLO BigDFT Elk http://www.psi-k.org/codes.shtml Parallel Materials Modelling Packages @ EPCC 5 / 55 Introduction Quantum-mechanical approaches Quantum-mechanics of electrons and nuclei The Schr¨odinger equation Approximations 1. The Hartree approximation The Hartree-Fock approximation Practical Aspects Density Functional Quantum-mechanical approaches Theory Electronic Structure of Condensed Phases Total-energy calculations Basis sets Plane-waves and Pseudopotentials How to solve the equations Parallel Materials Modelling Packages @ EPCC 6 / 55 Quantum-mechanics of electrons and nuclei Introduction • Quantum mechanics proper requires full wavefunction of both electronic and Quantum-mechanical nuclear co-ordinates. approaches Quantum-mechanics of • First approximation is the Born-Oppenheimer approximation. Assume that electrons and nuclei The Schr¨odinger electronic relaxation is much faster than ionic motion (me << mnuc). Then equation wavefunction is separable Approximations 1. The Hartree approximation R R R r r r The Hartree-Fock Ψ=Θ( 1, 2, ..., N )Φ( 1, 2, ..., n approximation { } { } Practical Aspects Ri are nuclear co-ordinates and ri are electron co-ordinates. Density Functional • Therefore can treat electronic system as solution of Schr¨odinger equation in Theory fixed external potential of the nuclei, Vext Ri . Electronic Structure of { } Condensed Phases • Ground-state energy of electronic system acts as potential function for nuclei. • Can then apply our tool-box of simulation methods to nuclear system. Total-energy calculations • Basis sets B-O is usually a very good approximation, only fails for coupled Plane-waves and electron/nuclear behaviour for example superconductivity, quantum crystals Pseudopotentials such as He and cases of strong quantum motion such as H in KDP. How to solve the equations Parallel Materials Modelling Packages @ EPCC 7 / 55 The Schr¨odinger equation Introduction • Ignoring electron spin for the moment and using atomic units (¯h = me = e =1) Quantum-mechanical approaches 1 Quantum-mechanics of 2 ˆ R r ˆ r r r electrons and nuclei + Vext( I , i )+ Ve-e( i ) Ψ( i )= EΨ( i ) The Schr¨odinger − 2 ∇ { } { } { } { } { } equation Approximations 1. The where 1 2is the kinetic-energy operator, Hartree approximation − 2 ∇ The Hartree-Fock Zi approximation Vˆext= is the Coulomb potential of the nuclei, − R r Practical Aspects Xi XI | I − i| Density Functional ˆ 1 1 Theory Ve-e= is the electron-electron Coulomb interaction 2 rj ri Electronic Structure of Xi Xj6=i | − | Condensed Phases and Ψ( r )=Ψ(r1,... rn) is a 3N-dimensional wavefunction. { i} Total-energy calculations • This is a 3N-dimensional eigenvalue problem. Basis sets • E-e term renders even numerical solutions impossible for more than a handful of Plane-waves and electrons. Pseudopotentials • Pauli Exclusion principle Ψ( ri ) is antisymmetric under interchange of any 2 How to solve the r r { } r r equations electrons. Ψ(... i, j ,...)= Ψ(... j , i,...) − 2 • Total electron density is n(r)= ... dr2 ...drn Ψ( r ) | { i} | R R Parallel Materials Modelling Packages @ EPCC 8 / 55 Approximations 1. The Hartree approximation Introduction • Substituting Ψ(r1,... rn)= φ(r1) ...φ(rn) into the Schr¨odinger equation Quantum-mechanical approaches yields Quantum-mechanics of electrons and nuclei 1 2 The Schr¨odinger + Vˆext( RI , r)+ VˆH(r) φn(r)= Enφn(r) equation − 2 ∇ { } Approximations 1. The Hartree approximation r′ ′ n( ) The Hartree-Fock where the Hartree potential: VˆH(r)= dr is Coulomb interaction approximation Z r′ r Practical Aspects r| − | r 2 of an electron with average electron density n( )= i φi( ) . Sum is over Density Functional all occupied states. | | Theory P • φ(rn) is called an orbital. Electronic Structure of Condensed Phases • Now a 3-dimensional wave equation (or eigenvalue problem) for φ(r ). • n Total-energy calculations This is an effective 1-particle wave equation with an additional term, the Basis sets Hartree potential • r r Plane-waves and But solution φi( ) depends on electron-density n( ) which in turn depends on Pseudopotentials φi(r). Requires self-consistent solution. How to solve the • This is a very poor approximation because Ψ( ri ) does not have necessary equations antisymmetry and violates the Pauli principle.