Annales Societatis Geologorum Poloniae (2012), vol. 82: 291–330.

PROLIFIC DEVEL OP MENT OF PACHYTHECALIINES IN LATE BARREMIAN, BULGARI A: CORAL TAXON OMY AND SED I MEN TARY EN VI RON MENT

Bo gus³aw KO£ODZIEJ1, Marin IVANOV2 & Vyara IDAKIEVA2

1 Insti tute of Geolog i cal Science s, Jagiellonian Uni ver sity, ul. Oleandry 2a, 30-063 Kraków, Poland; e-mail: [email protected] 2 Depart ment of Ge ology, Pale on tol ogy and Fos sil Fuels , Sofi a Univer sity ‘St. Kliment Ohridski’, 15 Tzar Osvoboditel Bd., 1000 Sofi a, Bul garia; e-mail: [email protected] a.bg; [email protected] a.bg

Ko³odziej, B., Ivanov, M. & Idakieva, V., 2012. Prolific de vel opment of pachythecaliines in Late Barremian, Bul garia: coral tax on omy and sed i men tary en vi ron ment. Annales Societatis Geologorum Poloniae, 82: 291–330.

Ab stract: Diver sified and abun dant cor als of the suborder Pachythecaliina (or der Hexanthiniaria) are de scribed from Upper Barremian, biostromal reefs of the Emen Forma tion, Lovech Urgonian Group, north cen tral Bul garia. The cor als are mostly of the phaceloid growth form and rep re sent 14 spe cies (six new), 12 gen era (three new), be long ing to five fami lies. Pachythecaliines oc cur with the small, monopleurid cy lin dri cal rudist Mathesia darderi. The rudists frequently are densely clus tered, occur between coral branches or are in contact with them. Other cor als, with the ex cep tion of the phaceloid Calamophylliopsis, and other rudists, are rare. Non-lam i nated microbialite crusts pro vided ad di tional, struc tural sup port for bioconstruction de vel opment. Microbialites (auto- micrites) can be inter preted as a product of micro bial activ ity, or al terna tively, as a result of carbon ate precip i ta - tion, brought about by non-liv ing or ganic sub strates (organomineralization s.s.). In addi tion to microbialites, me- ta zo ans are en crusted by heterotrophic skel e tal mi cro or gan isms, while photophilic and oligotrophic micro- encrusters, usu ally common in other coral-bear ing lime stones of the Emen For mation, are very rare. The sec tion at the Rusalya Quarry (NW of ), about 42 m thick, pro vides the sed i mentary and en vi ron mental con - text for the reefal biostromes. The ver ti cal bi otic and sed i mentary suc ces sion display s a gen eral shallowing trend: from the outer car bon ate plat form with bioclastic lime stones con tain ing small boundstone patches (cor als, but not pachythecaliines, Lithocodium aggregatum), to the in ner plat form with rudist biostromes. The pachythecaliine- rich biostromes, 2.5 m thick, were de vel oped in a low-en ergy en vi ron ment, re ferred to the distal part of the rudist-domi nated area of the platform . The devel op ment of microbialites was fa cil itated by a low sedi men ta tion rate, and possi bly by in creased nu tri ent level. Only poorly di ver sified and non-phaceloid pachythecaliines oc cur in other coral-rich lime stones and marls of the Urgonian complex in Bul garia. The as semblage de scribed is the most remark able, Early Creta ceous coral com munity worldwide, with regard to pachythecaliines. Phaceloid pachythe- caliines are only more common in the Upper Ju ras sic rocks, be ing par tic u larly di ver sified in the Tithonian–Lower Berriasian Štramberk Lime stone (Czech Re pub lic) and its equiv a lent in the Polish Outer Carpathians. However, their sed i mentary con text dif fers from that de scribed for the cor als of the Emen For mation.

Key words: cor als, tax on omy, car bon ate plat form, palaeo ec ol ogy, Cre ta ceous, Fore-Bal kan, Bul garia.

Manu script re ceived 12 November 2012, ac cepted 20 December 2012

IN TRO DUC TION

Pachythecaliina Eliášová, 1976 (= Amphiastraeina fied in the Scleractinia. How ever, because of their skel etal Alloiteau, 1952) is an exti nct suborder (Late Trias sic –Late ar chi tec ture, es pe cially in the Late Tri as sic Zardinophylli- Cre taceous) that has fo cussed the atten tion of coral re - dae Montanaro Gallitelli, 1975 and the Juras sic –Cre taceous searchers in the context of the ori gin of corals from the or - Amphiastraeidae Ogilvie, 1897 – simi lar to the late Palaeo- der Scleractinia Bourne, 1900 in the Middle Trias sic , and zoic plerophyllines – some authors clas sifie d them direct ly their possi ble rela ti onship to the or der Rugosa Milne-Ed- into the Rugosa (Koby, 1888; Ogilvie, 1897) or assum ed wards et Haime, 1851. Many pachythecaliines display “ar- their rugosan ances try (Cuif, 1975, 1977, 1981, 2010; Mel- chaic”, skel etal features, which are unique among post-Pala- nikova and Roniewicz, 1976; Stolarski, 1996). Alternati- eozoic cor als. These cor als usu ally were or still are clas si- vely, pachythecaliines (in a narrow or broad meaning) were 292 B. KO£ODZIEJ ET AL.

Fig. 1. Gen eral lo ca tion of study area on geo log i cal map (1: 500 000) (af ter Cheshitev et al., 1989; mod i fied and cor rected) with lo ca - tion of sampling sites for cor als, rudists Mathesia darderi, as well as ammonites, used for lo cal biostratigraphy

classi fied as the sep arate or der Hexanthiniaria Montanaro GEO LOG I CAL SET TING AND MA TE RIAL Gallitelli, 1975 (Montanaro Gallitelli, 1975; Eliášová, 1976b, 1978; Roniewicz, 2008; Melnikova and Roniewicz, During the Barremian–Early Aptian several carbon ate 2012; Morycowa, 2012). plat forms exist ed on the northern, Tethyan margin, locat ed Phaceloid (branched, built of paral lel coral lites, pseu- in the pres ent terri tory of Bul garia (Lovech Urgonian Group, docolonial) pachythecaliine cor als were mod er ately com - Vratsa Urgonian Group, Russe Form ati on). In particular, the mon in the Late Ju ras sic and lo cally di ver si fied tax o nom i- Lovech Urgonian Group in the centra l Fore-Bal kan (north cally (Tithonian–Lower Berriasian Štramberk Limeston e), cen tral Bul garia) con tains di verse coral and rudist as sem- but were rare during the Creta ceous . The coral com muni - blages. This Urgonian com plex consis ts of four terrigene- ties, dom i nated by di ver si fied, phaceloid pachythecaliines, ous and four carbon ate form ati ons (Figs 1, 2; Khrischev, re cently dis cov ered in the Up per Barremian limestones of 1966; Nikolov, 1969; PeybernÀs et al., 1998; re view in the Emen Form ati on in north centra l Bulgari a (Ko³odziej et Minkovska et al., 2002; Nikolov et al., 2007). Coral com- al., 2009, 2011b), are unique among post-Juras sic coral co- muni ti es – from level-bot tom assem blages to coral-micro- mmunities. The aims of this paper are the taxo nom ic and bialite reefs – rep re sent both clear- and tur bid-water en vi - palaeoecological anal ysis of these cor als, as well as the in - ronm ents. Up to now, more than 100 coral spe cies were de- ter pre ta tion of the sed i men tary en vi ron ment of pachytheca- scribed, mainly from soft marls, but were ana lysed more ra- liine-rich bioconstructions in the Emen Form ati on. rely with re spect to their palaeoec ol ogy (e.g., Toula, 1889; PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 293

Fig. 2. Lithostratigraphic scheme of study area and strati graphic po sition of sampling sites

Zlatarski, 1967, 1968a, b, c; Tchechmedjieva, 2001; Ida- cinit y, re ferred to below as Veliko Tarnovo, col lected by the kieva, 2002, 2003, 2007, 2008; Idakieva and Ivanov, 2002; late Prof. Ryszard Marcinowski (Warsaw Univer sit y), but Ko³odziej et al., 2007; see also Ilcheva and Motchurova- the ex act col lect ing lo ca tion is un known. Dekova, 2011). Diver si fie d coral assem blages occur also in The Emen Form ati on, sit uate d in the middle part of the pure or marly limestone s (Ko³odziej et al., 2011c). How- Lovech Urgonian Group, was estab li shed by Khrischev ever, apart from the pres ent pa per, they have not yet been (1966) in the region of Emen vil lage, about 20 km NW of the sub ject of de tailed, tax o nomic pub li ca tions. Veliko Tarnovo (Fig. 1). The best out crops of this form ati on The pachythecaliine corals studied oc cur in limestone s occur betwee n the Osum and Jantra Rivers, and the type of the Emen Form ati on in the Veliko Tarnovo (also transli t- sec tion is lo cated at the Al ex an der Stambolijski Dam near to erate d as Veliko Turnovo, Veliko Trnovo, Veliko Tyrnovo) Gorsko Kosovo village , 40 km west of Veliko Tarnovo. Pre- area. They were col lected mainly in quar ries at Rusalya and vious studies showed that the limestone s of the Emen Form a- Vishovgrad. Sam pling was supple m ented in the Zarapovo- tion were de posit ed on a shallow-wa ter, car bonate plat form, ecotrack and Hotnitsa-ecotrack, re ferred to be low as Zara- largely in an open la goon. In ter ca la tions of siliciclastic sed i - povo and Hotnitsa, re spec tively (Fig. 1). This study also in - ments are rel atively rare (Khrischev, 1966; Khrischev and cludes sam ples from Veliko Tarnovo, or its im medi ate vi- Bakalova, 1974). Microfacies anal yses, performed by Min- 294 B. KO£ODZIEJ ET AL.

Fig. 3. General view of Rusalya Quarry. A – view of south wall, show ing low er most part of sec tion with units 1, 2 and part of unit 3. Max i mum height of wall is about 30 me ters. B – view of WNW wall with ap prox i mate bound aries be tween units 3, 4 and 5. Straight line does not reflect exact relief of pachythecaliine-Mathesa biostrome. De pres sion be hind quarry is built of siliciclastics of Gorna Orya- hovitsa For ma tion kovska (1996) in three secti ons reveal ed sedi m ents of (1) SEDI MEN TARY SUCCES SIO N the inner platform (the Preobrazhenski Monastir secti on – AT RUSALYA QUARRY close to Veliko Tarnovo; cored wells), (2) exter nal parts of the inner platform (the area around Emen vil lage), and (3) As noted above, more detai led studies of the sedi m en- vari ous facie s, repre sent ing the dis tal to the inner part of the tary suc ces sion bearing pachythecaliine-rich biostromes car bon ate plat form (Al ex an der Stambolijski Dam sec tion). were perform ed only in the Rusalya Quarry. In the follow - In the Emen Form ati on bioclastic and coral-bearing lime- ing chapter the result s of field obser va ti ons and micro scopi c stones dom inate , while rudist occurren- ces are uncom mon anal ysis of the mate rial from all sites are pre sented. (Minkovska, 1996). The secti on in Rusalya was studied for Sedimentological stud ies at Rusalya were car ried out the first time by the pres ent au thors (see Fenerci-Masse et on a well-exposed secti on, about 42 m thick (Fig. 3). The al., 2011). sec tion con sists of five main, lithological units (Fig. 4): In the study area, the Emen For mation grades lat er ally (1) ~10 m. Bioclastic packstone, rarely wackestones into the siliciclastic Gorna Oryahovitsa For mation (Figs 2, and grainstones, contai ning small, decimetre-scale bound- 3B). The Emen Form ati on consis ts here of two tongues stone patches, with ir reg u lar rims, built of small cor als and brackete d by marly units with ammonites appear ing to cor- cal ci fied sponges, en crusted by Lithocodium aggregatum respond to the upper part of the Lower Barremian (proba bly and mi cro bial struc tures with ve sic u lar, ‘bacinellid’ fab ric Kotetishvilia compressissima Zone) and the middle part of (Fig. 4A, B). Colo nial corals and their fragm ents are small the Upper Barremian (Gerhardtia sartousiana Zone) (Khri- (usu ally no more than a few centi metres in size). As so ciated schev, 1992; Ivanov, 1995; Ivanov and Nikolov, 1995; Sto- biota include cal cifie d sponges (chaetetids, stromatoporo- ykova and Ivanov, 2000; Ivanov and Idakieva, 2009; see ids) and rare rudists. Pachythecaliine cor als (or other phace- also Fenerci-Masse et al., 2011). loid corals ), abundant in the coral-Mathesia-microbialite The stra tigra phy of the sam pling sites ranges from the biostromes (unit 4), have not been rec ognize d in unit 1. early Late Barremian (Toxancyloceras vandenheckii Zone; (2) ~15 m. Bioclastic limeston es interlayered with ru- site Hotnitsa) up to the early mid dle Late Barremian (Gerhar- dist (mostly monopleurids) limestone s (Fig. 4C). dtia sartousiana Zone; sites: Rusalya and Vishovgrad Quarrie s, (3) ~8 m. Packstone-dom inate d, bioclastic limestone s Zarapovo). The pres ence of the latest Early Barremian Mouto- with chaetetids, stromatoporoids, subordinately with rudists niceras moutonianum Zone in Hotnitsa cannot be ruled out. and small, colo nial corals , but without pachythecaliines More de tailed stud ies of the sed i men tary suc ces sion (Fig. 4D). were perform ed in the Rusalya Quarry. The Vishovgrad (4) ~2.5 m. Coral-rudist-microbialite biostromes and Quarry was in ac ces si ble for de tailed stud ies. Microfacies possi bly also low-re lief bioherms. The dom inant metazoan studies were perform ed on thin sec tions from all sam pling compo nents are large, phaceloid cor als: pachythecaliines sites. The result s, present ed here, are based on the study of (Fig. 4E, see also Figs 11–13, 17–19, 22–24) and Calamo- 136 thin sec tions; 94 thin secti ons are of standard size (4 × phylliopsis sp. and small monopleurid rudists Mathesia da- 2.7 mm) and 42 are large (6 × 5 mm). The speci m ens are de- rderi (Astre, 1933), densely cluster ed local ly (e.g., Fig. 4F; pos ited at the In sti tute of Geo log i cal Sci ences, Jagiellonian see also Figs 5C, 6A). Microbialites are com mon (e.g., Fig. Univer sit y, Kraków (col lec tion UJ 225 P). Twenty thin sec - 7B, C, E; see also Fig. 23B, C). Ac cess to the upper part of tions from three samples , col lected by the late Prof. R. Mar- the secti on was diffi cult , therefore es tabli shing a more de- cinowski, are housed at the Insti tute of Palaeobi ol ogy, Pol - tailed pat tern of the lat eral dis tri bu tion of cor als and rudists, ish Acad emy of Sci ences, Warszawa (col lection abbrevia- as well as the lateral exten sion and geom etry of bioconstruc- ted as ZPAL Bu³g). tions (biostromes, low-reli ef bioherms), require s supple- PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 295

Fig. 4. Gen er al ized lithostratigraphic sec tion of Up per Barremian suc ces sion at Rusalya Quarry, showing main lith ologic units, with ex am ples of biofacies. A, B – unit 1: bioclastic limestone with small boundstone patches (arrows in A), built of small corals, calci fied sponges, Lithocodium aggregatum (B) and ‘bacinellid’, mi cro bial struc tures. C – unit 2: bioclastic lime stone with monopleurid rudists. D – unit 3: bioclastic limestone with chaetetid sponges. E, F – unit 4: coral-rudist-microbialite biostrome with phaceloid pachythecaliine coral Pleurophyllia sp. (E) and monospecific, rudist clus ter of Mathesia darderi (F). G, H – unit 5: rudist biostromes, built of dense ag gre - gates of elon gated, monopleurid rudists 296 B. KO£ODZIEJ ET AL.

mentary stud ies. Their de tailed de scrip tion, in clud ing mi- from 0.7 to 0.8 cm; Fenerci-Masse et al., 2011) with the crofacies anal ysis, is given in the next section. outer, calcitic shell layer and the in ner one, aragonitic con - (5) ~6 m. Rudist biostromes, built by dense aggre gate s verted to neomorphic calcite (Fig. 6; Fenerci-Masse et al., of rudists, more di versi fie d and larger in size than those in 2011, figs 5–7, 11; see also Masse and Fenerci-Masse, unit 4: large and small requieniids, elongate d, monopleurids 2010). They frequentl y are cluster ed densely and occur be- and pos si bly Agriopleura sp. (Fig. 4G, H; J.-P. Masse, pers. tween coral branches, or are at tached di rectly to them (Figs comm., 2012). Chaetetids occur subordinately. 4F, 5C, 6, 12A, D, 14C, 16A; see also Fenerci-Masse et al., 2011). Some small growth anom ali es were observe d in cor - als or rudists (Fig. 6C). Outside Rusalya, M. darderi is com - PACHYTHECALIINE-RUDIST- mon at Vishovgrad and in sam ples from Hotnitsa (Fig. 5C). MICROBIALITE BIOCONSTRUCTIONS This specie s was also recog nize d in thin secti ons from sam - ples, col lected in Veliko Tarnovo by Prof. R. Marcinowski. The simple term biostrome or autobiostrome (sensu They were not found at Zarapovo, but this may be due to Kershaw, 1994) can be used for the boundstones, ana lysed sam pling bias becaus e, only lim ited sam pling was perfor- at Rusalya, be cause field ob ser va tions in di cate the bed ded med at this site. nature , al though owning to diffi cult acces s to the upper part The corals and rudists are encrust ed by microbialites, of the section at Rusalya, the occur rence of low-re lief bio- which occur also in semi-closed spaces (e.g., in interskeletal herms can not be exclude d. The term biostromal reef is ap - spaces be tween coral skel eton el em ents; Figs 7D, 23 A–B) plied here, in ac cor dance with the re cent, broad ap proach to and may parti ally (micro bial “bridges”, e.g., Figs 14C, D, reef def i ni tion (Leinfelder et al., 1994; Insalaco et al., 1997; 18F) or com pletely fill space be tween skel etons. Microbia- Wood, 1999; Stanley , 2001; Riding, 2002; Kiessling et al., lites show dense, non-lami nated micritic microfabric (Figs 2002; Kiessling, 2009; Flügel, 2010). The broad term bio- 7A–E, 8A, B), thus at the scale of microstructure can be cat- con struc tion rep re sents a more in clu sive term for more-or- ego riz ed as pure leiolites. Poorly marked microlamination less clearly recog niz able struc tures (Höfling, 1997; Riding, (Fig. 18A) and micropeloidal (mostly within microcavities; 2002). This term is also used here, becaus e deter mina ti on of Fig. 9C, D) or clotted microfabrics was observe d only lo- the exact morphol ogy of reefal lithosomes (biostromes ver - cally. The crusts are termed here microbialite, but the more sus bioherms) was diffi cult , owing to the state of the out- in clu sive term automicrite can also be ap plied (see Mi cro- crops at Zarapovo and Hotnitsa, and lim ited ac cess for study bialites in the chap ter Palaeoenvironmental in ter pre ta tion). in the Vishovgrad Quarry. Microbialites are “pure”, con tain micrometre-scale The de scripti ons of pachythecaliine-rudists- microbi a- “sparitic spots” of un cer tain or igin (small bioclasts?) or in - lite bioconstructions are based on field obser va ti ons and mi- corpo rat e vary ing amounts of skele tal debris. In thin sec - cro scopic stud ies (in clud ing the tax on omy of cor als and tions, microbialites are easy to dis tin guish from allomicrites some other fossil s) mainly of sam ples from Rusalya and by their dark col our (e.g., Figs 7A, D, 8A, B, 23B, C). Vishovgrad. Pachythecaliines are clearly the most com mon Microbialites do not exhibi t borings or encrust ing micro or - and diver si fie d corals in the bioconstructions studied (see gan isms, ei ther ex ter nally or in ter nally, but fine bur row ing Systematic Palaeon tol ogy, Figs 10–24): 14 specie s (six traces are rel atively com mon (Fig. 7B, C; compare with Fig. new, eight in open nom encla ture), 12 genera (four new, 9). Microbialite growth gen er ated small cav ities, lo cally three of them are disti nguishe d form ally). Large, phaceloid with geopetal struc tures, filled with allochthonous micrite, forms are often in growth posi ti on (Figs 4F, 5A, B). The calcite sparite ce ment, and rarely small grains (Figs 6A, 9). most com mon (17 fragm ents of large coralla; 15 of them Bioclasts are rare in cav ities, ex cept for ostracods (Fig. 6E). col lected in Rusalya) is Pleurophyllia bulgarica sp. nov. Microbialite growth be tween skel e tal el e ments (septa, wall, reaching about 70 cm in height. In contra st to Rusalya, sam - dis sepi ments) occurr ed only locally, “closed” interskeletal pling at other sites was not exten sive , which also refle cted space, which prevente d filling by sedi m ent. There fore, the in the tax o nomic diver sity, namely at Rusalya: eight gen era, space be tween skele tal ele m ents is largely filled with calcite nine specie s; at Vishovgrad: four genera, five specie s; at spar cem ent (e.g., Figs 5A, 10B, C, 12D, L, 13, 14C, 15D, Hotnitsa: two genera, two spe cies; at Zarapovo: one genus, 17A, 22B, C, H, 24B, C). Becaus e septa are poorly preser- one spe cies. Anal ysis of 20 thin sec tions from three sam ples ved (usuall y only slightly micritized), obser va ti ons of coral- collec ted by the late Prof. R. Marcinowski at the unknown lite mor phol ogy are dif fi cult, par tic u larly in ver ti cal sec - site at Veliko Tarnovo re vealed three spe cies of pachytheca- tions. liines, Calamophyliopsis sp. and one unde ter mined coral, Small pyrit e or orange-brown iron oxides (Fig. 7E), and thus showing a general , “taxo nom ic patter n” as the rich lo cally also do lo mite crys tals are scat tered within the micro - coral as sem blages from Rusalya. As so ci ated cor als, ex cept bialites, though very rarely within allomicrite in samples for Calamophylliopsis sp. are rare. These cor als are small, from Vishovgrad (Figs 8B, 15F). The surround ing sedi m ent and only the phaceloid Calamophylliopsis sp. at tains a lar- and biota appear unaf fect ed by dolomitization, al though in ger size of up to 40 cm (Fig. 8). places the dis tinc tion be tween automicrite and allomicrite, Apart from corals , the monopleurid rudist Mathesia if dolomitized, may be diffi cult . The presence of dolo m ite darderi and microbialite crusts provided addi ti onal, struc - was supporte d by the standard staining of thin secti ons with tural support for reef devel op m ent. Rudist assem blage is Aliz arin Red-S (see Ad ams et al., 1984). In contra st to the nearly monospecific, dom inate d by M. darderi, with small, calcite cem ent and allomicrite, do lo mite rem ained un stained cy lin dri cal shells (50% of the av er age di am e ters rang ing (Fig. 15F). PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 297