{ } Parallel Materials Modelling Packages @ EPCC 9 / 55 The Hartree-Fock approximation Introduction • Approximate wavefunction by a slater determinant which guarantees Quantum-mechanical antisymmetry under electron exchange approaches Quantum-mechanics of electrons and nuclei φ1(r1, σ1) φ1(r2, σ2) ... φ1(rn, σn) The Schr¨odinger r r r equation φ2( 1, σ1) φ2( 2, σ2) ... φ2( n, σn) r r 1 Approximations 1. The Ψ( 1,... n)= . Hartree approximation . √n! . The Hartree-Fock approximation r r r φn( 1, σ1) φn( 2, σ1) ... φn( n, σn) Practical Aspects Density Functional • Substitution into the Schr¨odinger equation yields Theory Electronic Structure of Condensed Phases 1 2 + Vˆext( RI , r)+ VˆH(r) φn(r) (1) Total-energy calculations − 2 ∇ { } ∗ r′ r′ Basis sets ′ φm( )φn( ) dr φm(r)= Enφn(r) (2) Plane-waves and − Z r′ r Pseudopotentials Xm | − | How to solve the equations • Also an effective 1-particle wave equation. The extra term is called the exchange potential and creates repulsion between electrons of like spin. • Involves orbitals with co-ordinates at 2 different positions. Therefore expensive to solve. Parallel Materials Modelling Packages @ EPCC 10 / 55 Practical Aspects Introduction • Practical solution of Hartree-Fock developed by John Pople, C. Roothan and Quantum-mechanical others. (Nobel Prize 1998). approaches Quantum-mechanics of • Key is to solve 1-particle effective Hamiltonian in a self-consistent loop. electrons and nuclei SCF The Schr¨odinger Sometimes known as methods (Self Consistent Field). equation • Hartree-Fock yields reasonable values for total energies of atoms, molecules. Approximations 1. The • Hartree approximation Basis of all quantum chemistry until 1990s. The Hartree-Fock • Error in Hartree-Fock energy dubbed correlation energy. approximation • Failures: Excitation energies too large. Practical Aspects • Completely fails to reproduce metallic state. (Predicts logarithmic singularity in Density Functional Theory DOS at ǫF.) Electronic Structure of • Various more, accurate (and expensive) methods such as MP2, MP4, Condensed Phases Coupled-Cluster, full CI are based on HF methods, and give approximations to Total-energy calculations the correlation energy. Basis sets Plane-waves and Pseudopotentials How to solve the equations
Recommended publications
  • GPAW, Gpus, and LUMI
    GPAW, GPUs, and LUMI Martti Louhivuori, CSC - IT Center for Science Jussi Enkovaara GPAW 2021: Users and Developers Meeting, 2021-06-01 Outline LUMI supercomputer Brief history of GPAW with GPUs GPUs and DFT Current status Roadmap LUMI - EuroHPC system of the North Pre-exascale system with AMD CPUs and GPUs ~ 550 Pflop/s performance Half of the resources dedicated to consortium members Programming for LUMI Finland, Belgium, Czechia, MPI between nodes / GPUs Denmark, Estonia, Iceland, HIP and OpenMP for GPUs Norway, Poland, Sweden, and how to use Python with AMD Switzerland GPUs? https://www.lumi-supercomputer.eu GPAW and GPUs: history (1/2) Early proof-of-concept implementation for NVIDIA GPUs in 2012 ground state DFT and real-time TD-DFT with finite-difference basis separate version for RPA with plane-waves Hakala et al. in "Electronic Structure Calculations on Graphics Processing Units", Wiley (2016), https://doi.org/10.1002/9781118670712 PyCUDA, cuBLAS, cuFFT, custom CUDA kernels Promising performance with factor of 4-8 speedup in best cases (CPU node vs. GPU node) GPAW and GPUs: history (2/2) Code base diverged from the main branch quite a bit proof-of-concept implementation had lots of quick and dirty hacks fixes and features were pulled from other branches and patches no proper unit tests for GPU functionality active development stopped soon after publications Before development re-started, code didn't even work anymore on modern GPUs without applying a few small patches Lesson learned: try to always get new functionality to the
    [Show full text]
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • Basis Sets Running a Calculation • in Performing a Computational
    Session 2: Basis Sets • Two of the major methods (ab initio and DFT) require some understanding of basis sets and basis functions • This session describes the essentials of basis sets: – What they are – How they are constructed – How they are used – Significance in choice 1 Running a Calculation • In performing a computational chemistry calculation, the chemist has to make several decisions of input to the code: – The molecular geometry (and spin state) – The basis set used to determine the wavefunction – The properties to be calculated – The type(s) of calculations and any accompanying assumptions 2 Running a calculation •For ab initio or DFT calculations, many programs require a basis set choice to be made – The basis set is an approx- imate representation of the atomic orbitals (AOs) – The program then calculates molecular orbitals (MOs) using the Linear Combin- ation of Atomic Orbitals (LCAO) approximation 3 Computational Chemistry Map Chemist Decides: Computer calculates: Starting Molecular AOs determine the Geometry AOs O wavefunction (ψ) Basis Set (with H H ab initio and DFT) Type of Calculation LCAO (Method and Assumptions) O Properties to HH be Calculated MOs 4 Critical Choices • Choice of the method (and basis set) used is critical • Which method? • Molecular Mechanics, Ab initio, Semiempirical, or DFT • Which approximation? • MM2, MM3, HF, AM1, PM3, or B3LYP, etc. • Which basis set (if applicable)? • Minimal basis set • Split-valence • Polarized, Diffuse, High Angular Momentum, ...... 5 Why is Basis Set Choice Critical? • The
    [Show full text]
  • D6.1 Report on the Deployment of the Max Demonstrators and Feedback to WP1-5
    Ref. Ares(2020)2820381 - 31/05/2020 HORIZON2020 European Centre of Excellence ​ Deliverable D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 Pablo Ordejón, Uliana Alekseeva, Stefano Baroni, Riccardo Bertossa, Miki Bonacci, Pietro Bonfà, Claudia Cardoso, Carlo Cavazzoni, Vladimir Dikan, Stefano de Gironcoli, Andrea Ferretti, Alberto García, Luigi Genovese, Federico Grasselli, Anton Kozhevnikov, Deborah Prezzi, Davide Sangalli, Joost VandeVondele, Daniele Varsano, Daniel Wortmann Due date of deliverable: 31/05/2020 Actual submission date: 31/05/2020 Final version: 31/05/2020 Lead beneficiary: ICN2 (participant number 3) Dissemination level: PU - Public www.max-centre.eu 1 HORIZON2020 European Centre of Excellence ​ Deliverable D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 Document information Project acronym: MaX Project full title: Materials Design at the Exascale Research Action Project type: European Centre of Excellence in materials modelling, simulations and design EC Grant agreement no.: 824143 Project starting / end date: 01/12/2018 (month 1) / 30/11/2021 (month 36) Website: www.max-centre.eu Deliverable No.: D6.1 Authors: P. Ordejón, U. Alekseeva, S. Baroni, R. Bertossa, M. ​ Bonacci, P. Bonfà, C. Cardoso, C. Cavazzoni, V. Dikan, S. de Gironcoli, A. Ferretti, A. García, L. Genovese, F. Grasselli, A. Kozhevnikov, D. Prezzi, D. Sangalli, J. VandeVondele, D. Varsano, D. Wortmann To be cited as: Ordejón, et al., (2020): Report on the deployment of the MaX Demonstrators and feedback to WP1-5. Deliverable D6.1 of the H2020 project MaX (final version as of 31/05/2020).