With regard to microfacies the pachythecaliine-bear ing limeston es from all of the samplin g sites are simi lar. The as - so ciated sed im ent is calcimudstone, bioclastic wackestone and packstone. Quartz was observe d only within the tests of some agglu ti nated foraminifera. Most metazoan bioclasts are fragm ents of small rudists (Figs 6A, 7A, 12B, 248A, B). Large meta zoans, apart of corals and rudists, include sponges (cal cifie d and non-rigid; Figs 8, 22A, E), and com - plete shells or fragm ents of small gastro pods, rec ogniz able mostly in thin sec tions (Figs 12A, 17A, C, D). Sponge spi- cules oc cur lo cally within the microbialites (Fig. 9A, B). Sponges, both non-rigid and calci fie d, show differ en ti al pres er va tion even in spa tially close parts of the same spec i- men (Fig. 9C, D, E). Well preserve d skel etons may pass lat- erall y to micropeloidal aggre gate s (Fig. 9C, D). Some struc- tures may be relicts of sponge spicules (Fig. 9G, H). Other biota in cludes echinoderm plates, deca pod crus tacean ap- pendages, sim i lar to Carpathocancer? plassenensis (Schla- gintweit et Gawlick, 2002) (Fig. 22G; cf. Schlagintweit et al., 2007), small brachi opods, benthi c foraminifera, includ - ing encrust ing/crypti c forms (Figs 7F, H, 9F) and a few orbitolinids, ostracods (rel a tively com mon, par tic u larly in microcavities, Fig. 7D, E), encrust ing bryozoans , serpulids (Fig. 22A, F, G), Girvanella-like tubes and rare al gae. This latter group in cludes dasycladacean green al gae: Zittelina hispanica Masse, Arias et Vilas, 1993 (Fig. 18E), Neomeris cretacea Steinmann, 1899 (Fig. 18F), but mostly Terque- mella sp., that is repro duc ti ve structure s of unde ter mined large al gae (I. I. Bucur, pers. comm., 2010). Crusts of cora- lline red al gae were rec og nized only in two samples at Zarapovo. In contra st to the lower part of the sec tion at Ru- salya (Fig. 4B), thin crusts of Lithocodium aggregatum (sensu Schlagintweit et al., 2010) and micro bial struc tures with “bacinellid” fab ric (sensu Maurin et al., 1985; Schlag- intweit and Bover-Arnal, 2013) with poorly devel oped ve- sicu lar meshwor k, are rare (ex cept in samples from Zara- povo) in most sam ples with pachythecaliines studied (Fig. 7F, G). Structure s sim ilar to and confused with L. aggre- gatum, re cently re in ter preted as entobian bor ings (see sec - tion Lithocodium/Bacinella in the next chap ter), as so ciated with boring foraminfer Troglotella incrustans Wernli et Fig. 5. Field pho to graphs of pachythecaliine and Mathesia- Fookes, 1992 (Schmid and Leinfelder, 1996; Schlagintweit, bear ing lime stones from Vishovgrad Quarry (A, B) and Hotnitsa- 2012), were not recog nize d in the limestone s studied. Large ecotrack (C). A – Pleurophyllia sp. in growth po sition. Most coral - bor ings in meta zo ans, mostly Entobia sp., are mod er ate to lites are in longi tu di nal section; note calcite spar cement filling sparse in abundance . Only two large bi valve borings were most of interskeletal space, ex cept up per most part of coral bran- ches. B – ?Aulastrea sp.; scale in milli me ters. C – large massive ob served, cut ting both meta zo ans and sed i ment. col ony of Metaulastrea sp. (Met) and densely clustered, small rudists Mathesia darderi (Ma) PALAEOENVIRONMETAL IN TER PRE TA TION rep re sents the outer car bon ate plat form. Or gan isms and ma- trix sed i ment in di cate a mildly mesotrophic en vi ron ment Gen eral in ter pre ta tion of sed i men tary set ting and mod er ate hy dro dy nam ics, but higher than dur ing the at Rusalya devel op m ent of the biostromes of unit 4 (see dis cussion be - Analy sis of sec tion at Rusalya, about 42 m thick, al lows low). Limestone s, sim ilar to those in unit 1, are com mon in placem ent of biostromes discusse d within a broader sedi - the sedi m entar y suc ces sion of the Emen Form ati on at the men tary and en vi ron men tal con text. The dom i nance of Alex an der Stambolijski Dam studied by Minkovska (1996) bioclastic packstones, the sparse rudists, the oc cur rence of and by the present authors (unpub li shed data). Our studies small cor als, the pres ence of encrustations of L. aggrega- of the section at the Al ex an der Stambolijski Dam revealed tum, “bacinellid” structure s and the subor di nate role of mi- dif fer ent fa cies, in clud ing lime stones with cor als, rudists, L. crobialites in di cate that the lower part of the sec tion (unit 1) aggregatum and crusts with a “bacinellid” fab ric. Pachythe- 298 B. KO£ODZIEJ ET AL.

Fig. 6. Small rudist Mathesia darderi from pachythecaliine-rich boundstones. A – M. darderi ag gre gated in cluster and two branches of coral Pleurophyllia sp. B – rudist, at tached to coral skel e ton (lon gi tu di nal sec tion). C – growth anomaly (ar row) of coral skel e ton at bound ary with rudist. D – juve nile rudist (arrow), closely at tached to coral skel e ton. Note two lay ers of rudist shell: inner layer orig inally aragonitic, and outer, calcitic layer. A – Vis 52/1, B – Ru 19-08/1, C – Ru, D – Vis 47/2 caliines, other branching cor als and Mathesia darderi are growth rate of microbialites). A low energy envi ron m ent at absent there. Changes in lithol ogy and bioti c as sem blages in the transi ti on from the inner to outer plat form may be in- units 2 and 3 and parti cu lar ly the recur rent interlayers of ferred, on the ba sis of the abundant, branching cor als in the rudist lime stones, in di cate changes in en vi ron men tal pa ram - growth posi ti on (even though microbialite crusts enhance d eter s possi bly control led by changes of sea-level, but still the rigid it y of the corals ) and matri x-supporte d background rem aining in the depositional set ting of the outer carbon ate sed iment (mostly bioclastic wackestone). plat form. Phaceloid, epithecate corals , with sim ple polyp orga ni - It has been suggest ed previ ously that the pachytheca- zati on, were highly devel oped in the Late Trias sic and Late liine and Mathesia-rich biostromes studied (unit 4) devel - Juras sic (Roniewicz and Stolarski, 1999, and refer ence s oped in the dis tal porti on of the rudist-dom inate d part of the therein). Mod ern, phaceloid cor als are rare and epithecate, car bon ate plat form (Ko³odziej et al., 2009; Fenerci-Masse sol i tary cor als oc cur in deep-wa ter and cryp tic hab i tats. Since et al., 2011). In the topm ost part of the secti on, biostromes the Late Cre taceous the de cline of epithecate cor als (in clud - of unit 5 built by dense rudist assem blages, cover direct ly ing phaceloid ones), and the proli fer a ti on of non-epithecate the pachythecaliine-rich biostromes indi cat ing an inner car- cor als are ob served. This evo lu tion ary trend prob a bly was bon ate plat form set ting. Thus, the ver ti cal, sed i men tary and mainly driven by increa sed bioerosion in coral envi ron m ents bioti c suc ces sion in the secti on studied shows – with some (Roniewicz and Stolarski, 1999). fluc tua ti ons – a general shallowing trend, from the outer- to It is worth em pha siz ing that cor als, rep re sent ing Cala- the in ner-plat form en vi ron ment. Palaeoenvironmental in- mophylliopsis (rela tively common in the limeston es stud ied) ference s, based on an analy sis of corals , rudists, microbia- were de scribed in the lit er a ture from var i ous Ju ras sic–Cre - lites and other biota from the pachythecaliine-bearing taceous sedi m ents , which im plies growth under a differ ent bioconstructions, are discusse d below. set of condi ti ons, in cluding stress ful ones, such as higher se- diment and nutri ent input (for the Juras sic , see Leinfelder et al., 1994; and ref er ences to sys tem atic pa pers in Roniewicz, Cor als 1976; Turnšek, 1997; Morycowa, 2012; for the Cre taceous , The coral com muni ti es in the bioconstructions dis- see ci ta tion lists in Löser et al., 2002). In the Barremian– cussed are dom inate d by phaceloid forms: pachythecaliines Albian of Rom ania, Calamophylliopsis is known from pure and less com mon Calamophylliopsis sp. In phaceloid cor- lime stones con tain ing di verse cor als as so ci ated with photo- als, polyp tissue does not extend be yond the margin of the trophic and oligotrophic microencrusters, from ‘Lithoco- calice, so that such corals are consid ered pseudocolonies dium–Bacinella‘ facie s, with poorly di versi fie d corals , as (Coates and Jackson, 1985; Roniewicz and Stolarski, 1999). well as from siliciclastic-domi nated se quences (Ko³odziej et Phaceloid cor als were par ticu larly well adapted to deal with al., 2011a). It is also com mon in marls of the Lovech Urgo- high sedi m enta ti on rates in low-energy set tings (e.g., Lein- nian Group (Idakieva and Ivanov, 2002; Idakieva, 2003). felder et al., 1994; Roniewicz and Stolarski, 1999; Dupraz During the Late Juras sic , the main pe riod of de velop - and Strasser, 2002; Helm and Schülke, 2006). Geister ment of phaceloid pachythecaliines (see the next chap ter, (1995) cal culat ed the growth rate of the Late Juras sic pha- the sec tion Spa tial and tem po ral pro lif er a tion of pachythe- celoid Aplosmilia sp. as about 10 mm/year. However, a low caliines), these cor als (mostly amphiastraeids) oc curred in rate of ac cum ula ti on of allochtonous sedi m ent is assum ed differ ent types of reef struc tures. They are known from co- for limestone s dis cussed (but see dis cussion be low on the ral-microbialite reefs, with photophilic/oligotrophic micro - PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 299

encrusters (e.g., Eliášová, 1975, 1981; Insalaco et al., 1997; see also Vašíèek and Skupien, 2004). However, the factors Ko³odziej, 2003), and from coral thickets without micro bial that gov erned pro lific growth and di ver si fi ca tion of pachy- and/or the crusts menti oned above (e.g., Roniewicz, 1966; thecaliines during this time and at this part of the north Te- Insalaco et al., 1997). Of parti cu lar signif i canc e is the com - thyan margin are unknown. Cuif and Stolarski (1999) have mon occur rence of spec im ens of phaceloid Pleurophyllia. hypoth e siz ed that form ati on of the epithecal wall without Among Late Ju ras sic as semblages it was one of the most septa (wall-based cor als) in pachythecaliines and Re cent com mon, amphiastraeid corals , but except for in the Titho- Gyunia might be an adap ta ti on to a stressful envi ron m ent. nian–Lower Berriasian Štramberk Limestone (see be low), However, in contra st to pachythecaliine corals from the its re cord from the Lower Cre taceous is rare. In the list of ci - Emen Form ati on, those from the Štramberk Limestone are ta tions on Cre ta ceous cor als, Löser et al. (2002) menti oned as so ci ated with di ver si fied cor als and other biota, al though only two spe cies of Pleurophyllia, and sparse record s short-term stress ful events may be dif fi cult to re veal. world wide. Most of the Late Ju ras sic coral as semblages were de - A strictly actualistic appro ach to the palaeo ecol ogy of scribed from the Upper Oxfordian and Kimmeridgian fos sil cor als can not be ap plied, ow ing to evo lu tion ary chan- (Leinfelder et al., 2002; Marti n-Garin et al., 2012). How- ges and the dif fer ent, en vi ron men tal pref er ences of many, ever, proli fer a ti on of pachythecaliines in the Tithonian was modern reef corals (e.g., adap ta ti on to high energy and an not strictly time control led. By com pari son, among 42 spe- oligotrophic regim e; see Wood, 1999). Coral com muni ti es cies from coral-bearing limestone s of the Carpathian Fore - from the biostromes studied are dom inate d by phaceloid land, com para ble in age, only one belongs to Pachytheca- forms. The questi on under debate is whether phaceloid cor- liina (Morycowa, 2012). During that time, this area was lo- als were photosymbiotic or not. Some Late Trias sic phace- cated within a palaeolatitude po si tion, simi lar to that of the loid corals (Retiophyllia, Pachysolenia) are con sid ered to car bon ate plat forms with sed i men ta tion of the Štramberk have been zooxanthellate, on the basis of sta ble isotope Lime stone. The pos si ble rea sons for en vi ron men tal dif fer- com posi ti on (Stanley and Swart, 1995). Studies of sta ble ences may be due to the fact that the for mer area was lo cated isotopes of the organic matri x from skel etons of the Upper slightly farther north, on the SW margin of the East Euro - Tri as sic sol i tary, pachythecaliine coral Pachythecalis ma- pean Craton, and was less af fected by Late Ju ras sic/ear liest jor, re cently per formed by Muscatine et al. (2005), indi cat e Cretacous tec ton ics. In an other ex am ple, in the Kimmerid- that this specie s was photosymbiotic. The authors hy pothe - gian to Valanginian, biostromal reefs (simi lar to the Štram- size that photosymbiosis may have played a role in scle- berk Limestone , with regard to lithofacies; Ivanova et al., ractinian skeletogenesis, af ter the dis ap pear ance of the 2008) in SW Bul garia, Roniewicz (2008) rec ognize d diver - Rugosa in the Perm ian. sifie d coral com muni ti es (50 genera, 72 specie s), but only On the other hand, Recent , low-inte grat ed or pseudoco- four gen era and five pachythecaliine spe cies. lonial cor als are highly re sis tant to sed imen ta tion and feed Some cerioid/pseudocerioid amphiastraeids, such as largely or enti rely heterotrophically (Dryer and Logan, Amphiastrea, were op por tu nis tic or gan isms. The Mid dle– 1978, fide Sanders and Baron-Szabo, 2005 and Silvestri et Late Ju ras sic Amphiastrea piriformis Gregory, 1900 is al., 2011). These obser va ti ons have been used in the inter - known from var i ous lithologies/en vi ron ments, in clud ing preta ti on of fossil phaceloid corals . Kiessling et al. (2009) tur bid, siliciclastic en vi ron ments, with fluctuacting sa lin ity. sug gest that the oc cur rence of Early Jurrasic cor als from These corals were adapted to a high nutri ent level and to the southern France, mostly phaceloid forms, within siliciclas- ac tive re moval of sed i ment (Fürsich et al., 1994; Dupraz tic sed iments may indi cate, that these pos si bly were mostly and Strasser, 2002). Sim ilar ly, cerioid/plocoid heterocoe- azooxanthellate. Thus, the unre solve d questi on of whether niids are known from differ ent sedi m ents, includ ing silici- phaceloid corals were zooxanthellate or not repre sent s ob- clastics (e.g., Morycowa, 1964a; 1971; Beauvais, 1982; sta cle to the at tempt to unravel the palaeoenvironmental pa- Morycowa et al., 1994), im ply ing broad, en vi ron men tal ad- ram eter s, control ling growth of the corals , studied here. ap ta tion. However, rapid cal ci fi ca tion does not al ways cor re late with By contra st to the Emen Form ati on in the study area, a zooxantellate status of corals (Marshal l, 1996; Wood, apart of the amphiastraeid Metaulastrea, Amphiastrea and 1999). Some branching azooxanthellate specie s, repre sent - heterocoeniid Latusastrea, other pachythecaliines are un - ing for exam ple Lophelia, Madrepora, Oculina or Tuba- known within the diver si fie d coral assem blages in marls straea, re veal a rapid growth rate, as much as 26 mm/year and limestone s of the Lovech Urgonian Group and Vraca (Sabatier et al., 2012, and refer ence s therein). Urgonian Group, as indi cat ed by publi shed re sults (see ref- Phaceloid pachythecaliines were com mon and highly erence s in Geolog i cal set ting and mate ria l), and the unpub - di ver si fied dur ing sed i men ta tion of the Tithonian–Early lished re sults of recent studies , includ ing the analy sis of a Berriasian Štramberk Limestone from the Czech Repub lic huge coral col lec tion (coll. V. Zlatarski) housed at the Na- (17 genera, 35 specie s) and Štramberk-type limestone s from tional Mu seum of Nat u ral His tory in So fia. Poland (see next chapter , sec tion Spati al and tem poral pro- lifer ation of pachythecaliines). These reef limestones are Rudists char ac ter ized by the com mon oc cur rence of microbialites (typ ically lami nated , with a micropeloidal microfabric), During the Creta ceous , corals coex ist ed with rudists in phototrophic microencrusters and di versi fie d macrobiota a range of envi ron m ental overlap. However, there is a gen- (e.g., Morycowa, 1974; Eliášová, 1981; Eliáš and Eliášová, eral patter n in their distri buti on on the Urgonian and other 1984; Ko³odziej, 1997; Bucur et al., 2005; for refer ence s Cre ta ceous car bon ate plat forms. Rudist as so ci a tions char ac - 300 B. KO£ODZIEJ ET AL.