    [Show full text]
  • Quan Wan, "First Principles Simulations of Vibrational Spectra
    THE UNIVERSITY OF CHICAGO FIRST PRINCIPLES SIMULATIONS OF VIBRATIONAL SPECTRA OF AQUEOUS SYSTEMS A DISSERTATION SUBMITTED TO THE FACULTY OF THE INSTITUTE FOR MOLECULAR ENGINEERING IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BY QUAN WAN CHICAGO, ILLINOIS AUGUST 2015 Copyright c 2015 by Quan Wan All Rights Reserved For Jing TABLE OF CONTENTS LISTOFFIGURES .................................... vii LISTOFTABLES ..................................... xii ACKNOWLEDGMENTS ................................. xiii ABSTRACT ........................................ xiv 1 INTRODUCTION ................................... 1 2 FIRST PRINCIPLES CALCULATIONS OF GROUND STATE PROPERTIES . 5 2.1 Densityfunctionaltheory. 5 2.1.1 TheSchr¨odingerEquation . 5 2.1.2 Density Functional Theory and the Kohn-Sham Ansatz . .. 6 2.1.3 Approximations to the Exchange-Correlation Energy Functional... 9 2.1.4 Planewave Pseudopotential Scheme . 11 2.1.5 First Principles Molecular Dynamics . 12 3 FIRST-PRINCIPLES CALCULATIONS IN THE PRESENCE OF EXTERNAL ELEC- TRICFIELDS ..................................... 14 3.1 Density functional perturbation theory for Homogeneous Electric Field Per- turbations..................................... 14 3.1.1 LinearResponsewithinDFPT. 14 3.1.2 Homogeneous Electric Field Perturbations . 15 3.1.3 ImplementationofDFPTintheQboxCode . 17 3.2 Finite Field Methods for Homogeneous Electric Field . 20 3.2.1 Finite Field Methods . 21 3.2.2 Computational Details of Finite Field Implementations . 25 3.2.3 Results for Single Water Molecules and Liquid Water . 27 3.2.4 Conclusions ................................ 32 4 VIBRATIONAL SIGNATURES OF CHARGE FLUCTUATIONS IN THE HYDRO- GENBONDNETWORKOFLIQUIDWATER . 34 4.1 IntroductiontoVibrationalSpectroscopy . ..... 34 4.1.1 NormalModeandTCFApproaches. 35 4.1.2 InfraredSpectroscopy. .. .. 36 4.1.3 RamanSpectroscopy ........................... 37 4.2 RamanSpectroscopyforLiquidWater . 39 4.3 TheoreticalMethods ............................... 41 4.3.1 Simulation Details . 41 4.3.2 Effective molecular polarizabilities .
    [Show full text]
  • Introducing ONETEP: Linear-Scaling Density Functional Simulations on Parallel Computers Chris-Kriton Skylaris,A) Peter D
    THE JOURNAL OF CHEMICAL PHYSICS 122, 084119 ͑2005͒ Introducing ONETEP: Linear-scaling density functional simulations on parallel computers Chris-Kriton Skylaris,a) Peter D. Haynes, Arash A. Mostofi, and Mike C. Payne Theory of Condensed Matter, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom ͑Received 29 September 2004; accepted 4 November 2004; published online 23 February 2005͒ We present ONETEP ͑order-N electronic total energy package͒, a density functional program for parallel computers whose computational cost scales linearly with the number of atoms and the number of processors. ONETEP is based on our reformulation of the plane wave pseudopotential method which exploits the electronic localization that is inherent in systems with a nonvanishing band gap. We summarize the theoretical developments that enable the direct optimization of strictly localized quantities expressed in terms of a delocalized plane wave basis. These same localized quantities lead us to a physical way of dividing the computational effort among many processors to allow calculations to be performed efficiently on parallel supercomputers. We show with examples that ONETEP achieves excellent speedups with increasing numbers of processors and confirm that the time taken by ONETEP as a function of increasing number of atoms for a given number of processors is indeed linear. What distinguishes our approach is that the localization is achieved in a controlled and mathematically consistent manner so that ONETEP obtains the same accuracy as conventional cubic-scaling plane wave approaches and offers fast and stable convergence. We expect that calculations with ONETEP have the potential to provide quantitative theoretical predictions for problems involving thousands of atoms such as those often encountered in nanoscience and biophysics.
    [Show full text]
  • 5 Jul 2020 (finite Non-Periodic Vs
    ELSI | An Open Infrastructure for Electronic Structure Solvers Victor Wen-zhe Yua, Carmen Camposb, William Dawsonc, Alberto Garc´ıad, Ville Havue, Ben Hourahinef, William P. Huhna, Mathias Jacqueling, Weile Jiag,h, Murat Ke¸celii, Raul Laasnera, Yingzhou Lij, Lin Ling,h, Jianfeng Luj,k,l, Jonathan Moussam, Jose E. Romanb, Alvaro´ V´azquez-Mayagoitiai, Chao Yangg, Volker Bluma,l,∗ aDepartment of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA bDepartament de Sistemes Inform`aticsi Computaci´o,Universitat Polit`ecnica de Val`encia,Val`encia,Spain cRIKEN Center for Computational Science, Kobe 650-0047, Japan dInstitut de Ci`enciade Materials de Barcelona (ICMAB-CSIC), Bellaterra E-08193, Spain eDepartment of Applied Physics, Aalto University, Aalto FI-00076, Finland fSUPA, University of Strathclyde, Glasgow G4 0NG, UK gComputational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA hDepartment of Mathematics, University of California, Berkeley, CA 94720, USA iComputational Science Division, Argonne National Laboratory, Argonne, IL 60439, USA jDepartment of Mathematics, Duke University, Durham, NC 27708, USA kDepartment of Physics, Duke University, Durham, NC 27708, USA lDepartment of Chemistry, Duke University, Durham, NC 27708, USA mMolecular Sciences Software Institute, Blacksburg, VA 24060, USA Abstract Routine applications of electronic structure theory to molecules and peri- odic systems need to compute the electron density from given Hamiltonian and, in case of non-orthogonal basis sets, overlap matrices. System sizes can range from few to thousands or, in some examples, millions of atoms. Different discretization schemes (basis sets) and different system geometries arXiv:1912.13403v3 [physics.comp-ph] 5 Jul 2020 (finite non-periodic vs.
    [Show full text]
  • An Introduction to Hartree-Fock Molecular Orbital Theory
    An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental to much of electronic structure theory. It is the basis of molecular orbital (MO) theory, which posits that each electron's motion can be described by a single-particle function (orbital) which does not depend explicitly on the instantaneous motions of the other electrons. Many of you have probably learned about (and maybe even solved prob- lems with) HucÄ kel MO theory, which takes Hartree-Fock MO theory as an implicit foundation and throws away most of the terms to make it tractable for simple calculations. The ubiquity of orbital concepts in chemistry is a testimony to the predictive power and intuitive appeal of Hartree-Fock MO theory. However, it is important to remember that these orbitals are mathematical constructs which only approximate reality. Only for the hydrogen atom (or other one-electron systems, like He+) are orbitals exact eigenfunctions of the full electronic Hamiltonian. As long as we are content to consider molecules near their equilibrium geometry, Hartree-Fock theory often provides a good starting point for more elaborate theoretical methods which are better approximations to the elec- tronic SchrÄodinger equation (e.g., many-body perturbation theory, single-reference con¯guration interaction). So...how do we calculate molecular orbitals using Hartree-Fock theory? That is the subject of these notes; we will explain Hartree-Fock theory at an introductory level. 2 What Problem Are We Solving? It is always important to remember the context of a theory.