Fig. 7. Microbialites and some microfossils from pachythecaliine-Mathesia-microbialite boundstones. A – ?Paracarolastraea sp. and geopetally filled growth cav ity. Ar rows indi cate bound ary be tween automicrite (m) and allochtonous micrite (alm); r indi cates rudists and their frag ments. B – microbialites, poorly lami nated lo cally, de vel oped on and be tween coral branches; ar rows show burrrowings or small growth cav i ties. C – small burrows (arrows) in microbialite, de vel oped be tween coral branches. D – microbialite crusts on coral septa, mostly de vel oped on their left side; arrows indi cate ostracods. E – growth cavity within microbialites filled with ostracods and py rite crys - tals. F – Lithocodium aggregatum (La), micro bial crusts (m) and en crust ing foraminifera (f). G – coral, en crusted by Lithocodium aggregatum (La). H – hyaline foraminifer, ex hib it ing fine spines (?Ramulina sp.) within microbialites. A – Vis 40/1, B – Ru 34/3, C – Ru 22/2, D – Vis 2/3, E – Ru 14-08/2, B – Ru 34/3, G – Ru 30-09, H – Ru 9-10

ter ized differ ent setti ngs, depend ing on morphotype, but oc- bon ate-siliciclastic Urgonian, sys tem in Bul garia, rudists curred mainly in the inner carbon ate plat form envi ron m ent; (poorly known in contra st to corals ) may co-occur with cor - bioclastic limestones are re fer able to the outer plat form, als, but usuall y they oc cur in sepa rat e lithosomes. More- while coral fa cies to the tran sition be tween the in ner and over, rudists are ab sent in the marls, while cor als may be outer plat form. The bi otic dis tri buti on patter n was largely highly di ver si fied there. con trolled by changes in en vi ron men tal con di tions, forced Apart from the limestone s dis cussed, Mathesia darderi by ex ter nal fac tors, such as wa ter tur bid ity, nu tri ent level is unknown from other depos it s of the Urgonian com plex in and hy drody nam ic regim e (e.g., Masse and Philip, 1981; Bul garia. M. darderi is include d in the rudist fam ily Mono- Gili et al., 1995a, b; Skelton et al., 1997). In the mixed, car- pleuridae that, in general , played a lim ited role on the Early PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 301

Cre ta ceous car bon ate plat forms of the Med i ter ra nean re - gion. Local ly, however, monopleurids were abundant and may have a sig nif i cant, con struc tional po ten tial, es pe cially during the Early Valanginian and Late Aptian–Albian, with M. darderi as a key spe cies. Rel a tively thick lithosomes (up to 3 m) are usuall y formed by dense, monospecific as sem - blages (Fenerci-Masse, 2006 fide Masse and Fenerci- Masse, 2010; Fenerci-Masse et al., 2011; Skelton and Gili, 2012). The monospecific genus Mathesia is known from the Late Barremian to Mid dle Albian. The first Late Barremian oc cur rences have re cently been rec og nized in and Spain. Dur ing the Late Barremian to Early Aptian, this ge - nus was pres ent only lo cally and later was widespread (Fenerci-Masse et al., 2011) escap ing the mid-Aptian crisis , when 90% of specie s and 70% of the Medi ter ranean rudist genera disap peare d (Masse, 1989; Skelton and Gili, 2012). Fig. 8. Calamophylliopsis sp. Arrows indi cate geopetally filled The eco log i cal changes, re corded in Mathesia through time, growth cav i ties or small bur rows. ZPAL Bulg 1/1 re flect a dis place ment from the dis tal, rudist-domi nated part to the proxi m al part of carbon ate plat forms (Fenerci-Masse et al., 2011). In the Albian of southern Spain, M. darderi build dense, monospecific as sem blages, found interbedded Other macrobiota with intertidal stromatolites and muddy sed iments (Fenerci- Masse, 2006; see Fenerci-Masse et al., 2011). In SE Spain, In gen eral, apart from pachythecaliine cor als and M. M. darderi occurs within the upper m ost Barremian rudist- darderi, macrobiota and their rem ains are not com mon in the rich (Requieniidae, Monopleuridae) packstones and wacke- bioconstructions studied. There fore, small gastro pods are of stones, with dasycladalean algae, above marls and dasyclad- specia l inter est, as they are com mon com ponents of the rich limestone s and be low lower Aptian orbitolinid-rich marly biocoenosis de scribed. Tax on omy and feed ing be hav iour of limestones with quartz (Fenerci-Masse et al., 2011). Thus, these gas tropods are unknown. They were pos sibly grazers or with re gard to the sed i men tary con text, in clud ing biofa cies sed i ment feed ers, bas ing on as sumed abun dant, or ganic mat- (lack of corals ), this occur rence differs from the Mathesia- ter in the microbialites. An in creased nu tri ent level may also bearing limestone s of the Emen Form ati on in Bulgari a. en hance pri mary pro duc tion of fleshy al gae, fa vour ing her- Rudists that are in con tact with cor als were at tached to bivo rous gas tropods (see Dupraz and Strasser, 2002). the skele ton of phaceloid cor als, which, unli ke branching ramose forms (like re cent Acropora), were not covered by Microbialites living tissue (except for the tips of branches). Growth anom - ali es, observe d both in corals and in rudists, are very rare, A char acter istic feature of the bioconstructions analy- and sug gest rare, di rect tissue con tact (in vivo in ter ac tion). sed are dense, nearly always non-lami nated, micritic crusts, However, some kind of synecological rela ti onship be tween oc cur ring on and be tween skele tal metazo ans, as well as rudists and corals is plausi ble. Synecological inter acti ons in within semi-closed microcavities. Their gen esis may have coral-rudist asso ci a ti ons, such as the one from the Campa- in fer ences for the en vi ron men tal in ter pre ta tion of the depo- nian of Spain (Götz, 2003), have been de scribed only rarely sitional en vi ron ment. These crusts are called here microbia- in the liter ature. Pro tu ber ances of rudist shells were ex - lites, the term used in a broad meaning, i.e. as a re sult of plained by Götz (2003) as pos sible de fence reac ti ons of the organomineralization s.l., define d as microbially-induced and rudist against the coral cnidia. However, both groups might microbially-in flu enced min er al iza tion (Dupraz et al., 2009). have benefit ed from this coex is tenc e. Rudists might provide Automicrite is a more inclu sive term and can be appli ed both hard sub strates for coral settle ment, while rudists were sta - for ‘clas sical’, micro bial fab rics, as well as for microcrystal- bili sed by encrust ing cor als (Götz, 2003). A sim ilar rela - line car bon ates, which orig i nated in as so ci a tion with non-liv - tionship may be assum ed for the coral-rudist asso ci a ti on ing organic macromolecules, that is relat ed to organomine- stud ied, even though in di ca tions for in vivo as so ci a tion are ralization s.s. (Trichet and Défarge, 1995). Some authors pro - only hy po thet i cal. pose use of the term automicrite inste ad of microbialite, if the Phys ical erosion during the growth of corals and rudists ori gin of autochtonous micrite is unknown (e.g., Reitner and was rather neg ligi ble, be cause of the in ferred, low en ergy Neuweiler, 1995; Bourque, 1997; Neuweiler et al., 1999; level. Comm on, small rudist frag ments are rather a re sult of Webb, 2001; Schlager, 2003). Automicrite that re sulted from in trin sic (shell struc ture/min er al ogy), than ex trin sic (hy dro - organomineralization s.s. was rec og nized by Neuweiler et al. dy nam ics, bioerosion), taphonomical fac tors. Frag men ta - (1999) in excep ti onall y well preserve d, organic fracti ons in tion of rudists, due to their com posi ti on, that is aragon it e the Albian carbon ate mud mounds of Spain. Accord ing to (orig inally) in ner and calcitic outer shell layers, may be an these au thors, the Late Ju ras sic rep re sents an impor tant pe - im por tant, synsedimentary mod i fier of the orig i nal rudist riod of organomineralization s.s. and result ed in the precip i ta - biocoenosis (Sanders, 1999). tion of automicrite, which is frequentl y re ferred to as micro - 302 B. KO£ODZIEJ ET AL.

bial crusts, com mon in coral- and sponge-microbialite reefs rectly en crust cor als or rudists. Ex cept some foraminifera of (e.g., Leinfelder et al., 1993, 1994; Leinfelder, 2001; Dupraz uncer tai n mode of at tachm ent and generi c status, discusse d and Strasser, 2002; Olivier et al., 2004; Matyszkiewicz et al., above, microbialites are never en crusted by microencrus- 2012; Pleº et al., 2013). Dis crim i na tion be tween these dif fer- ters. That sug gests that they were only par tially lithified and ent proces ses and products in fossil mate ria l is a challenge for hard sub strate was not available for lar val set tlem ent. Such fu ture re search (Rid ing, 2000). an inter preta ti on is supporte d by the lack of borings in At tri bu tion of microbialites from the Emen For mation microbialites (except for rare, large bi valve borings in meta - to one of the major cat ego rie s of stromatolites, thrombo- zo ans, microbialites and sed iment ma trix). Simi larly, a lack lites, dendrolites, or leiolites can not be strictly ap pli ca ble of metazoan encrusters on microbialites was observe d by here. These cat ego ries are based on macrofabrics, namely Webb (1999) in Carbon if er ous patch reefs, and by Neuwei- lam i nated, clot ted, den dritic and apha ni tic re spec tively (Ke- ler (1993) in Albian microbialites. Ac cording to Webb nnard and James 1986; Schmid, 1996; Riding, 2000), which (1999), this implies that some automicrites (= microbialites are not rec og niz able mac ro scop i cally in the ma te rial stud - s.l.) have not been lithified at the sed im ent-wa ter in ter face, ied. These main cat ego ries are also used in the clas sifi cation but were formed as synsedimentary precip itates within sed i- of microbialites, based on a com bina ti on of macrostructure ment. The presence of burrows also indi cat es that the stud - and microstructure (Schmid, 1996; Flügel, 2010, fig. 9.1B). ied microbialites were not rigid, but only semi-consol i date d, In such an approach, microbialite crusts in the biostromes when burrow ing took place (cf. Riding, 2000; Riding and stud ied can be clas si fied largely as leiolite micro bialites, Tomás, 2006). In contra st to these exam ples, intergrowths i.e., microbialites with dense microstructure. of skele tal microencrusters and microbialites were re corded The presence , mostly on coral branches, of differ en ti ally for ex am ple in the Late Ju ras sic reefs, in di cating the pres - preserve d non-rigid and calci fie d sponges raises the ques tion ence of a hard substra te and inter rupti ons of microbialite of possi ble contri buti on of non-rigid sponges to microbialite growth (Olivier et al., 2003). Growth cavi ti es in the mate ria l form ati on. Sponge spicules, oc curring local ly within micro- stud ied are small; their pres ence is marked by geopetal fill- bialites, re tic u late microfabric, simi lar to sponge struc tures ings and crypti c ostracods (cf. Aubrecht et al., 2002; Shen rec og nized in Tri as sic sponge-mi cro bial stromatolites (Szulc, and Webb, 2005). 1997, 2000, fig. 21g), as well as a lat eral transi ti on from well In Re cent reefs, en hanced microbialite growth is char - preserve d sponge to micritic/micropeloidal microfabric, indi - ac ter is tic for en vi ron ments with higher nu tri ent lev els and cate that some microbialites might be the result of sponge ele vate d alka li nit y (Camoin and Montaggioni, 1994; Ca- soft-tissue diagenesis. Microbially induced carbon ate pre- moin et al., 1999, 2006; Sprachta et al., 2001), which is also cip i ta tion (microbialite for ma tion) in side de cay ing Re cent accepted for fos sil coral reefs (e.g., Leinfelder et al., 1994; and fossil sponge tissue is well docu m ented (e.g., Reitner, Dupraz and Strasser, 2002; Olivier et al., 2004). Sed i men ta - 1993; Reitner and Neuweiler, 1995; Delecat and Reitner, tion of allochthonous depos it s and microbialite growth rate, 2005; Reolid, 2007). In creased al ka lin ity in duces dis so lu tion in re lati on to the growth of metazoan construc tors, is crucia l of sili ceous spicules and may be respon si ble for the lack of for the devel op m ent of a constratal or superstratal growth microscleres in some facies (Delecat and Reitner, 2005). fab ric, which has ar chi tec tural, palaeo eco logi cal, sedimen- Foraminifera, oc cur ring within microbialites may be an tological and diagenetic im pli cati ons (Insalaco, 1998). Mi - ad di tional ar gu ment in the dis cus sion of the pos si ble con tri- crobialite growth is favoured by a low accu m ula ti on rate, buti on of sponges to microbialite form ati on. They are sim i- but the growth rate is dif fi cult to es timate, be cause there are lar to those re ported from fossil and modern sponge mesh- no modern ana logues for fossil , reefal microbialites. Mi- works (e.g., Guilbault et al., 2006; Reolid, 2007) or inhab it - crobialites from cryptic caves of Liz ard Is land dis play very ing cavi ti es (e.g., Helm, 2005; Helm and Schülke, 2006, fig. low net growth rates of 10 to 15 mm/1000 years (Reitner, 11l; Schlagintweit and Veliæ, 2012, fig. 7g, h). Alternati- 1993). How ever, in shallow-wa ter reefs, where corals are vely, these foraminifera may be in ter preted as loosely at - closely intergrown with microbialites, they might have tached to microbialite crusts. Automicrite oc curs lo cally be - grown as fast as the corals , about 1–2 mm/year, as postu - tween coral skel e tal el e ments, thus in di cat ing de vel op ment lated by some authors (see Schmid, 1996; Schmid et al., of microbialites also in aphotic condi ti ons (com pare Albian 2001). Seard et al. (2011) observe d microbialite growth microbialites: Neuweiler, 1993, 1995). Apart from the cal- rates, ranging from 7 to 12 mm/year. Such unusu all y rapid ci fi ca tion of de cay ing sponges (sponge ‘con tainer automic- growth rates proba bly result from their devel op m ent dur ing rites’), these or gan isms, as well as the soft tis sue of other a period of envi ron m ental change (sea-level rise), while in metazo ans may be pri mary sources of or ganic mate rial (Rei- more sta ble en vi ron ments, they are sig nif i cantly lower tner and Neuweiler, 1995; Neuweiler et al. 1999). (Seard et al., 2011; Heindel et al., 2012). Micropeloids, which are rare in the limestone s studied, As dis cussed above, phaceloid cor als were well adapted may be simi lar in or igin to the dense microbialite crusts. to high sedi m enta ti on rates, soft, muddy substra tes and Many authors re gard peloids as in situ growth products , re- low-hy dro dy namic re gimes. A low back ground sed i men ta - lated to random ly distri buted nucle ation center s, or as a re- tion rate is assum ed for the biostrome form ati on analy sed. sult of bacte ria l degra da ti on of organic matter (e.g., Reid, However, the growth of phaceloid cor als also might be fa- 1987; Neuweiler, 1993; Riding and Tomás, 2006, and refer - voured by a higher growth rate of microbialites. However, it ences therein). was not a dom inant influ ence on the de velop m ent of pha- Bryozoans , serpulids, rare L. aggregatum and ‘bacinel- celoid cor als, becuase ex cept for Calamophylliopsis (sub- lid’ crusts, sporad i cal ly red al gae and ju venil e rudists di- or der Faviina), only phaceloid pachythecaliines were rec og - PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 303

Fig. 9. Dif fer en tial pres er va tion of sponges from pachythecaliine-Mathesia-microbialite boundstones A, B – sponge spicules (s) within dark-col oured microbialites (m); alm allochtonous micrite, filling small growth cav ities; d (in B) indi cate dolo mite crystals within microbialites (compare Fig. 15F). C–E – dif fer en tial preser va tion of rigid (cal ci fied) sponges. Micropeloids in C and D, pos sibly re sulted from degra da tion of sponge tis sue. Note micropeloids in intraskeletal space (ar row in D). F – non-rigid sponge, en crusted by nubeculariid foraminifera (n) and microbialites with Ramulina-like foraminifera (R). G – retic u late microfabric, and H – nee dle-like struc tures, pos si- bly re sulted from disso lu tion of sponge spicules. A – Vis 2/3, B –Vis 2, C, D – Ru 7257/1, E – Ru 34/3, F – Vis 47/2, G, H – Zar 996/3

nized. If coral accre tion oc curred at a rate, simi lar to that of At el e vated nu tri ent lev els, bioerosion gen er ally is con- microbialite growth, then limited, pos itive re lief, that is, a sidered to be enhance d (Hallock, 1988; and Sanders and constratal coral growth fabric (sensu Insalaco, 1998) may Baron-Szabo, 2005 for review) . However, increa sed bioero- be inferred. sion is not observe d in the mate ria l studied. Macroborings Do lo mite crystals, rec og nized in the samples from Vis- in metazoan skele tons are mod er ate or scarce, and ab sent in hovgrad, possi bly are re stricted to microbialites, which indi - microbialites. A higher nutri ent level, consta nt or epi sodic , cates the syngenetic na ture of dolo m ite form ati on and a pos - raises the ques tion about wa ter ox y gen a tion. Ep i sodes of si ble link with micro bial ac tiv ity or organomineralization low ox y gen con cen tra tions are gen er ally in voked to ex plain s.s. (cf. Wright and Wacey, 2005; Mastandrea et al., 2006; microbialite de vel op ment in Late Ju ras sic reefs (Leinfelder Bontognali et al., 2010). et al., 1994; Betzler et al., 2007). However, in the mate ria l 304 B. KO£ODZIEJ ET AL.

studied here, the fauna, al though not highly di versi fie d, they are as so ciated with other microencrusters and occur as does not support the concept of a poorly oxy gen ate d bot- sub or di nate com po nents in Late Ju ras sic–Early Cre ta ceous tom. More over, some Juras sic microbialites could have coral reefs and la goonal fa cies (e.g., Rameil et al., 2010). formed in oxic water s (Olivier and Boyet, 2006; Olivier et Dur ing the mid-Cre ta ceous time, in par tic u lar in the Early al., 2011). Aptian, a lo cal “bloom” of so-called “Lithocodium-Baci- nella” fa cies (a de scrip tive term) occurr ed (Immenhauser et al., 2005; Huck et al., 2010). It is assum ed that the Aptian Lithocodium/Bacinella “Lithocodium-Bacinella” fa cies show a more com plex, bio- Lithocodium aggregatum and as so ci ated, mi cro bial tic pat tern, con trolled by fluc tu at ing nu tri ent lev els, sea-wa - struc tures, with a ‘bacinellid’ fab ric (“Bacinella irregula- ter al ka lin ity, el e vated sea wa ter tem per a tures, sea wa ter ris”) are an im portant issue in palaeoenvironmental inter - acid i fi ca tion and low sed i men ta tion rates, su per im posed on pre ta tion of Up per Ju ras sic and Lower Cre ta ceous shal low global pertur ba ti ons of neritic ecosys tems (Neuweiler and wa ter lime stones. Dif fi cul ties in the in ter pre ta tion of depo- Reitner, 1992; Immenhauser et al., 2005; Huck et al., 2010; sitional envi ron m ent are due to their uncle ar, system atic po- Rameil et al., 2010; Bover-Arnal et al., 2011; Huck et al., si tion and en vi ron men tal de mands. Lithocodium aggrega- 2012). tum Elliot, 1956 was vari ously inter preted, among others as In the pachythecalline-bearing limestone s studied, cor- algae, calcimicrobes or en crust ing foraminifera, while Baci- als and other metazo ans are rarely en crusted by L. aggre- nella irregularis Radoièiæ, 1959 was mostly inter preted as gatum and “bacinellid” struc tures, but inste ad they are micro bial struc tures. Some authors assum ed that both taxa mostly en crusted directly by microbialites or by heterotro- repre sent differ ent parts of one organ ism (for review see phic micro or gan ism s and small rudists, fol lowed by micro - Schmid and Leinfelder, 1996; Rameil et al., 2010; Schlag- bial crusts. The stud ies of Late Ju ras sic coral reefs re vealed intweit et al., 2010; Schlagintweit and Bover-Arnal, 2012, that the lack of phototrophic-dom inate d organ ism s in the 2013). Re cently, new inter preta ti ons have been proposed first layer of encrustation in di cates more tur bid wa ters for taxa, tra di tion ally la belled as L. aggregatum and B. irre- and/or a higher nutri ent level (Leinfelder et al., 1993; Du- gularis. Schlagintweit et al. (2010) and Schlagintweit and praz and Strasser, 2002; Olivier et al., 2004; Helm and Bover-Arnal (2013), based on studies of Aptian mate ria l, Schülke, 2006). Sim i lar, en vi ron men tal con trols can be as- in ter preted L. aggregatum as ulvophycean green alga with sumed for the Early Cre taceous coral reefs, which in con - heterotrichale encrust ing thallus, and B. irregularis as an trast to the Late Ju ras sic reefs, are stud ied less ex ten sively in euendolithic chlorophycean alga. Most of structure s de- this re spect. Even though the tax o nomic in ter pre ta tion of scribed as B. irregularis are, accord ing to these authors, ve- some struc tures, described as L. aggregatum and B. irregu- sic u lar, micro bial crusts with “bacinellid” fab rics. L. aggre- laris (= “bacinellid” struc tures), have been re cently re-in ter - gatum may de velop also a cryp tic stage with net-like struc - preted, the envi ron m ental infer ence s appear to be still valid, ture (Schlagintweit and Bover-Arnal, 2012) which can be when these organ ism s occur as a moder ate com ponent of misin ter preted with “bacinellid” struc tures. Most of the coral reefs, and not as a dom inant bioconstructor, as in some struc tures de scribed as B. irregularis are, ac cord ing to these Aptian occur rence s. However, as conclude d by Schlagint- au thors, ve sic u lar, mi cro bial crusts with “bacinellid” fab - weit et al. (2010, p. 541), “…the paleoenvironmental signi- rics. L. aggregatum may de velop also a cryp tic stage with a ficance of Lithocodium aggregatum oc cur rences must be net-like structure (Schlagintweit and Bover-Arnal, 2012), care fully viewed in each case study”. which can be misin ter preted as “bacinellid” structures. For a sum ma riz ing di a gram, show ing dif fer ent, mor pho log i cal Con clud ing re marks and tax o nomic in ter pre ta tions, see Huck et al. (2012, fig. 8). Fur ther in ter pre ta tive com pli ca tions arise, be cause many The unique as soci a ti on of pachythecaliines and Mathe- crusts (in parti cu lar in the Upper Tri assic and Upper Juras - sia form ing biostromes oc curs within a palaeogeographi- sic rocks), deter mined in the liter ature as L. aggregatum, are cally limited area. The re sult ing bioconstructions (biostro- in fact sponge borings in microbialites or other carbon ate mes and possi bly also low-re lief bioherms), unknown else- substra tes (Cherchi and Schroeder, 2010, 2013; Schlagint- where, im ply par tic u lar en vi ron men tal fac tors driv ing their weit, 2010). growth and microbialite form ati on. Lithocodium and ‘baci- Oc cur rences of L. aggregatum s.s., Lithocodium-like nellid’ structure s are moder ate ly com mon in unit 1 at Ru- entobian borings and “bacinellid” structure s in the Late Ju - salya. Obvi ously the shift from the outer carbon ate plat form ras sic–ear liest Creataceous, coral-microbialite reefs are (unit 1) towards the more inner platform set ting (unit 4) has commonly in ter preted as an in di ca tor of shal low-wa ter, al- lead to the change of envi ron m ental factors, such as lower - though data from the lit era ture indi cat e that L. aggregatum ing of the hy dro dy namic re gime and pos si bly in creas ing nu - s.s. was adapted also to outer-shelf/ramp envi ron m ents (see tri ent level. These changes fa voured growth of phaceloid dis cus sion in Bover-Arnal et al., 2011; Schlagintweit and pachythecaliine cor als, nearly monospecific rudist assem - Bover-Arnal, 2012; Huck et al., 2012). These micro- blage (Mathesia darderi), fa cil itated growth of microbia- encrusters are also assum ed to be an indi ca tor of oligotro- lites, but limited growth of L. aggregatum and “bacinellid” phic or mildly mesotrophic, reefal and la goonal envi ron - struc tures. Dif fi cul ties in de ci pher ing en vi ron men tal con- ments (e.g., Leinfelder et al., 1993; Dupraz and Strasser, straints are, among other factors, due to the lack of com pa- 2002; Olivier et al., 2004; Ivanova et al., 2008). However ra ble, fos sil biocoenoses. Mathesia up to now was known such an inter preta ti on seems to be appro pri ate , only when from depos it s lacking, or with rare corals . Phaceloid pachy- PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 305

thecaliines were rare in the Early Creta ceous, whereas Late fi cation cen ters) was ob served in the Up per Trias sic am- Ju ras sic taxa were rela tively com mon, but oc curred in var i- phiastraeid Quenstedtiphyllia fritschi (Volz, 1896) (see Ro- ous, sed i men tary set tings, as in di cated by host li thol ogy and niewicz and Stolarski, 2001). Septal microstruc tures of as so ci ated biota. By com par i son with the cor als stud ied, pachythecaliines s.s. were consid ered both as non-trabecu- highly di versi fie d, phaceloid pachythecaliines, known from lar (Cuif, 1975, 2010; see also Stolarski, 2003), and mini- the Tithonian–Lower Berriasian Štramberk Limestone and trabecular (see dis cussion in Ko³odziej, 1995; Roniewicz Štramberk-type limestone s (Czech Repub li c, Poland) , are and Stolarski, 2001). Roniewicz et al. (2007, p. 593) de- as so ci ated with di ver si fied cor als and other biota, in clud ing fined the microstructure of Tri as sic pachythecaliines as phototrophic/oligotrophic microorganims. “Wall epithecal, thick and mod u lar in struc ture; septa thin In the best ex posed sec tion at Rusalya, the pachytheca- and built of centri pe tal ly growing trabeculae, or septal liine-rich biostromes attai n only a thickness of about 2.5 m. microstructure fibronormal (in re lati on to the midseptal Thus, it is tempting to view devel op m ent of this biofacies plane); septal faces not or na mented”. How ever, if we take dur ing a short time in ter val and as a po ten tial, lo cal, strati - into account also pachythecaliines s.l. (sensu Stolarski and graphic marker. However, strati graphic data from Hotnitsa Russo, 2001), not all post-Trias sic pachythecaliines, parti c- and lim ited sam pling in Hotnitsa and Zarapovo do not per - ular ly heterocoeniids do fit with such defi ni ti on. Wall can mit un am big u ous, strati graphic im pli ca tions. How ever, de- be thin (e.g., Donacosmilia), and in contra st to the zardi- velop m ent of this biofacies appears to have occured largely nophyllids, even in amphiastraeids, septal faces can show during the middle Late Barremian. orna m enta ti on (e.g., Fig. 16D, E). Differ ence s in micro - struc tures between amphiastaeids and heterocoeniids are dis cussed be low. More over, tra di tional ter mi nol ogy dealing with skel e tal microstructure (thick-trabecular, minitrabe- GEN ERAL RE MARKS cular; Roniewicz and Morycowa, 1993), pos sibly require s ON MOR PHOL OGY, SYS TEM AT ICS AND modi fi ca ti on, owing to the new model of skel etal coral DIS TRI BU TION OF PACHYTHECALIINA growth, proposed by Stolarski (2003). The microstructure of the wall and septa in post-Trias - Mor phol ogy and microstructure sic pachythecaliines has been inter preted vari ously . In Ju- The suborder Pachythecaliina Eliášová, 1976, in parti c- ras sic–Cre ta ceous amphiastraeids, the wall is built up of u lar the Late Trias sic family Zardinophyllidae Montanaro “…well arranged modules of the shape of hori zon tal spi- Gallitelli, 1975 (= Pachythecaliidae Cuif, 1975), and the Ju- nes” (Roniewicz and Stolarski, 1999, pp. 144–145; see also ras sic–Cre taceous Amphiastraeidae Alloiteau, 1952, con - Ogilvie, 1897; Morycowa, 1964b; Eliášová, 1975; Ko- tains skel etal features non-typ ical for scleractinian cor als: a ³odziej, 1995; Roniewicz and Stolarski, 2001). The pachy- thick wall (pachytheca), and septa, com monly deep in the theca – a wall di ag nos tic for Pachythecaliina – implies that calice and ar ranged in bi lateral sym metry (quasi-ra dial in it is built by fi brous microstructure. In fact, in most pachy- the adult stage of some taxa). Pachythecallines, ex cept most thecaliines, the microstructure of the septa and wall is un - heterocoeniids, are sol itar y or their skel eton indi cat es pol - known, owing to the poor state of preser va ti on. More over, yps that origi nall y were poorly inte grat ed. They are mostly dif fer en tia tion in diagenetic al ter ations of the wall in am- of the phaceloid, cerioid or pseudocerioid growth form. phiastraeids and relat ed fam ili es might suggest an origi nal Amphiastraeids, the most com mon pachythecaliines (Ro- vari abil ity in microst ructure (Eliášová, 1976b; Roniewicz niewicz and Stolarski, 2001; Stolarski and Russo, 2001), re- and Stolarski, 1999; Ko³odziej, 2003). A wall in pachythe- produced asexu all y, by unique Taschenknospung (‘pocket’- caliines (includ ing heterocoeniids) is com monly termed as bud ding). Other fam i lies, clas si fied into Pachythecaliina, “wall devel oped in advance to septa” (Cuif, 1975, 2010; share only some fea tures with their supposed rela ti ves, the Cuif and Stolarski, 1999; Roniewicz and Stolarski, 2001; zardinophyllids (Montanaro Gallitelli, 1975; Cuif, 1975, Stolarski and Russo, 2001) or “wall devel oped prior to 1981) and amphiastraeids (Eliášová, 1975, 1976b, 1978; septa” (see Ko³odziej, 1995). Melnikova and Roniewicz, 1976; Ko³odziej, 1995, 2003; In parti cu lar , there is a contro versy , concern ing the mi- Roniewicz and Stolarski, 2001; Stolarski and Russo, 2001; crostructure of heterocoeniid skel etons, which was inter - see also Amphiastraeina and Heterocoeniina, gen er ally cha- preted in dif fer ent ways. Septa have been de scribed as built racterized in Baron-Szabo, 2002; Löser, 2009; and http:// by large trabeculae (Morycowa, 1971; Roniewicz and Mo- www.corallosphere.org). rycowa, 1993) or minitrabeculae (Ko³odziej, 1995). It is The skele ton microstructure has been debate d focus sing worth em phasiz ing that septa in heterocoeniids (even the on trabecular ver sus non-trabecular microstructure of septa prim ary septum ) can be thinner than the lower limit of thick and wall. Most post-Tri as sic pachythecaliines have badly trabeculae. The di am eter of thick trabeculae sensu Ronie- pre served skel e tons and di ag nos tic microstructural char ac- wicz and Morycowa (1993, p. 235) is “…over 50 µm (usu- ters are not well recog nize d. The dom inant view is that the ally more than 100 µm) to ca. 300 µm”. More over, there are wall (pachytheca) is built by hori zon tal modules with cir- in di ca tions sug gest ing that the mod u lar struc tures of am- cumferential cal ci fi ca tion cen ters (Cuif, 1975; Roniewicz phiastraeid Amphiastrea and heterocoeniid Latusastrea are and Stolarski, 2001; Stolarski, 2003; Cuif, 2010). Change in sim i lar (Ko³odziej, 1995). Im por tant dif fer ence be tween the style of biomineralization, from hori zon tal modules , these two groups is a trabecular(?) microstructure of a peri- hav ing cir cumfer ential cal ci fi ca tion cen tres, to a strictly tra- theca, a skel etal struc ture, occur ring in some heterocoe- becular one (ver tical trabeculae, with ax ially arrang ed cal ci- niids, but unknown in other pachythecaliines. Relics of 306 B. KO£ODZIEJ ET AL.

more di verse, than usuall y thought, septal and wall micro - (2002), Idakieva (2003), Morycowa and Decrouez (2006), Ro- struc tures were ob served in some pachythecaliines s.l. niewicz (2008), and by Löser (e.g., 2008a, b, c, 2009, 2010). (Eliášová, 1976b; Ko³odziej, 2003, figs 3, 4). Co-oc currence (in the limestone s studied) of pachythe- caliines s.s. (sensu Stolarski and Russo, 2001), that is, am- phiastraeids (five gen era, six species), and pachythecaliines Clas si fi ca tion and phy log eny s.l., that is, carolastraeids (one ge nus, two species), inter- Follow ing Roniewicz and Stolarski (2001), some au- smiliids (one ge nus, one specie s), donacosmiliids (one ge - thors disti nguish the suborder Pachythecaliina inste ad of the nus, one specie s), and heterocoeniids (four genera, four spe- suborder Amphiastraeina (Stolarski and Roniewicz, 2001; cies), in di cates sim i lar en vi ron men tal pref er ences. The oc - Stolarski and Russo, 2001; Ko³odziej, 2003; Roniewicz, currence of four heterocoeniid genera, display ing the phace- 2008; Melnikova and Roniewicz, 2012; Morycowa, 2012). loid growth form, which is rare in this fam ily, should be em - Oth ers still ac cept the prior ity of Amphiastraeina. How ever, phasiz ed. The co-occur rence with other four pachythecal- the pos si ble re la tion ships of Tri as sic pachythecaliines with line fam i lies is not con clu sive ev i dence of phylo gen etic re- amphiastraeids and related fami lies are sel dom dis cussed by lati onships ; however, it is one more piece of evi dence , these authors (e.g., Baron-Szabo, 2002, 2006; Turnšek et support ing such an in ter pre ta tion. A sim i lar co-occurence of al., 2003; Löser, 2008c, 2012; Löser et al., 2009). five pachythecaliine fam ili es is known from the Tithonian– Usu ally the fol low ing fami lies are in cluded in the Pa- Lower Berriasian Štramberk Limestone (Czech Re pub lic) chythecaliina (= Amphiastraeina): (1) the Late Tri as sic Zar- and its equiva lent in the Pol ish Outer Carpathians. Only dinophyllidae (recent finding also in the Lower Juras sic ; heterocoeniids are rare there, but in gen eral they were rare Melnikova, 1975; Melnikova and Roniewicz, 2012), and and poorly di versi fie d in the Juras sic and the earli est Creta - Late Tri as sic–Cre taceous (2) Amphiastraeidae [two am- ceous. Cer tainly, tax o nomic vari abil ity of pachythecalii- phiastraeid gen era Quenstedtiphyllia Melnikova, 1976 and nes in the limestone s studied is higher, as some of findings Sichuanophyllia Deng Zhanqiu et Zhang Yansheng, 1984 (= were not descri bed here, owing to a poor state of preser va - Lubowastraea Melnikova, 1986) are known from the Upper tion or not enough, available thin sec tions. Further sam pling Tri as sic], and Ju ras sic–Cre ta ceous (3) Carolastraeidae Eliá- in the ac tive quarry at Rusalya should provide more data on šová, 1975, (4) Donacosmiliidae Krasnov, 1970, and (5) these unique an tho zo ans dur ing their Cre ta ceous acme. Intersmiliidae Melnikova et Roniewicz, 1975. More proble- Taschenknospung, a pecu li ar type of budding, is only matic is the sys tematic po si tion of the family Heterocoe- well recog nize d in amphiastraeids. Possi bly it occurs also in niidae Oppenheim, 1930, which is usuall y clas sifie d in the some heterocoeniids, as indi cat ed by the rela ti onship of par- sepa rat e suborder Heterocoeniina Beauvais, 1977. Pre vi- ent and daugther coral lites in Thecidiosmilia morycowae ously heterocoeniids were classi fie d in differ ent suborders; (see Ko³odziej, 1995). On the other hand, strongly develo- some heterocoeniids were classi fie d within the Amphia- ped, lateral , septal or nam enta ti on or even septal out growths straeidae (Vaughan and Wells, 1943; Wells, 1956; see Ko³o- are an im portant feature of heterocoeniids, but only for dziej, 1995). L. Beauvais (1974, 1976) beli eved that there are some genera, while others can have septa with poor orna - sim i lar i ties (also in microstructure) be tween Amphiastra- men ta tion. In Heterosmilia gen. nov., a heterocoeniid genus eidae and Heterocoeniidae and later L. Beauvais (1981) clas - estab li shed in this paper, only the pri mary septum has sified Amphiastraeidae to gether with Heterocoeniidae in a strong, septal out growths, while other septa lack orna m en- new suborder Distichophyliina, a suborder not recog nize d in tati on. Strong, septal out growths are not com mon in sclerac- cur rent coral classi fi cations. By con trast, M. Beauvais (1977, tinians, but oc cur also in other coral groups (e.g., Mory- 1982) include d Heterocoeniidae in the new suborder He- cowa, 1971; Stolarski et al., 2004), includ ing Rhipido- terocoeniina. Eliášová (1976b) accept ed both Amphiastrae- gyrina, which have true, aphophysal septa (Eliášová, 1973). ina and Heterocoeniina. How ever, she clas sified them toge- In sum mary, intersmiliids, carolastraeids, donacosmi- ther with the new suborder Carolastraeina (not recog nize d in liids and heterocoeniids are “…much eas ier clus tered with cur rent coral clas si fi ca tions), and Tri as sic Pachythecaliina in pachythecaliines than with other co eval scleractinians” (Sto- the sep arate or der Hexanthiniaria (see be low). Hence, she larski and Russo, 2001, p. 253), even taking into ac count as sumed mor pho log i cal sim i lar i ties and phylo gen etic re la- microstructural dif fer ences. In par tic u lar, some heterocoeniid tionships for these coral groups. Ko³odziej (1995) proposed genera are morpho log i cal ly closer to amphiastraeids than to to in clude Heterocoeniidae (superfamily Heterocoenioidea) end mem bers of a spec trum of Heterocoeniidae. Heterocoe- in Amphiastraeina, and later into Pachythecaliina (Ko³odziej, niids include some colo nial genera with high inte gra ti on 2003), a view, which is also held in the present account. Sto- level, which dis tinguishe s them from other pachythecalii- larski and Russo (2001) consid ered heterocoeniids as “sup- nes. How ever, pro gres sive trends of in creased in te gra tion are posed pachythecaliines”. Baron-Szabo first clas sified het ero- observe d in several groups of reef-building, modu lar inver te - coeniids into Heterocoeniina (e.g., Baron-Szabo and Steuber, brates, including corals (e.g., Coates and Ol iver, 1973; 1996; Baron-Szabo, 1998), later into Amphiastraeina (Baron- Coates and Jackson, 1985; Roniewicz and Stolarski, 1999; Szabo, 2002, 2006). Tax o nom i cal difficulities, con cern ing Wood, 1999). Some of the di ag nos tic char ac ter is tics for heterocoeniids, are well ex em pli fied by Latusastrea Orbigny, pachythecaliines might have been lost in some lineage s (see 1849, a genus, which betwe en 1940–1990 was classi fie d Stolarski and Russo, 2001). A good exam ple is bilat eral sy- within five suborders (Turnšek and Löser, 1989). The sub- mmetry of the septal ap pa ra tus. Such a septal pat tern is cha- or der Heterocoeniina was ac cepted re cently in scleractinian racteristic for amphiastraeids. How ever, Quenstedtiphyllia sys tem atics by Morycowa and Marcopoulou-Diacantoni Melnikova (subfamily Quenstedtiphylliinae) has quasi-ra - PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 307