    [Show full text]
  • Natural Bond Orbital Analysis in the ONETEP Code: Applications to Large Protein Systems Louis P
    WWW.C-CHEM.ORG FULL PAPER Natural Bond Orbital Analysis in the ONETEP Code: Applications to Large Protein Systems Louis P. Lee,*[a] Daniel J. Cole,[a] Mike C. Payne,[a] and Chris-Kriton Skylaris[b] First principles electronic structure calculations are typically Generalized Wannier Functions of ONETEP to natural atomic performed in terms of molecular orbitals (or bands), providing a orbitals, NBO analysis can be performed within a localized straightforward theoretical avenue for approximations of region in such a way that ensures the results are identical to an increasing sophistication, but do not usually provide any analysis on the full system. We demonstrate the capabilities of qualitative chemical information about the system. We can this approach by performing illustrative studies of large derive such information via post-processing using natural bond proteins—namely, investigating changes in charge transfer orbital (NBO) analysis, which produces a chemical picture of between the heme group of myoglobin and its ligands with bonding in terms of localized Lewis-type bond and lone pair increasing system size and between a protein and its explicit orbitals that we can use to understand molecular structure and solvent, estimating the contribution of electronic delocalization interactions. We present NBO analysis of large-scale calculations to the stabilization of hydrogen bonds in the binding pocket of with the ONETEP linear-scaling density functional theory package, a drug-receptor complex, and observing, in situ, the n ! p* which we have interfaced with the NBO 5 analysis program. In hyperconjugative interactions between carbonyl groups that ONETEP calculations involving thousands of atoms, one is typically stabilize protein backbones.
    [Show full text]
  • User Manual for the Uppsala Quantum Chemistry Package UQUANTCHEM V.35
    User manual for the Uppsala Quantum Chemistry package UQUANTCHEM V.35 by Petros Souvatzis Uppsala 2016 Contents 1 Introduction 6 2 Compiling the code 7 3 What Can be done with UQUANTCHEM 9 3.1 Hartree Fock Calculations . 9 3.2 Configurational Interaction Calculations . 9 3.3 M¨ollerPlesset Calculations (MP2) . 9 3.4 Density Functional Theory Calculations (DFT)) . 9 3.5 Time Dependent Density Functional Theory Calculations (TDDFT)) . 10 3.6 Quantum Montecarlo Calculations . 10 3.7 Born Oppenheimer Molecular Dynamics . 10 4 Setting up a UQANTCHEM calculation 12 4.1 The input files . 12 4.1.1 The INPUTFILE-file . 12 4.1.2 The BASISFILE-file . 13 4.1.3 The BASISFILEAUX-file . 14 4.1.4 The DENSMATSTARTGUESS.dat-file . 14 4.1.5 The MOLDYNRESTART.dat-file . 14 4.1.6 The INITVELO.dat-file . 15 4.1.7 Running Uquantchem . 15 4.2 Input parameters . 15 4.2.1 CORRLEVEL ................................. 15 4.2.2 ADEF ..................................... 15 4.2.3 DOTDFT ................................... 16 4.2.4 NSCCORR ................................... 16 4.2.5 SCERR .................................... 16 4.2.6 MIXTDDFT .................................. 16 4.2.7 EPROFILE .................................. 16 4.2.8 DOABSSPECTRUM ............................... 17 4.2.9 NEPERIOD .................................. 17 4.2.10 EFIELDMAX ................................. 17 4.2.11 EDIR ..................................... 17 4.2.12 FIELDDIR .................................. 18 4.2.13 OMEGA .................................... 18 2 CONTENTS 3 4.2.14 NCHEBGAUSS ................................. 18 4.2.15 RIAPPROX .................................. 18 4.2.16 LIMPRECALC (Only openmp-version) . 19 4.2.17 DIAGDG ................................... 19 4.2.18 NLEBEDEV .................................. 19 4.2.19 MOLDYN ................................... 19 4.2.20 DAMPING ................................... 19 4.2.21 XLBOMD ..................................