dial sym metry in the adult stage (Ronie- wicz and Stolarski, cri teria for pachythecaliines. How ever, as dis cussed above, 2001). Re cently, Löser (2012) has disti nguishe d a new, am- some “typi cal” pachythecaliine skel etal features could have phiastraeid ge nus Hexamphiastrea, similar to Metaulastrea been lost in some lineage s. (= Amphiaulastrea), but showing ra dial sym metry (see also Fur ther re search is needed, par ticu larly in deal ing with Amphiaulastrea suprema in Morycowa and Marcopoulou- septal inser ti on. Montanaro Gallitelli (1974, 1975) and Sto- Diacantoni, 1997, 2002). Differ ence s in morphol ogy of the larski (1996) observe d in Zardinophyllum a rather broad, septa betwee n the new genus and other amphiastraeids, as intraspecific vari abil ity in metaseptal in ser tion, how ever, well as the lack of infor m ati on about Taschenknospung with out a typ i cal rugosan, septal pat tern. In ter est ingly, the budding, raise a ques tion about the system atic posi ti on of drawings, present ed by Lebanidze (1991), show septal in- Hexamphiastrea. Still, it is mor pho log ically clos est to am- ser tion in amphiastraeid Mitrodendron ogilviae Geyer, phiastraeids than to other corals . 1955 sim ilar to the one in the Rugosa, but it was never veri - Even assum ing differ ence s in the microstructure be- fied and docu m ented in photo graphs. Stolarski (1996) hy- tween differ ent pachythecaliine groups, the possi bil ity of pothe siz ed that some rugosans might have survived the P/T phylo gen etic re la tion ships is not ex cluded (cf. Roniewicz exti ncti on in refuges and real ize d their poten ti al, with modi - and Stolarski, 2001, p. 36), becaus e evolu ti on of the skel e- fi ca tions to their skel e ton min er al ogy and septal in ser tion. ton microstructure of pachythecaliines also should be taken Thus some Perm ian, scleractiniamorphs might be the ances - into account. There fore, it seems rea sonable to conside r a tors of some Trias sic cor als (see ref er ences above), whereas com bi na tion of fea tures, when phylo gen etic re la tion ships other scleractinian lineage s might have evolved from soft- are studied. Molec ular data on modern corals support the bodied (corallimorpharian-like) ances tors, as is com monly usefulness of skel eton microstructure and morphol ogy in assum ed (e.g., Stanley , 2003). The discov ery of Late Cre ta- clas si fi ca tions at the family level, but on the other hand, ceous, soli tary cor als with an orig inal calcitic skel e ton in di - found their grouping into suborders to be debat able (e.g., Ro- cates that some scleractinian cor als in deed may secrete skel - mano and Palumbi, 1996; see also Stolarski and Roniewicz, e tons of dif fer ent car bon ate poly morphs (Stolarski et al., 2001). It is par tic u larly im por tant, if we con sider clas si fy ing 2007). The long lasting discus sion on Trias sic corals , repre - pachythecaliines within a sep arate or der (see be low). sent ing the fam ily Zardinophyllidae (= Pachythecaliidae), and their supposed re lati onship to some Late Palaeozoic corals is still not express ed in the com monly accept ed, Posi tion of Pachythecaliina within Anthozoa higher-rank clas si fi ca tion. Re cently, Cuif (2010) sum ma- The other debat able questi on is the posi ti on of pachy- rized some ideas on the possi ble rela ti onships betwee n thecaliines within the class Anthozoa and their possi ble re- some scleractinians and rugosans and called for a re-ex am i- lation ship to Palaeozoic cor als. These cor als were usu ally, nati on of the present concept of the Scleractinia. The hy - or still are, clas si fied within the or der Scleractinia. How - poth e sis on the phylo gen etic re la tion ships be tween the skel - ever, recog ni ti on of the unique, skel etal feature s of pachy- etal Palaeozoic cor als and cor als from the suborder Pachy- thecaliines led to their also being consid ered as rugosan cor- thecaliina/Amphiastraeina (or in gen eral Scleractinia) was als (Koby, 1888; Ogilvie, 1897) or survi vors of the Rugosa chal lenged by re searchers of rugosans and other Palaeozoic (Alloiteau, 1957; Cuif, 1975, 1977, 1981, 2010; Melnikova cor als, in clud ing Perm ian scleractiniamorphs (Ol i ver, and Roniewicz 1976; Stolarski, 1996; Cuif and Stolarski, 1980a, b, 1996; Fedorowski, 1997; Scrutton, 1997; Ezaki, 1999). Montanaro Gallitelli (1975) disti nguishe d the new 2004). or der Hexanthiniaria, in ter me di ate be tween the Rugosa (plerophyllines) and the or der Scleractinia, and clas sified Spa tial and tem po ral pro lif er a tion here a new Up per Trias sic family Zardinophyllidae. Later of phaceloid pachythecaliines Eliášová (1976b) include d in the Hexanthiniaria in the sub- or der Pachythecaliina (with the fam ily Pachythecalidae The first pachythecaliines – the Zardinophyllidae and Cuif, 1975, a younger synonym of Zardinophyllidae), Am- two genera from the Amphiastraeidae – are known from the phiastraeina (Pachythecaliina sensu Roniewicz and Stolar- Upper Tri assic (Montanaro Gallitelli, 1974, 1975; Cuif, ski, 2001), Carolastraeina and Heterocoeniina. Re cently, 1975; Roniewicz and Stolarski, 2001). Since the Late Juras - this sys tem atic po sition of Pachythecaliina was ac cepted by sic, pachythecaliines becam e more com mon, but still were Roniewicz (2008), Morycowa (2012) and Melnikova and poorly diver si fie d. Usuall y only some spe cies occur in Ox- Roniewicz (2012). It is also accept ed in the pres ent pa per. fordian–Kimmeridgian coral assem blages (e.g., Roniewicz, However, the concept of Pachythecaliina should be re-ex- 1966: two genera, two spe cies; Roniewicz, 1976: five ge- am ined with regard to its diag nos ti c fea tures, both in terms nera, seven spe cies). How ever, they are highly diver sified of skel e tal mor phol ogy, septal pat tern and sig nif i cance of and abundant (and largely phaceloid) in the Tithonian– the microstructure as diag nos tic feature of the pachytheca- Lower Berriasian Štramberk Limestone in Czech Re pub lic, liines The broad range of septal pat tern in pachythecaliines, Outer Carpathians (17 genera, 35 specie s; Ogilvie, 1897; from (1) “rugosan”-like in Zardinophyllum, and (2) coral - Geyer, 1955; Eliášová, 1974, 1975, 1976a, b, 1978) and in lites with few or only one recog niz able septum (Pachythe- pebbles /boul ders (so called exotics) of the Štramberk-type cophyllia, Monoaulastrea; see Ko³odziej, 2003; Löser et limestone s from Poland (14 genera, 22 specie s; Ogilvie, al., 2009) to (3) scleractinian-like septal pat tern as in the 1897; Geyer, 1955; Morycowa, 1964b, 1974; Ko³odziej, adult stage of Carolastraea and Paracarolastraea at the end 1995, 2003). Owing to the displac ed charac ter of these of the spec trum is a chal lenge in es tabli shing the diag nos ti c limestone s (huge olistoliths in Štramberk, pebbles and boul- 308 B. KO£ODZIEJ ET AL.

ders in the Polish Carpathians), the precis e age of parti cu lar Order HEXANTHINIARIA Montanaro-Gallitelli, 1975 coral speci m ens/taxa from these limestones can not be spec i- Suborder PACHYTHECALIINA Eliášová, 1976 fied. On the basis of calpionellids, a Tithonian–Early Ber- Fam ily AMPHIASTRAEIDAE Ogilvie, 1897 riasian age is com monly ac cepted for the coral-bear ing Subfamily AMPHIASTRAEINAE Ogilvie, 1897 limestones (Morycowa, 1968, 1988; Houša, 1990; Cibo- Re marks: Roniewicz and Stolarski (2001) es tab lished the new rowski and Ko³odziej, 2001), but it is possi ble that reefs subfamily Quenstedtiphylliinae con tain ing the ge nus Quenstedti- were de veloped mainly during the Late Tithonian. Local ly phyllia Melnikova, 1975 from the Up per Tri as sic. This subfamily sedi m enta ti on of Štramberk-type limestone s in the Pol ish dif fers from the subfamily Amphiastraeinae by one-zonal (tab u lar) segm ent of northern part of Tethys (mostly in lagoonal fa- endotheca and coral lites with quasi-ra dial symme try in the adult cies) conti nued unti l the Valanginian (see Morycowa, 1988; stage. In the case of poorly preserved speci mens , skele tal struc - Ivanova and Ko³odziej, 2010). In most pa pers on corals tures in lon gi tu di nal sec tion (e.g., type of endotheca) are dif fi cult to de ci pher. Re cently, Löser (2012) es tab lished the ge nus Hexam- from the Štramberk Limestone, the age was deter mined as phiastrea with the type species Amphiaulastrea suprema Mory- Tithonian (see Vašíèek and Skupien, 2004 for refer ence s). cowa et Marcopoulou-Diacantoni (Morycowa and Marcopoulou- For the reasons menti oned above, corals from the Štramberk Diacantoni, 1997, 2002). Hexamphiastrea is close to Metaulastrea Limestone are usu ally record ed in the lit er ature and da ta- Dietrich and Amphiastrea Étallon but has hexameral symme try bases as Ju ras sic, not Cre taceous fauna. How ever, for the and thick rhopaloid septa. However, ow ing to the septal morphol - discus sion of evolu ti onary trends it is im portant that unti l ogy of Hexamphiastrea, its classi fi ca tion in the Amphiastraeidae the Valanginian, coral as semblages have a “Late Ju ras sic is under ques tion. char acter” (Roniewicz and Morycowa, 1993), re cently ex - em pli fied by a detai led study of corals from the conti nu ous, Ge nus Metaulastrea Dietrich, 1926 Kimmeridgian–Valanginian suc ces sion in SW Bulgari a Type spe cies: Aulastrea pompeckji Dietrich, 1926 (Roniewicz, 2008). Re marks: Löser (2008c) re placed Amphiaulastrea Geyer, 1955 During the Barremian and Aptian, a time span with the with Metaulastrea. Metaulastrea was pro vi sion ally es tab lished by highest coral devel op m ent in the Early Creta ceous (Löser, Dietrich (1926), but it is valid, ac cord ing to the In ter na tional Code 1998), phaceloid pachythecaliines were rare. Only a wide - of Zoo log i cal No men cla ture (Ride et al., 1999; see Löser, 2008c). spread proli fer a ti on of heterocoeniids, mostly with a ce- Ac cord ing to Löser (2008c), the type spec i men of the type spe cies rioid-plocoid type of col ony, is observe d in the Cre taceous (Aulastraea conferta Ogilvie, 1897), se lected by Geyer (1955), does not rep re sent Amphiaulastrea. From the Creta ceous, seven (see ci ta tion lists in Löser et al., 2002). The richest Early spe cies of Metaulastrea (=Amphiaulastrea) are known (see cita - Cre ta ceous as sem blage of pachythecaliines, ex cept for tion lists in Löser et al., 2002). Thus, apart from Amphiastrea heterocoeniids, was de scribed by Baron-Szabo and Steuber (about ten spe cies), it is the most di ver sified ge nus among the Cre - (1996) from the Aptian of Greece. They recog nize d 10 gen- ta ceous amphiastraeids. era and 13 specie s (includ ing two heterocoeniid genera and two spe cies), but only two genera and three spe cies are Metaulastrea cf. rarauensis (Morycowa, 1971) phaceloid. Fig. 10 In sum mary, a proli fic devel op m ent of phaceloid pa- chythecaliines in the Tithonian and Berriasian, possi bly Ma te rial: Six sam ples, six thin sections. Mea sure ments: Morphometric measure ments are presented in mainly in the Late Tithonian (Czech Re publi c, Poland) , in Ta ble 1. the Late Barremian (Bul garia), and to a smaller ex tent in the Ta ble 1 Aptian (Greece), oc curred in palaeogeographically restric- ted areas , with poorly known, envi ron m ental constra ints. Dim ensions (in mm) of Metaulastrea cf. rarauensis (Morycowa, 1971)

Sample number d c–c s UJ 225 P - Vis 5 4-5 × 7–10 6–9 up to 45 SYS TEM ATIC PALAE ON TOL OGY Vis 10 6-7 × 7–11 (5) 6–8 (9) up to 50 Vis 26 6-9 × 9–12 7–10 ? (by Bogus³aw Ko³odziej) Vis 44 4-6 × 6–9 5–7 up to 43 Abbre vi a tions: UJ 225 P – x 1 – x refers to the sampling site Ru 3-10 4-5 × 5–7 5–6 up to 40 (Ru – Rusalya, Vis – Vishovgrad, Zar – Zarapovo, Hot – Hotnitsa) Ru 14 5–11 5–7 up to 35 and the spec i men number from the col lec tion UJ 225 P (Insti tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity, Kraków); UJ 225 P – x/1 – numbers 1, 2, 3 etc. re fer to the thin sec tion number from Re marks: The sam ples stud ied are de ter mined in open no mencla - a given sam ple; ZPAL – Bu³g 1/1 – number of the sam ple (Bu³g ture as Metaulastrea cf. rarauensis (Morycowa). M. rarauensis, 1/x) and thin sec tion (Bu³g 1/1), housed at the In sti tute of Palaeo - de scribed from Lower Aptian of Ro mania (Morycowa, 1971), was bi ol ogy, Pol ish Acad emy of Sci ences, Warszawa. also rec ognized from the Valanginian to Aptian of Greece, Ukra- Mea sure ments used in de scrip tions are ab bre vi ated as fol - ine, Turkmenistan and Azerbaidjan, but mostly was not il lustrated lows: d – corallite diam e ter (in mm); c–c – distance between coral- (see Löser et al., 2002). New spe cies, es tab lished by Baron-Szabo lite axes (in mm); s – number of septa; S1... Sn – septa of succee- (Baron-Szabo and Steuber, 1996) as Amphiaulastraea keuppi, is ding size or ders; num ber of the sam ple in bold – samples pre - con sidered as a youn ger synony m of M. rarauensis. This spe cies is sented on fig ures; ( ) – less fre quent val ues are given in brack ets. also known from Barremian–Lower Aptian marls of the Lovech PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 309

Fig. 10 Metaulastrea cf. rarauensis (Morycowa). A, B – corallites with well devel oped marginarium. C – coral lite with poorly de vel - oped marginarium. UJ 225 P; A – Vis 10/1, B – Vis 26/1, C – Vis 44/1

Urgonian Group (Idakieva, 2003). The pe riph eral part of the cali- cular space (con tain ing shorthest septa) in the sam ples stud ied is common ly filled with calcite spar cement and the septa are recrys- tallized. As a result, the exact counting of septa is diffi cult. Differ - ences in measure ments revealed in the speci mens seem to reflect intraspecific variabil ity, rather than the presence of more species. However, more thin sec tions are re quired to ob tain de tailed mea - sure ments. Dis tri bu tion: Lower part of mid dle Up per Barremian (Rusalya, Vishovgrad).

Ge nus Amphiastrea Etallon, 1859 Type spe cies: Amphiastrea basaltiformis Etallon, 1859

Amphiastrea sp. Fig. 11 Ma te rial: One sample (UJ 225 P – Ru 9-08), one thin sec tion. Mea sure ments (in mm): d = 6–7 (8), c–c = 5–7, s = up to 23. Fig. 11. Amphiastrea sp. Arrow indi cates inter-corallite inter - stice filled with sed i ment. UJ 225 P – Ru 9-08/1 Re marks: Lo cally, the min ute in ter stices be tween ad ja cent coral- lites are filled with sedi ment. These inter stices may be due to a poor state of pres er va tion or may re flect subcerioid (with closely the speci mens studied. This is in accor dance with the recent rede- packed basaltiformes corallites). Amphiastrea, usu ally de scribed scription of the syntype of the type spe cies Pleurophyllia tricho- as a cerioid coral, display s in fact a pseudocerioid growth form, toma by LathuiliÀre (2012a): “Prob a bly phaceloid corallum (the with each coral lite hav ing its own wall (Morycowa and Lefeld, pol ished syntype shows on one side a sin gle coral lite and on the 1966; Melnikova and Roniewicz, 1976; Roniewicz and Stolarski, other face, in corre spon dence, a set of three corallites not yet sep a - 1999, 2001). Such a growth form can be rec ognized, only if the rated)”. It is worth em pha siz ing that a mixed growth form of co- lateral sur faces of corallites can be observed as covered by epi- rallum oc curs in some other pachythecaliine taxa. A dendroid- theca (see Ogilvie, 1897; Geyer, 1955; Morycowa, 1964b). phaceloid to subcerioid growth form oc curs in amphiastraeids Dis tri bu tion: Lower part of mid dle Up per Barremian (Rusalya). Aulastrea Ogilvie, 1897, Hykeliphyllum Eliášová, 1975 (e.g., Geyer, 1955; Eliášová, 1975), and in Pleuroaulastrea variabilis gen. et sp. nov, de scribed be low, and in par tic u lar in ?Pleuro- Ge nus Pleurophyllia de Fromentel, 1856 phyllia sp. These ex amples give ev i dence of the high po ten tial of Type spe cies: Pleurophyllia trichotoma de Fromentel, some pachythecaliines for vari abil ity of growth form, which might 1856 be fa voured by low, bi o log i cal in te gra tion in these cor als. Ac cord - Re marks: Pleurophyllia is rarely reported from the Creta ceous, ing to Coates and Oli ver (1973), who dis cussed rugosan cor als, whereas in the Late Juras sic it was a rela tively common genus cerioid corallum is only a com pact, phaceloid corallum. Many Re - among amphiastraeids. Löser et al. (2002) cited only a few re - cent and fos sil cor als show a re sponse of growth forms to envi ron - cords of this ge nus in the Cre ta ceous and only two spe cies, P. mental fac tors (e.g., Young, 1999a and lit er a ture therein). How- trichotoma de Fromentel and P. skuviensis Turnšek. Ac cord ing to ever, mixed, cerioid-phaceloid growth forms are not common in Roniewicz (2008), P. skuviensis de scribed by Turnšek (in Turnšek scleractinian corals (LathuiliÀre, 1989, 1996). A chang ing growth and Mihajloviæ, 1981) from the Barremian–Lower Aptian of Ser - pattern may have no sys tematic signif i cance, but may be in ter- bia rep re sents the ge nus Cladophyllia Milne Edwards et Haime, preted as a par tial death of the col ony, due to sed i menta tion or pre - 1851. P. trichotoma, de scribed by Sikhuralidze (1979) from Geor- da tion (LathuiliÀre, 1989), or re flects only close pack ing, which gia, is pos sibly from the Upper Ju ras sic, not the Albian. Other re sulted from space com pac tion. Mixed growth forms of cor als oc - Lower Cre ta ceous spec i mens are de ter mined in open no men cla- cur more commonly in the Rugosa. Partly phaceloid/partly cerioid ture, but they are too poorly doc u mented to con firm their tax o - coralla oc cur in rugosan Lithostrotionidae (e.g., Nudds, 1979) and nomic de ter mi na tions. In the lime stones stud ied, Pleurophyllia Phillipsastreidae (e.g., Wrzo³ek, 2007). Some rugosan cor als show bulgarica sp. nov. is the most com mon coral. changes in col ony type – from cerioid to fasciculate (branch ing) – Al though a phaceloid corallum is char ac ter istic for this ge nus, dur ing re gen er a tion (Fedorowski, 1980; Poty, 1981; Young, a densely packed to subcerioid growth form may oc cur lo cally in 1999b). 310 B. KO£ODZIEJ ET AL.

Pleurophyllia bulgarica new species, Ko³odziej Re marks: As in many other spe cies, de scribed in the pres ent pa - Fig. 12 per, dif fer ences in the number of septa de pend partly on the state of pres erva tion. At the periph eral part of corallites, septa are dif fi- Holotype: UJ 225 P – Ru 14-08. cult to count also, be cause they are poorly and ir reg ularly de vel - Paratypes: UJ 225 P – Ru 19-08, Ru, 21, Ru 30, Ru 7257, Ru oped there (pos sibly also as septal spines like in heterocoeniids; cf. 8837, Ru 8860. Morycowa, 1971; Ko³odziej, 1995). Pleurophyllia bulgarica sp. Et y mol ogy: bulgarica – from the coun try name Bul garia. nov. dif fers from P. trichotoma (known from the Upper Ju ras sic and Type lo cal ity: Rusalya, Bul garia. Berriasian) in larger corallite diam e ters and more abundant septa. Type level: Lower part of mid dle Up per Barremian, Emen Forma - For ex am ple, P. trichotoma, de scribed by Roniewicz (1966): d 6–8, tion, Bul garia. s 20 (24); Eliášová (1975): d 5–7 (8.5), s 20 + S3; Ko³odziej Strati graphic dis tri bu tion: Lower part of middle Up per Barre- (2003): d (5) 6–8, s 20–30. Other known spe cies of Pleurophyllia mian. have smaller diam e ters and smaller num bers of septa. P. tricho- Di ag no sis: Pleurophyllia of coral lite di ame ters rang ing from (4) 5 toma shows bilat eral symme try , de fined by a well de vel oped, pri - to 9 (12) mm and number of septa up to 49. mary sep tum, which in the new species is poorly de vel oped, al - Ma te rial: 17 samples, 30 thin sectionsn (13 large), one pol ished though bi lat eral symme try is well marked. On the other hand, a slab. “main sector”, as in Hykeliphyllum Eliášová and Psudopistophyl- Mea sure ments: Morphometric measure ments are presented in lum Geyer does not oc cur. A skel e tal struc ture, re sult ing from “ex- Ta ble 2. fo li a tion” (poorly pre served marginarium?) of a wall, simi lar to the one ob served in Paracarolastraea zlatarskii gen. et sp. nov., Ta ble 2 was rec ognized only in one coral lite (Fig. 12K). The great est dif - Dim ensions (in mm) of Pleurophyllia bulgarica sp. nov. ferences are in the speci men from Hotnitsa, where the “main sec - tor” is more clearly de vel oped (Fig. 12F, G). Sample number d s Dis tri bu tion: Lower and mid dle parts of Up per Barremian (Hot- UJ 225 P - nitsa, Rusalya, Vishovgrad). Holotype Ru 14-08 (5) 6–7 × 6–8 (11) up to 32 Paratype Ru 19-08 (4) 5–8 × 7–9 (10) up to 38 ?Pleurophyllia sp. Paratype Ru 21 (4) 5–7 × 6–9 up to 32 Fig. 13 Paratype Ru 30 4–6 × 4–8 (9) up to 39 Ma te rial: One sample (UJ 225 P – Ru 7262), one large thin sec - Paratype Ru 7257 (4) 5–6 (7) × 6–9 (12) up 49 tion. Paratype Ru 8837 (4) 5–7 × 7–9 up 41 Mea sure ments (in mm): d = (4) 5–7 (8), s = up to 31. Paratype Ru 8860 4–7 × 6–8 (9) up to 38 Re marks: The coral shows mixed phaceloid (Pleurophyllia-like) to subcerioid (Amphiastrea-like) growth forms. The small piece of Ru 1-10 4–8 ? the sam ple does not per mit de ter mina tion of whether it is a frag - Ru 2 (4) 5–7 × (6) 7–10 up 34 ment of a pseudocerioid-domi nated or phaceloid-dom i nated coral- Ru 4-08 5–6, longest up to 10 up 32 lum. Coral lites are par tic u larly poorly pre served in the phaceloid Ru 7-08 4–6 × 5–10 up to 32 part. The interskeletal space is filled here with sparite cement, thus anal y sis of the septal appa ra tus is not possi ble, but the margina- Ru 13-08 5–9 × (5) 8–12 up to 41 rium can be recog nized in some corallites. The rela tion between Ru 15-08 5–8 × 6–10 up to 40 coral lites of the subcerioid and phaceloid parts of the corallum ex - Ru 17-08 4–8 × 6–10 up to 32 cludes the pos sibil ity of fu sion of two dif fer ent cor als. As de - Ru 249 5–10 up to 35 scribed above, the subcerioid growth form may lo cally oc cur in Vis 1673 6–11 up to 34 Pleurophyllia bulgarica sp. nov. and in the type spe cies of Pleuro- phyllia. Hot 1 6–10 up to 35 Dis tri bu tion: Lower part of mid dle Up per Barremian (Rusalya).

De scrip tion: Phaceloid corallum. Locally, coral lites are close to Ge nus Aulastrea Ogilvie, 1897 each other, re sult ing in a subcerioid growth form. Coral lites in Type spe cies: Aulastrea schäferi Ogilvie, 1897 transverse section are more or less elongated, rarely round. Septa ar ranged in bi lat eral symme try , de fined by lon ger septa on one ?Aulastrea touli new species, Ko³odziej side of coral lite, but with the primary septum usually only slightly lon ger and thicker than oth ers. Septa smooth and thin, al though Fig. 14 thick septa may oc cur in some coral lites. Lonsdaleoid septa pres - Holotype: UJ 225 P – Vis 2. ent. Endotheca two-zonal, built by large tabuloid dis sepi ments in Et y mol ogy: touli – in hon our of Franz Toula, 19th Austrian coral the cen tral part and ve sic u lar dis sepi ments in the nar row pe riph - researcher of Creta ceous corals in Bulgaria. eral zone. Marginarium in coral lites rarely observed. Dis con tin u - Type lo cal ity: Vishovgrad, Bul garia. ous “exfo li a tion” of wall rec ognized in one coral lite. Taschen- Type level: Lower part of mid dle Up per Barremian, Emen Forma - knospung budding. tion, Bul garia.

Fig. 12. Pleurophyllia bulgarica sp. nov. A–K – trans verse sections , L – lon gi tu di nal sec tion. A, B, D – r indi cates small rudists, mostly Mathesia darderi (Astre), par tic u larly numer ous in D. B – densely packed coral lites. C – two coral lites with septa of variable thickness. F, G – corallites with quasi main sector. H, K – corallites with ‘exfo li a tion’ of wall (compare Fig. 17). J – coral lites with Taschenknospung bud ding. UJ 225 P; A – Ru 14-08/2, B – Ru 8860/1, C – Ru 8837/1, D – Ru 7257/3, E, I – Ru 30/1, F, G – Hot 1/2, H, J – Ru 19-08/2, K – Ru 4-08/1, L – Ru 249/1. A – holotype, B, C, E, H, I, J – paratypes PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 311 312 B. KO£ODZIEJ ET AL.

Fig. 13. ?Pleurophyllia sp., dis play ing, mixed subcerioid (A) to phaceloid growth form (B). Ar rows in di cate coral lite, link ing subcerioid and phaceloid parts of corallum. UJ 225 P – Ru 7262/1

Strati graphic dis tri bu tion: Lower part of middle Up per Barre- tum. Lat eral septal faces cov ered by small granules. Marginarium mian. pres ent. Lonsdaleoid septa present. Endotheca un known. Taschen- Di ag no sis: Domi nantly phaceloid, lo cally phaceloid-dendroid to knospung and parricidal bud ding. subcerioid corallum. Coral lites from about 7 mm to 21 mm in di- Strati graphic dis tri bu tion: Lower part of middle Up per Barre- ame ters, and up to 50 septa. mian. Ma te rial: One sample (UJ 225 P – Vis 2), four large thin sec tions, Re marks: Pleuroaulastrea gen. nov. dif fers from Aulastrea in the three pol ished slabs. gen eral corallum growth form (see re marks on ?Aulastrea touli sp. Mea sure ments (in mm): d = 7–21, s = highly vari able, up to at nov.). In the new ge nus, the marigarium is poorly de vel oped and least 50. not com plete. Corallites are highly variable in size. The septal pat- De scrip tion: Phaceloid, lo cally a phaceloid-dendroid to subce- tern in small corallites is close to Pleurophyllia. Apart from Ta- rioid corallum. Locally corallites form compact clusters. Corallites schenknospung, parricidal bud ding oc curs, re sult ing in a par tial, oval. Septa ar ranged in bi lat eral symme try . Septa on one side of subcerioid growth form, built of small poly go nal coral lites. Fig ure coral lite are lon ger, but a pri mary sep tum is only slightly lon ger 16A, B shows recrystallized coral lites with parricidal budding. and slightly thicker. Lonsdaleoid septa pres ent. Com plete margi- This budding type is simi lar to the one, oc cur ring in Mitrodendron narium de vel oped around the septal ap pa ra tus only in some coral - Quenstedt, 1880 (Roniewicz, 1966, text-fig. 15; pl. 16, fig. 1c; lites; in others, marginarium is poorly de vel oped (“marginal pock - Melnikova and Roniewicz, 1976, fig. 4; Roniewicz, 2008, fig. 3c), ets”). Endotheca in pe riph eral zone built of ve sic ular dissepi- in which new budds appear on the endothecal el e ments. It dif fers ments; in cen tral part poorly pre served, but pos sibly built of tabu- from the parricidal bud ding in Intersmilia Eliášová, 1974, where loid dis sepi ments. Taschenknospung bud ding. septa of a par ent in di vid ual con tinue into a daugh ter one (Melni- Re marks: The new spe cies is ten ta tively as signed to the ge nus kova and Roniewicz, 1976, fig. 4; see also re marks on Intersmilia Aulastrea. It dif fers from Aulastrea in its growth form. Aulastrea aff. diaboli Eliášová, 1974 in the pres ent pa per). has a massive subcerioid to dendroid-phaceloid corallum, with short branches and a con i cal lower part (see Ogilvie, 1897; Geyer, 1955; Eliášová, 1975; Schäfer and Senowbari-Daryan, 1980; Lat- Pleuroaulastrea variabilis new species, Ko³odziej huiliÀre, 2012b). In contrast to Aulastrea, there is a lack of a dis - Figs 15, 16 tinct, thick, primary septum. The septal pattern is simi lar to the Holotype: UJ 225 P – Vis 1. one, oc cur ring in Pleurophyllia bulgarica sp. nov. Aulastrea is Et y mol ogy: variabilis – for its high variabil ity in corallite diam e - poorly known from the Lower Cre ta ceous (see ci ta tion lists in ter and corallum growth form. Löser et al., 2002). The best doc umented in the Cre ta ceous are Type lo cal ity: Vishovgrad, Bul garia. Aulastrea schaeferi Ogilvie, 1897 and Aulastrea cf. macer Eliá- Type level: Lower part of mid dle Up per Barremian, Emen Forma - šová, 1975 de scribed by Baron-Szabo (in Baron-Szabo and Steu- tion, Bul garia. ber, 1996) from the Aptian of Greece, pre vi ously known only from Strati graphic dis tri bu tion: Lower part of middle Up per Barre- the Up per Ju ras sic/ear li est Cre ta ceous. mian. Dis tri bu tion: Lower part of mid dle Up per Barremian (Visho- Di ag no sis: Pleuroaulastrea with highly variable corallite size, vgrad). from 4–8 mm in the subcerioid/densely phaceloid part of the corallum to 10–27 mm in the phaceloid part. Number of septa rel a - tively small, up to 29. Ge nus Pleuroaulastrea new genus, Ko³odziej Ma te rial: One sample (UJ 225 P – Vis 1), seven thin sec tions (two Type spe cies: Pleuroaulastrea variabilis sp. nov., large), eight pol ished slabs. Ko³odziej Mea sure ments (in mm): d = 4–8 in subcerioid/densely phaceloid Et y mol ogy: In rela tion to Pleurophyllia and Aulastrea. part of corallum 10–27 in phaceloid part of corallum, s = up to 29 Di ag no sis: Corallum phaceloid, lo cally subcerioid. Coral lites (in large corallites). round or slightly oval, and highly vari able in di ame ter. Septa ar - De scrip tion: Phaceloid corallum. Locally corallites, result ing ranged in bi lat eral symme try , de fined by long ax ial pri mary sep - from parricidal bud ding, are close to each other, re sult ing in sub- PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 313

Fig. 14. ?Aulastrea touli sp. nov., holotype UJ 225 P – Vis 2. A – pol ished slab of holotype spec i men. Coral lites strongly recrystallized; interskeletal space commonly filled with calcite spar cement, in par tic ular in periph eral parts of corallites. B – dendro-phaceloid to subcerioid part of corallum with Taschenknospung bud ding (Vis 2/2). C, D – coral lites with poorly de vel oped marginarium; ar rows indi - cate small rudists (r) and small microbialite ‘bridges’ (m) be tween coral branches (C – Vis 2/2, D – Vis 2/1). E – corallite with broad marginarium (Vis 2/2). F – lon gi tu di nal sec tion showing large, ve sic ular dis sepi ments at the pe riph eral part of endotheca. At left side, trans verse to slightly oblique sec tion dis plays small parricidal bud (ar row) (Vis 2/4) cerioid growth form. Coral lites round or slightly oval. Di ame ter of Fam ily CAROLASTRAEIDAE Eliášová, 1976 corallites is highly vari able in diam e ter; they are sig nifi cantly Re marks: Until now Carolastraeidae con tained only one ge nus smaller in the subcerioid part of corallum. Septa ar ranged in bi lat - Carolastraea Eliášová, 1976 with three spe cies. Löser (2009) in - eral symme try, de fined by long, ax ial, primary septum. Lat eral cluded this ge nus in the Amphiastraeidae. faces of larger septa are covered by small granules. Marginarium well or poorly de vel oped. Lonsdaleoid septa pres ent. Endotheca Ge nus Paracarolastraea new genus, Ko³odziej un known. Taschenknospung and parricidal budding. Type spe cies: Paracarolastraea zlatarskii sp. nov., Ko³odziej Dis tri bu tion: Lower part of mid dle Up per Barremian (Vishov- Et y mol ogy: Paracarolastraea – for simi lar ity to Carolastraea grad). Eliášová, 1976. 314 B. KO£ODZIEJ ET AL.

Fig. 15. Pleuroaulastrea variabilis gen. et sp. nov, holotype UJ 225 P – Vis 1. A–C – pol ished slabs of holotype spec i men, showing high vari abil ity in coral lite ar range ment and size. B – pol ished slab, show ing (black ar row) lo cal, densely, packed poly go nal coral lites (subcerioid growth form). White ar rows show densely packed rounded coral lites. C – trans verse section, made five milli me ters above the surface on Fig ure B, with densely packed rounded coral lites (black ar row). White ar rows show loosely packed branches (com pare with B). D – two coral lites with well de vel oped marginarium and bi lat eral symme try , de fined by long pri mary sep tum (Vis 1/2). E – corallite with de stroyed, in ner parts of septa (Vis 1/1). F – dolo mite crystals in mi cro bial automicrite (see Fig. 9B) in sample UJ 225 P – Vis 2/2. After stain ing of the thin sec tion with Alizarine Red-S, only coral skel e ton (c) and automicrite show red dish color PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 315

Fig. 16. Pleuroaulastrea variabilis gen. et sp. nov; holotype UJ 225 P – Vis 1. A, B – coral lites with parricidal budding. Ar rows in A show rudist shell (r). C–E – coral lite with short septa pos sibly due to state of pres er va tion; in D and E (en large ment of C), septa show gran u lar or na men ta tion. B–E – thin sec tion Vis 1/4

Di ag no sis: Phaceloid corallum. Septa ar ranged in six subequal Paracarolastraea zlatarskii new species, Ko³odziej sys tems, in radio-bi lateral symme try. Larger septa are rhopaloid. Figs 17, 18 A–D A slightly enlarged, primary septum is present in some corallites. The wall is thick. Around the outer wall sur face of some adult Holotype: UJ 225 P – Ru 34. corallites there occur structures, result ing from a wall “exfo li a - Paratypes: UJ 225 P – Ru 20-08, Ru 32, Ru 33. tion”. These consist of one or more “lay ers”, more or less paral lel Et y mol ogy: Named in honour of Dr. Vassil Zlatarski, a researcher to the wall, and usu ally do not con tin u ously surround it. Endotheca of fossil and re cent cor als. poorly pre served (one-zonal?). Bud ding extracalicular mar ginal Type lo cal ity: Rusalya, Bul garia. and by septal di vi sion. Type level: Lower part of mid dle Up per Barremian, Emen Forma - Strati graphic dis tri bu tion: Lower part of middle Up per Barre- tion, Bul garia. mian. Strati graphic dis tri bu tion: Lower and mid dle parts of Up per Re marks: The new genus is simi lar to Carolastraea (Eliášová, Barremian. 1976a). It dif fers in the pres ence of septal di vi sion and struc tures, Ma te rial: Six samples UJ 225 P – Ru 20/08, Ru 31, Ru 32, Ru 33, re sult ing from a wall “ex fo li a tion” (Fig. 17A–J) and in show ing Ru 34, Hot 1171; 16 thin sec tions (two large). some anal ogy with marginarium in amphiastraeids. However, in Di ag no sis: Paracarolastraea with corallite diam e ter of 3–5 (6) contrast to the interseptal space in many coral lites, the space be- mm, and 24 septa arranged in three size orders; very rare septa of tween the wall and these struc tures is filled by sed iment, not by the fourth or der. sparite ce ment, im ply ing that there were no dis sepi ments, which De scrip tion: Phaceloid corallum, only in places corallites are might close the space. In this re spect, it dif fers from marginarium, closely packed. In all sam ples corallite diam e ter is simi lar, ranging which com monly con tains dis sepi ments or septa (com pare Meta- from 3 to 5 (6) mm. Septa ar ranged in six subequal sys tems, in ra - ulastrea cf. rarauensis, Fig. 10). Melnikova and Roniewicz (1976, dio-bi lat eral symme try . Usually four of six S1 are lon ger and p. 98) dis cussing the wall struc ture in Mitrodendron ogilviae thicker than oth ers. Larger septa (S1 and some S2) are com monly Geyer and Pleurophyllia trichotoma de Fromentel from the Kim- thick ened at the in ner mar gin (rhopaloid septa). A slightly enlar- meridgian of Po land, stated: “The wall de vel ops in re sult of suc - ged pri mary sep tum occurs in some coral lites (Fig. 17B, J). Septa cessive actions of skele tal secre tion (pl. XXVIII, figs 1, 2), it is S2 are S3 usu ally well de veloped, septa S4 rare. Septal faces are ‘multilamellar’ as was assumed by Beauvais (1974)”. Melnikova smooth or show faint, ir reg u lar gran u la tions. Many adult coral lites and Roniewicz (1976, pl. 23, fig. 1) showed (ver ti cal sec tion) (up to 30% per thin sec tion) con tain struc tures re sult ing from “ex- structures termed as “rudi ments of calicular border” sim ilar to fo li a tion” of the outer wall These struc tures usu ally discon tin u - those de scribed in the pre set pa per and named here as struc tures ously surround the wall. Endotheca poorly pre served (uni-zonal?). re sulted from wall “ex fo li a tion”. Budding extracalicular mar ginal and by septal di vi sion. Septal bud ding re sults in for mation of two (Fig. 18A) or more daugh ter coral lites (Fig. 18B–D). 316 B. KO£ODZIEJ ET AL.