    [Show full text]
  • The CECAM Electronic Structure Library and the Modular Software Development Paradigm
    The CECAM electronic structure library and the modular software development paradigm Cite as: J. Chem. Phys. 153, 024117 (2020); https://doi.org/10.1063/5.0012901 Submitted: 06 May 2020 . Accepted: 08 June 2020 . Published Online: 13 July 2020 Micael J. T. Oliveira , Nick Papior , Yann Pouillon , Volker Blum , Emilio Artacho , Damien Caliste , Fabiano Corsetti , Stefano de Gironcoli , Alin M. Elena , Alberto García , Víctor M. García-Suárez , Luigi Genovese , William P. Huhn , Georg Huhs , Sebastian Kokott , Emine Küçükbenli , Ask H. Larsen , Alfio Lazzaro , Irina V. Lebedeva , Yingzhou Li , David López- Durán , Pablo López-Tarifa , Martin Lüders , Miguel A. L. Marques , Jan Minar , Stephan Mohr , Arash A. Mostofi , Alan O’Cais , Mike C. Payne, Thomas Ruh, Daniel G. A. Smith , José M. Soler , David A. Strubbe , Nicolas Tancogne-Dejean , Dominic Tildesley, Marc Torrent , and Victor Wen-zhe Yu COLLECTIONS Paper published as part of the special topic on Electronic Structure Software Note: This article is part of the JCP Special Topic on Electronic Structure Software. This paper was selected as Featured ARTICLES YOU MAY BE INTERESTED IN Recent developments in the PySCF program package The Journal of Chemical Physics 153, 024109 (2020); https://doi.org/10.1063/5.0006074 An open-source coding paradigm for electronic structure calculations Scilight 2020, 291101 (2020); https://doi.org/10.1063/10.0001593 Siesta: Recent developments and applications The Journal of Chemical Physics 152, 204108 (2020); https://doi.org/10.1063/5.0005077 J. Chem. Phys. 153, 024117 (2020); https://doi.org/10.1063/5.0012901 153, 024117 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp The CECAM electronic structure library and the modular software development paradigm Cite as: J.
    [Show full text]
  • Improvements of Bigdft Code in Modern HPC Architectures
    Available on-line at www.prace-ri.eu Partnership for Advanced Computing in Europe Improvements of BigDFT code in modern HPC architectures Luigi Genovesea;b;∗, Brice Videaua, Thierry Deutscha, Huan Tranc, Stefan Goedeckerc aLaboratoire de Simulation Atomistique, SP2M/INAC/CEA, 17 Av. des Martyrs, 38054 Grenoble, France bEuropean Synchrotron Radiation Facility, 6 rue Horowitz, BP 220, 38043 Grenoble, France cInstitut f¨urPhysik, Universit¨atBasel, Klingelbergstr.82, 4056 Basel, Switzerland Abstract Electronic structure calculations (DFT codes) are certainly among the disciplines for which an increasing of the computa- tional power correspond to an advancement in the scientific results. In this report, we present the ongoing advancements of DFT code that can run on massively parallel, hybrid and heterogeneous CPU-GPU clusters. This DFT code, named BigDFT, is delivered within the GNU-GPL license either in a stand-alone version or integrated in the ABINIT software package. Hybrid BigDFT routines were initially ported with NVidia's CUDA language, and recently more functionalities have been added with new routines writeen within Kronos' OpenCL standard. The formalism of this code is based on Daubechies wavelets, which is a systematic real-space based basis set. The properties of this basis set are well suited for an extension on a GPU-accelerated environment. In addition to focusing on the performances of the MPI and OpenMP parallelisation the BigDFT code, this presentation also relies of the usage of the GPU resources in a complex code with different kinds of operations. A discussion on the interest of present and expected performances of Hybrid architectures computation in the framework of electronic structure calculations is also adressed.
    [Show full text]