Fig. 17. Paracarolastraea zlatarskii gen. et sp. nov. A–J – trans verse section. K – lon gi tu di nal sec tion. Most of coral lites on A–J show singu lar (A, B, J) or mul ti ple (C–I) wall struc tures, re sult ing from ‘ex fo li a tion’ of coral lite wall. In G and H, these struc tures con tin u ously surround coral lite re sult ing in for mation of some kind in ner coral lite. In B, coral lites are highly vari able in size and densely packed lo - cally. UJ 225 P; A, C, D – Ru 34/4, B – Ru 34/3, E, F – Ru 34/4a, G – Ru 34/7, H, I, K – Ru 34/2. A–G, J – holotype, H, I– paratype

Re marks: With re spect to di ame ter of coral lites and num ber of ported in some Upper Trias sic scleractinian corals (Roniewicz, septa the new species is sim ilar to Carolastraea gracea Baron- 1989), and in the middle Perm ian scleractiniamorph, Numidia- Szabo, 1996 [coral lites di ame ter (2.5) 3–4; num ber of septa (20) phyllum (Ezaki, 2004), where both bi par tite, as well as hexapartite 24] from the Aptian of Greece (Baron-Szabo and Steuber, 1996). and tri par tite in creases oc cur. How ever, other features (‘exfo li a tion’ of a wall, septal increase) Dis tri bu tion: Lower and mid dle parts of Up per Barremian (Ru- justify clas sifi ca tion of the new species in the new ge nus Paraca- salya, Hotnitsa). rolastraea. The septal divi sion shows simi lar ity to the one, re- PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 317

Fig. 18. A–D. Septal in crease in Paracarolastraea zlatarskii gen. et sp. nov. In C and D, septal in crease re sulted in or i gin of four daugh - ter coral lites (num bered from 1 to 4); m in A in di cates poorly lami nated, microbialite crust. UJ 225 P; A – Hot 1171/1, B, D – Ru 32/1, C – Ru 32/2. E–I. ?Paracarolastraea sp. E–H – septal increase resulted in ori gin of a few daughter corallites. In H densely packed corallites are sur rounded lo cally by common wall (ar row). a and m in E and F show dasyclad al gae (E – Zittelina hispanica Masse, Arias et Vilas, F – Neomeris cf. cretacea Steinmann) and microbialite crust respec tively. I – corallite with thick wall. Arrow possi bly in dicates early stage of blastogeny. UJ 225 P; E, G –Vis 40/1, F– Vis 30/1, I – Vis 30/2

?Paracarolastraea sp. daugh ter coral lites (Fig. 18E–H), is more common, al though only Figs 6A, 18E–G three thin sec tions were stud ied. In one thin sec tion, a unique ag - grega tion of corallites occurs. Densely packed coral lites are sur- Ma te rial: Two samples (UJ 225 P – Vis 30, Vis 40), three thin rounded lo cally by a com mon wall (possi bly the wall of the par ent sec tions. indi vid ual). More serial sections are needed to reveal the exact in- Re marks: Two spec i mens show sim i lar i ties to Paracarolastraea crease pattern in this speci men, as well as its taxon omy (Paracaro- zlatarskii sp. nov., with re spect to di ame ter and num ber of septa, lastraea zlatarskii or a new species). but they lack struc tures re sult ing from ‘ex fo li a tion’ of the wall. Dis tri bu tion: Lower part of mid dle Up per Barremian (Vishov- More over, septal bud ding, re sult ing in the for mation of even five grad). 318 B. KO£ODZIEJ ET AL.

Fig. 19. ?Donacosmilia sp. A–C – trans verse sec tions of coral lites; note lack of marginarium and slightly bi lat eral symme try . UJ 225 P – Ru 7270/1

Fig. 20. Intersmilia aff. diaboli. A–C – trans verse sec tions of coral lites; note dark color of wall. C – parricidal bud ding (ar row). ZPAL Bu³g 3; A – 3/6, B – 3/4, C – 3/2

Fam ily DONACOSMILIIDAE Krasnov, 1970 Intersmilia aff. diaboli Eliášová, 1974 Ge nus Donacosmilia de Fromentel, 1861 Fig. 20 Type spe cies: Donacosmilia corallina de Fromentel, 1861 Ma te rial: One sample (ZPAL Bu³g 3), eight thin sec tions. Mea sure ments (in mm): d = 6–8 (9), s = 12. ?Donacosmilia sp. Re marks: With respect to corallite diam e ters, the speci men is Fig. 19 sim i lar to Intersmilia diaboli Eliášová [d = (6) 8–9 (10)]. How- ever, the number of septa in I. diaboli is from 12 to 24 (S1–S3, Ma te rial: One sample (UJ 225 P – Ru 7270), one large thin sec - sporad i cally S4). It is pos sible that septa S3 oc cur also in the spec i - tion. men studied, but they are un rec ogniz able, ow ing to the state of Mea sure ments (in mm): d = (7) 8–10 (11), s = 41–47 (60) in adult preser va tion. The wall is dark in color, partic ularly in its outer coral lites. part. The wall shows a rather complex, in ner struc ture, but no dou - Re marks: Phaceloid corallum with some corallites, show ing ble-layer structure as in I. diaboli was rec og nized. Ac cord ing to slightly marked, bilat eral symme try. Rare, lonsdaleoid septa pres- Eliášová (1974) Intersmilia displays intracalicular marginal bud- ent. The spec i men de scribed dif fers from the best known, Late Ju - ding. How ever the pub lished pic tures do not sup port this. It ap - ras sic spe cies Donacosmilia corallina de Fromentel and D. eta- pears rather, as stated by Melnikova and Roniewicz (1976), that lloni (Koby, 1888) (e.g., Turnšek, 1972, 1997; Melnikova and the bud ding is lat eral. Parricidal budding was not ob served by Roniewicz, 1976; Buzcu and BabayiÈit, 1998) in hav ing smaller Eliášová (1974), nei ther in I. diaboli, nor in I. malevola Eliášová, corallite diam e ters and a greater number of septa. D. massaliensis 1974. It was recog- nized in one coral lite of the sample, stud ied Morycowa et Masse, 1998, from the Upper Barremian of Pro vence here, and in the Kimmeridgian I. irregularis Roniewicz, 1976 (see in France, shows smaller corallite diam e ters (6–7.5 mm) and less Melnikova and Roniewicz, 1976). In the spec i men studied (Fig. nu merous septa (32 S1–S3 plus S4) (Morycowa and Masse, 1998). 20C), as in I. irregularis, the septa of the par ent in di vid ual conti- In the avail able frag ment of corallum (15 coral lites), no margina- nue into the daugh ter one (Melnikova and Roniewicz, 1976, fig. 4). rium was observed in coral lites. Thus, the ge neric at tri bu tion of Sym me try of the septal ap pa ra tus in Intersmilia was described by this species is uncer tain. Eliášová (1974) as ra dial. How ever, pic tures of I. malveola and Dis tri bu tion: Lower part of mid dle Up per Barremian (Rusalya). par tic u larly of I. diaboli (Eliášová, 1974¸ pl. 1, fig. 1, pl. 2, fig. 2, pl. 3, fig. 1, pl. 4, figs 1, 2) per mit rec og ni tion of a lon ger, pri mary Family INTERSMILIIDAE Melnikova et Roniewicz, 1976 sep tum. Ac cord ingly, the septal symme try should be rather char - Ge nus Intersmilia Eliášová, 1974 ac ter ized as ra dio-bi lat eral. Type spe cies: Intersmilia malevola Eliášová, 1974 Dis tri bu tion: The sam pling site can not be exactly lo cated (Ve- liko Tarnovo or its close vi cin ity), there fore a gen eral Barremian Re marks: Intersmilia is a rare ge nus, known to oc cur since the age is as sumed for the stud ied spec i men. I. diaboli is known from Lower Ju ras sic (?Hettangian–Sinemurian; Melnikova and Ronie- Tithonian–Lower Berriasian of the Štramberk Lime stone. wicz, 1976, 2002), but mostly from the Upper Ju ras sic/ear li est Cre ta ceous (Eliášová, 1974; Roniewicz, 1976; Ko³odziej, 2003; Roniewicz, 2008). PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 319

Fam ily HETEROCOENIIDAE Oppenheim, 1930 spines?). The pri mary sep tum is usually strongest of all. In young Re marks: The four spe cies, de scribed be low, rep re sent four pha- coral lites, only one sep tum can be rec og nized. A marginarium was celoid gen era. In con trast to other pachythecaliines, the phaceloid rec og nized only in a few coral lites. Endotheca un known. New growth form is rare in Heterocoeniidae. The system atic po sition of buds were es tab lished in a wall, but their growth, in con trast to phaceloid gen era Cuneiphyllia (one spe cies; Eliášová, 1978) and Taschenknospung, was out side of the par ent coral lite. Pachythecophyllia (one spe cies; Ko³odziej, 2003) from the Štram- Re marks: The new spe cies dif fers from the one de scribed by berk Lime stone and Štramberk-type lime stones re spec tively, orig - Löser et al. (in press; see also Löser, 2009, fig. 101) in hav ing i nally at trib uted to the Heterocoeniidae, appears to be prob lem atic, smaller corallite diam e ter, and in the num ber and charac ter of the but certainly they repre sent pachythecaliines. septa. In the species, described by Löser et al. (in press) there are 4–5 distinct septa, which have rhopaloid, T-shaped tips. Pseudo- pistophyllum quinqueseptatum has larger corallites (3–6 mm) and Ge nus “Pseudopistophyllum” Geyer, 1955 a unique, septal pat tern, with 5 long septa, reach ing al most the op- Type spe cies: Pseudopistophyllum berckhemeri Geyer, po site side of the wall. As in some other pachythecaliines, in par - 1955 tic u lar heterocoeniids, the number of septa is dif fi cult to counted Re marks: The new species, described below, is tenta tively as - (e.g., Morycowa, 1971; Ko³odziej, 1995, 2003; Löser, 2009; Löser signed to the ge nus “Pseudopistophyllum” Geyer, 1955. This spe - et al., 2009). cies repre sents a new genus and was for the first time illus trated by Dis tri bu tion: Lower part of mid dle Up per Barremian (Zarapovo). Ko³odziej et al. (2011b) and de ter mined in for mally as Gen. nov. 2. sp. nov. 1. Re cently Löser et al. (in press) pro posed es tab lish ment Ge nus Heterosmilia new genus, Ko³odziej of a new ge nus, based on a new spe cies, rec og nized in the Up per Type spe cies: Heterosmilia spinosa sp. nov., Ko³odziej Albian of Spain (see also Löser, 2009, fig. 101; Löser et al., 2011). Apart from the Span ish and Bul gar ian spe cies, the new ge nus in- Et y mol ogy: Heterosmilia – in di cat ing its sim i lar ity to het ero- cludes also the spe cies, de scribed from Slovenia by Turnšek (in coenid cor als. Turnšek and Buser, 1976), as Pseudopistophyllum quinquesep- Strati graphic dis tri bu tion: Lower part of middle Up per Barre- tatum. This spe cies was rec og nized in a lime stone block of pos si- mian. ble Late Ju ras sic age, oc cur ring in Senonian brec cias (Turnšek and Di ag no sis: Phaceloid corallum. Bilat eral, septal symme try, with Buser, 1976). The new ge nus differs from Pseudopistophyllum in mostly distinct septa of subse quent or ders. Pri mary sep tum dis- hav ing a dif fer ent, septal pat tern. In Pseudopistophyllum septa are plays strong, lat eral out growths. Other septa lack ing or na menta - de vel oped on all sides of the wall, al though the septa on one side tion. Lonsdaleoid septa present. Large dissepi ments are clearly are much lon ger. In the new ge nus, in spec i mens from Bulgaria, visi ble in transverse sec tions, but endotheca un known. Bud ding Slovenia and Spain, 3–5 septa are strongly de vel oped on one side extracalicular, lateral. of corallites; other septa are absent, or if pres ent, very rare and Re marks: The new ge nus shows simi lar i ties both with Heterocoe- short (septal spines?). The ge nus is clas sified here in the Heteroco- niidae as well as with Amphiastraeidae and even Intersmiliidae. eniidae. In gen eral, the septal pat tern and poor de vel oped septa of Strong septal out growths are char ac ter istic for many heterocoe- the new ge nus are simi lar to those, oc cur ring in some heterocoe- niids (e.g., Ko³odziej, 1995; Schöllhorn, 1998; Löser, 2008a, b, niids, such as Latusastrea and Thecidiosmilia. New buds were es- 2010), but are ab sent in amphiastraeids and intersmiliids. Trans - tablished in the wall of the parent corallite, but in contrast to verse sec tions through the type spe cies, i.e. Heterosmilia spinosa amphiastraeids, fur ther growth was out side of a calice of par ent in - show some sim i lar i ties to the sol i tary Hexasmiliopsis Löser, 2008 di vid u als. (see below remark s on H. spinosa).

“Pseudopistophyllum” triseptatum new species, Ko³odziej Heterosmilia spinosa new species, Ko³odziej Fig. 21 Fig. 22 2011b. Gen. nov. 2. sp. nov. 1. – Ko³odziej et al., fig. 1g, h. 2011b. Gen. nov. 1. sp. nov. 1. – Ko³odziej et al., fig. 1f. Holotype: UJ 225P – Zar 996. Holotype: UJ 225P – Ru 20-09. Paratype: UJ 225P – Zar 2-08. Paratype: UJ 225P – Ru 6-08. Et y mol ogy: triseptatum – named after occur rence of three dom i- Et y mol ogy: spinosa – named for spiny-like lat eral out growths in nated septa. the pri mary sep tum. Type lo cal ity: Zarapovo, Bul garia. Type lo cal ity: Rusalya, Bul garia. Type level: Lower part of mid dle Up per Barremian, Emen Forma - Type level: Lower part of mid dle Barremian, Emen Forma tion, tion, Bul garia. Bul garia. Strati graphic dis tri bu tion: Lower part of middle Up per Barre- Strati graphic dis tri bu tion: Lower part of middle Up per Barre- mian. mian. Di ag no sis: “Pseudopistophyllum” with lon ger di am e ter rang ing Di ag no sis: Heterosmilia with coral lites of (7) 8–10 (11) in di ame - from (2) 2.5 to 3 (4) mm and a shorter one from (1.5) 2 to 2.5 (3) ter. Septal pat tern mostly reg ular: 6 S1 and 6 S2 in adult coral lites. mm. Three, rarely four septa occur on one side of a corallite. Other One or two sec tors in some coral lites are much wider than oth ers. septa are ab sent or very rare and short (septal spines?). Septa S3, if de vel oped, pres ent only in two sec tors on both sides of Ma te rial: Two samples (holotype UJ 225P – Zar 962, paratype UJ the pri mary sep tum. 225P – Zar 2-08), eight thin sec tions (two large). Ma te rial: Four samples (UJ 225P – Ru 6-08, Ru 11-08, Ru 20-8, Mea sure ments (in mm): Long d = (2) 2.5–3 (4), small d = (1.5) Ru 22-09), six thin sec tions (three large). 2–2.5 (3), s = 3–4; other septa rare or ab sent. Mea sure ments: Morphometric measure ments are presented in De scrip tion: Phaceloid corallum. Locally coral lites are densely Ta ble 3. packed re sult ing in a pseudocerioid growth form. Septa rare, ar - De scrip tion: Phaceloid corallum. Septa arranged in bilat eral sym- ranged in bi lat eral symme try de fined by 3–4 long septa on one metry de fined by the pres ence of the pri mary sep tum, and in some side of the corallite wall. On the op posite side, septa (septal spi- corallites the presence of two wider sectors. In adult corallites, nes?) are absent or very rare and, if present, very short (septal septal ap pa ra tus shows six septa S1 and six S2. Only two S3 are 320 B. KO£ODZIEJ ET AL.

Fig. 21. “Pseudopistophyllum” triseptatum sp. nov. A – loose, phaceloid corallum. B – densely packed corallites. C –row of four coral - lites with 3–4 rec ogniz able septa, ar ranged in same di rec tion. D – coral lites with thick wall and one promi nent sep tum and two other poorly de vel oped septa. E, F – coral lites with poor marginarium. G – coral lites with ‘pockets’ (ar rows) in wall, which pos sibly cor re spond to early stage of new calice for mation; fur ther growth is ex ter nal, as shown in H and I (ar row). UJ 225 P; A–E, H –Zar 996/6; F, I – Zar 2/08/1, G – Zar 996/5. A–E, G–H–holotype, F, I – paratype de vel oped in two wider sec tors (if pres ent) on both sides of the pri - de vel oped. If the interseptal space is filled with sed i ment (not by mary sep tum. Septa S2 in these two sec tors are lon ger, giv ing im- calcite cement) , it provides a better im age of septal pattern and pression that there are eight septa S1. Septa are thicker at the wall septal or na men ta tion. Trans verse sec tions through Heterosmilia and thin ner at the in ner mar gin. A pri mary sep tum shows strong, spinosa sp. nov. dis play simi lar coral lite mor phol ogy and septal septal out growths. Orna menta tion on lat eral faces of other septa is pat tern, as in some transverse sec tions through the cen tral part of lack ing. Large dissepi ments present and may form regu lar zones the sol i tary heterocoeniid Hexasmiliopsis saldanai (Löser, 2008b, (Fig. 22G). Endotheca un known. On ba sis of re la tions of par ent fig. 4a). Apart from the type spec i mens, two oth ers (Ru 11-08, Ru and daugh ter coral lites, bud ding possi bly is extracalicular, lat eral. 22-09) are at trib uted to this spe cies. How ever, the poor state of Re marks: Dissepi ments , observed in trans verse section, are well pres er va tion does not per mit de tailed mea sure ments. Dis tri bu tion: Lower part of mid dle Up per Barremian (Rusalya). Ta ble 3 Dim ensions (in mm) of Heterosmilia spinosa sp. nov. Ge nus Hexasmilia de Fromentel, 1870 Type spe cies: Hexasmilia ferryi de Fromentel, 1870 Sample number d s Re marks: This poorly known ge nus (Upper Barremian–Santo- Holotype UJ 225P - Ru 20-09 (8) 9–10 (11) 12 +S3 nian) was re cently re viewed by Löser (2008a). Hexasmilia dif fers from Heterocoenia Milne Ed wards and Haime, 1848 in its phace- Paratype UJ 225P - Ru 6-08 (7) 8–10 12? +S3 loid growth form and the pres ence of strong septal out growths. PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 321

Fig. 22. Heterosmilia spinosa gen. et sp. nov.; A–E – holotype, UJ 225 P – Ru 20; F–H – paratype, UJ 225 P – Ru 6-08. A – corallite with 6 septa S1, 6 S2; note that only in two sec tors (ar rows) septa S3 are de vel oped. See also dif fer ent size of sec tors on E. B–H – trans - verse sec tions, show ing coral lites with well pre served (B, F, G, H) and not pre served (C–E) dis sepi ments. Arrows on H show lonsdaleoid septa. Microfossils: s sponge, se serpulids, a dasyclad alga Zittelina hispanica Masse, Arias et Vilas, c remain of crus tacean Carpatho- can cer? plassenensis (Schlagintweit et Gawlick). A–B – Ru 20/1, C–D – Ru 20/2, E – Ru 20/3, F–H – Ru 6-08/1

Three spe cies were in cluded by Löser (2008a): H. ferryi de Fro- (Schöllhorn, 1998, pl. 21, fig. 8; Löser, 2008a, fig. 5.1, 5.4, 5.5), mentel, H. pachythecalia (Kuzmicheva, 1980), and new spe cies H. there is a prom i nent, pri mary sep tum with strong septal out - elmari. growths, while other septa are poor and less reg u larly de vel oped. It is possi ble that more thin sec tions through the Bul gar ian spec i - men will reveal greater, morpho log i cal variabil ity . The septal divi - ?Hexasmilia sp. sion, ob served by Löser (2008a) in H. elmari, was not ob served in Fig. 23 the spec i men stud ied. Dis tri bu tion: Lower part of mid dle Up per Barremian (Rusalya). Ma te rial: One sample (UJ 225P – Ru 7862), three thin sec tions (one large). Di men sions (in mm): d = (5) 6–7, s = 12 + S3. Ge nus Hexapetalum Eliášová, 1975 Re marks: The speci men from Bulgaria is sim ilar to Hexasmilia Type spe cies: Hexapetalum impium Eliášová, 1975 elmari Löser, 2008, which shows some vari abil ity, ex pressed in Re marks: The poorly known ge nus Hexapetalum was origi nally dif fer en tially de vel oped, septal ap pa ra tus. The spec i men stud ied placed by Eliášová (1975) among the Amphiastraeidae, later in the dis plays trans verse sec tions, sim i lar to H. elmari (com pare Löser, sepa rate fam ily Hexapetallidae (Eliášová, 1976b; Kuzmicheva, 2008a, fig. 4, fig. 5.6, 5.8; and Fig. 23A, B in this pa per) with six 1980). Ko³odziej (2003) trans ferred this ge nus to the Heterocoe- S1, in clud ing a pri mary sep tum. In other sec tions of H. elmari niidae. 322 B. KO£ODZIEJ ET AL.

Fig. 23. ?Hexasmilia sp. A – trans verse sec tion of coral lite, with thick septa S1 and septal out growths, par tic u larly strongly de vel oped on pri mary sep tum (B). C – corallite with differ ent, septal pattern (lack inter nal invaginations of the wall); m on B, C in di cate microbialite crusts. UJ 225 P; A, B –Ru 7862/1, C – Ru 7862/2

Fig. 24. ?Hexapetalum sp.; A – trans verse sec tion of coral lite with thick septa S1 and distinct, gran ular, septal or na menta tion; UJ 225 P – Ru 2-08/1. B, C – coral lites, show ing ex ter nal con cav i ties of wall (ar rows on C); UJ 225 P – Ru 40-08/2

?Hexapetalum sp. tes), in which it dif fers from other cor als, de scribed as Hexapetalum. Fig. 24 Dis tri bu tion: lower part of mid dle Up per Barremian (Rusalya); Barremian (Veliko Tarnovo or its close vi cin ity). Ma te rial: Three sam ples, six thin sections. Mea sure ments: Morphometric measure ments are presented in Ta ble 4. CON CLU SIONS Ta ble 4 1. The Upper Barremian limestone s of the Emen For- Dim ensions (in mm) of ?Hexapetalum sp. mati on of the Lovech Urgonian Group in the Veliko Tar- novo area (Fore-Balkan, northern centra l Bulgari a) contai n Sample number d s bioconstructions (possi bly mostly biostromes) with a dis- UJ 225P - Ru 40-08 4 (5) 6S1 + S2 +S3 tinc tive coral com mu nity, dom i nated by di ver si fied cor als UJ 225P - Ru 2 (4) 5 (6) 6 S1 + S2 +S3 of the exti nct suborder Pachythecaliina. Its higher system - ZPAL Bu³g 2 (3) 4–5 (6) 6 S1 + S2 atic posi ti on is de batable , but fol lowing some other coral spe cialists, these cor als are clas sified here not in the Scle- Re marks: Six septa S1 are well de vel oped. Septa S2 are poorly ractinia, but in the order Hexanthiniaria. The corals descri- and ir reg ularly de vel oped, septa S3 very rare or ab sent. One sep - bed are mostly of the phaceloid growth form, with Pleuro- tum S1 is more or less longer. In a poorly pre served spec i men Bu³g phyllia bulgarica sp. nov. par ticu lar ly frequent. Other cor- 2, only six septa S1 are recog niz able. Septa S1, if well preserved , als, ex cept for the phaceloid Calamophylliopsis, are rare. show septal out growths or spiny or na menta tion. Bud ding lat eral, 2. Small, monopleurid, cyli ndri cal rudists Mathesia extracalicular. Wall morphol ogy in some corallites display ex ter- darderi, frequentl y densely clus tered, and non-lam inate d nal con cav i ties and in ter nal invaginations, cor re spond ing to septa microbialites pro vided ad di tional, struc tural sup port for (Fig. 23B, C). In this re spect, the spec i mens described are sim i lar bioconstruc tion growth. Other macrofauna are only moder - to Hexapetalum impium Eliášová, H. pium Eliášová (Eliášová, ately com mon and di ver si fied. Lithocodium aggregatum 1975, pl. 9, fig. 2a; Eliášová, 1976b, pl. 2, figs 2, 3; Ko³odziej, 2003, fig. 21), H. pachythecallium Kuzmicheva and Heteroceonia (possi bly chlorophycean alga) and micro bial , ‘bacinellid’ spp. (Beauvais, 1982; Baron-Szabo, 1998; fig. 2; Löser, 2009, fig. struc tures are rare, although they are com mon in many other 174). In par tic u lar, in Hexapetalum pium, the septa and wall show coral-bearing limestone s of the Lovech Urgonian Group. clear, struc tural con ti nu ity. The spec i men, de scribed here, has 3. The asso ci a ti on of phaceloid pachythecaliine corals strong, septal, gran u lar or na men ta tion (in well pre served coralli- and M. darderi, accom panied by microbialites, is unique, PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 323

worldwide. The result ing bioconstructions are known only intweit (Münich), are thanked for their cor rec tions and valu able from the Emen Form ati on and show lim ited, re gional ex- comments that have led to improve ments in this pa per. El¿bieta tent, from Veliko Tarnovo to about 20 km NW. Biostrati- Morycowa (Kraków) is thanked for pro vid ing help ful dis cus sion graphic data in di cate that this biofacies was de vel oped, on coral taxon omy and comments on the manu script. We are gra- teful to Ioan Bucur (Cluj-Napoca) for de ter mina tions of dasyclad mainly dur ing the early mid dle Late Barremian (Gerhardtia al gae, Hannes Löser (Hermosillo) for dis cus sion of some coral sartousiana Zone). taxa, Jean-Pierre Masse (Marseille) for rudist deter mi na tions , and 4. The secti on at the Rusalya Quarry, about 42 m thick Fe lix Schlagintweit for dis cus sion con cern ing microproblematica. pro vides, the sed i men tary and en vi ron men tal con text of the E. Roniewicz kindly pro vided thin sec tions, taken from samples reefal biostromes. Bioclastic packstones of unit 1 contai n col lected by the late Prof. Ryszard Marcinowski. Antoaneta small boundstone patches, with cor als (but not pachytheca- Ilcheva and Neda Motchurova-Dekova (), as well as Vassil liines or other branching cor als), calci fie d sponges (mainly Zlatarski (Bristol, Rhode Is land) helped dur ing the study of his chaetetids) and encrustations of L. aggregatum. Units 2 and coral col lec tion housed at the Na tional Mu seum of Natu ral His tory 3 con sist of bioclastic limestones (rare cor als) interlayered in Sofia. V. Zlatarski ac compa nied us in the first sea son of field studies. The author i ties of the Rusalya Quarry are thanked for per - with rudist lime stones. Pachythecaliine-Mathesia-mi cro- mission to con duct stud ies in the quarry. We are in debted to Frank bialite biostromes (unit 4) de veloped in a narrow 2.5-m- Simpson (Wind sor, Ontario) for Eng lish cor rec tions and Micha³ thick inter val, are covered by biostromes, built mostly of Gradziñski and Al fred Uchman (Kraków) for ed i to rial help. Spe - large, monopleurid rudists (unit 5). The sedi m entar y suc ces - cial thanks go to Ewa Roniewicz and Vassil Zlatarski for estab - sion shows, with some fluctuactions, a general shallowing lish ing the Pol ish–Bul gar ian col lab o ra tion on stud ies of Urgonian trend, from the outer to inner carbon ate plat form. Pachy- cor als in Bul garia. thecaliine-rich biostromes were devel oped on the distal part of the rudist-dom inate d area of the carbon ate plat form, in a low-energy set ting, with low rates of net, background sedi - REF ER ENCES menta ti on and possi bly a higher nutri ent level. This envi - ronm ent favoured growth of phaceloid pachyhecaliines, a Adams , A. E., MacKen zie, W. S. & Guilford, C., 1984. At las of nearly monospecific rudist com munit y (M. darderi), and Sed i men tary Rocks un der the Mi cro scope. Longman, Burnt microbialite devel op m ent, but lim ited growth of phototro- Mill, Harlow, 104 pp. phic/oligotrophic microencrusters. Alloiteau, J., 1957. Con tri bu tion ´ la Systématique des Madrépo- 5. It is hypoth e siz ed that some of microbialites (sensu raires Fossiles. Centre National de la Recher che Scientifique, lato) re sulted from de cay ing sponges. Do lo mite, rec og nized Paris, 462 pp. in the microbialites (Vishovgrad site), is in ter preted as re - Aubrecht, R., Szulc, J., Michalik J., Schlögl, J. & Wagreich, M., 2002. Mid dle Ju ras sic stromatactis mud-mound in the Pieniny sult ing from pre cip i ta tion, linked to mi cro bial ac tiv ity or Klippen Belt (Western Carpathians). Fa cies, 47: 113–126. organomin er al iza tion s.s. Baron-Szabo, R. C, 1998. A new coral fauna from the Campanian of 6. Taxo nom ic di versit y and abundance of phaceloid Northern Spain (Torallola Village, Prov. Lleida). Geologisch- pachythecaliines show a spatially and tem po rally re stricted Paläontologische Mitteilungen Innsbruck, 23: 127– 198. patter n. They are only more com mon in the Tithonian– Baron-Szabo, R. C., 2002. Scleractinian Corals of the Cre ta ceous. Lower Berriasian Štramberk Limestone (Czech Re pub lic) A Com pi la tion of Cre ta ceous Forms with De scrip tions, Il lus - and its equiva lent in the Pol ish Carpathians. However, the trations and Re marks on their Tax o nomic Po sition . Baron- li thol ogy and as so ci ated biota im ply that pachythecaliines Szabo, Knox ville, 539 pp. from the Emen Form ati on devel oped in a differ ent, envi ron - Baron-Szabo, R. C., 2006. Cor als of the K/T-bound ary: Sclerac- mental set ting. Other coral-bearing depos it s of the mixed, tinian cor als of the suborders Astrocoeniina, Faviina, Rhipi- siliciclastic-carbon ate Urgonian com plex in Bul garia con- dogyrina, and Amphiastraeina. Jour nal of Sys tem atic Palae - tain di ver si fied coral com mu ni ties, but pachythecaliines are on tol ogy, 4: 1–108. Baron-Szabo, R. C. & Steuber, T., 1996. Korallen und Rudisten very poorly diver si fie d and phaceloid pachythecaliines are aus dem Apt im tertiären Flysch des Parnass-Gebirges bei ab sent. Delphi-Arachowa (Mittelgriechenland). Ber liner Geowissen- 7. Fourtee n specie s (includ ing six new and eight in schaftliche Abhandlungen, E18: 3–75. open no men cla ture), rep re sent ing twelve gen era (four new, Beauvais, L., 1974. Stud ies upon the char ac ters of the suborder three of them are disti nguishe d form ally) and five fam ili es Amphiastraeida Alloiteau. In: Sokolov, B. S. (ed.), Drevnye (Amphiastraeidae, Carolastraeidae, Intersmiliidae, Donaco- Cnidaria, Izdatelstvo Nauka, Novosibirsk, pp. 238–248. smiliidae, Heterocoeniidae), are de scribed. Four heterocoe- Beauvais, L., 1976. Étude morphologique, taxonomique et phylo- niid specie s (two new) from four genera (one new) are pha- génétique du sous-ordre Amphiastraeida Alloiteau (Madrépo- celoid, thus dis play ing a growth form, gener all y rare in this raires jurassiques). Mémoires de la Société Géologique de fam ily. This sug gests sim i lar, en vi ron men tal de mands for France, n.s., 126: 5–42. phaceloid heterocoeniids and other phaceloid pachythecalii- Beauvais, L., 1981. On the tax on omy of the Me sozoic Madrepo- nes and may sup port phylo gen etic re la tion ships be tween them. raria. Acta Palaeontologica Polonica, 25: 345–360. Beauvais, M., 1977. Le nouveau sous-ordre des Heterocoeniida. Mémoires du Bu reau de Recherches Géologiques et MinÀres, Ac knowl edge ments 89: 271–282. Beauvais, M., 1982. Révision Systématique des Madréporaires These studies were financed by a research grant from the Pol- des couches de Gosau. Travaux du Laboratoire de Paléonto- ish Minis try of Sci ence and Higher Ed u ca tion (No. 2P04D 028 logie des Invértebrés, Paris, 5 vols 1: 1–256; 2: 1–278; 3: 29). The refer ees, Ewa Roniewicz (Warszawa) and Felix Schlag- 1–177; 4 and 5: at las. 324 B. KO£ODZIEJ ET AL.

Betzler, C., Pawellek, T., Abdullah, M. & Kossler, A., 2007. Fa - raires triasiques. Mémoires de la Société Geologique de cies and strati graphic ar chi tec ture of the Korallenoolith For - France, 129: 1–54. mation in north Ger many (Lauensteiner Pass Ith Mountains). Cuif, J.-P., 1981. Microstructure ver sus morphol ogy in the skel e - Sed i men tary Ge ol ogy, 194: 61–75. ton of Trias sic scleractinian corals. Acta Palaeontologica Po- Bontognali, T. R. R., Vasconcelos, C., Warthmann, R. J., Ber- lonica, 25: 361–374. nasconi, S. M., Dupraz, C., Strohmenger, C. J. & McKenzie, Cuif, J.-P., 2010. The con verg ing re sults of microstructural anal y - J. A., 2010. Do lo mite for mation within mi cro bial mats in the sis and mo lec u lar phy log eny: Con se quence for the over all coastal sabkha of Abu Dhabi (United Arab Emirates). Sedi- evo lu tion ary scheme of post-Pa leo zoic cor als and the con cept mentology, 57: 824–844. of Scleractinia. Palaeoworld, 19: 357–367. Bourque, P. A., 1997. Pa leo zoic finely crystal line car bonate mud Cuif, J.-P. & Stolarski, J., 1999. Or i gin and paleobiology of wall- mounds: cryp tic com mu ni ties, petro gen esis and eco log i cal based corals. In: Abstracts of the 8th In ter na tional Sym po sium zonation. Fa cies, 36: 250–253. on Fossil Cnidaria and Porifera, Sendai, Sep tem ber 12-16, Bover-Arnal, T., Salas, R., Martin-Clos as, M., Schlagintweit, F. & 1999. p. 95. Moreno-Bedmar, J. A., 2011. Ex pres sion of an oce anic Delecat, S. & Reitner, J., 2005. Sponge commu ni ties from the anoxic event in a neritic set ting: Lower Aptian coral rub ble Lower Li assic of Adnet (North ern Cal car e ous Alps, Austria). de posits from the west ern Maestrat Ba sin (Ibe rian Chain, Fa cies, 51: 385–404. Spain). Palaios, 26: 18–32. Dietrich, W. O., 1926. Steinkorallen des Malms und der Unter- Bucur, I. I., Hoffmann, M. & Ko³odziej, B., 2005. Late Juras sic– kreide im südlichen Deutsch-Ostafrica. Palaeontographica low er most Creta ceous ben thic al gae from Tethys and Eu ro - (suppl. 7), 1: 43–62. pean plat form: A case study from Poland. Revista EspaÔola Dryer, S. & Logan, A., 1978. Holo cene reefs and sed i ments of de Micropaleontología, 37: 105–129. Cas tle Har bour, Ber muda. Jour nal of Ma rine Re search, 36: Buzcu, S. & BabayiÈit, S., 1998. The oc cur rence of Donacosmilia 399–425. corallina de Fromentel (Up per Ju ras sic) from the Kastamonu Dupraz, C., Reid, P. R., Braissant, O., Decho, A. W., Norman , S. re gion inTurkey. Geo log i cal Bul le tin of Tur key, 41: 99–107. R. & Visscher, P. T., 2009. Pro cesses of car bonate pre cip i ta - [In Turk ish, Eng lish ab stract]. tion in mod ern mi cro bial mats. Earth-Sci ence Re views, 96: Camoin, G., Cabioch, G., Eisenhauer, A., Braga, J.-C., Ham elin, 141–162. B. & Lericolais, G., 2006. En vi ron men tal sig nif i cance of Dupraz, C. & Strasser, A., 2002. Nutri tional modes in coral- microbialites in reef en vi ron ments during the last deglacia- microbialite reefs (Juras sic, Oxfordian, Switzer land): evolu - tion. Sed i men tary Ge ol ogy, 185: 277–295. tion of trophic struc ture as a re sponse to en vi ron mental Camoin, G. F., Gautret, P., Montaggioni, L. F. & Cabioch, G., change. Palaios, 17: 449–471. 1999. Na ture and en vi ron men tal sig nif i cance of microbialites Eliáš, M. & Eliášová, H., 1984. Fa cies and palaeo ge ogra phy of the in Quater nary reefs: the Tahiti para dox. Sed i men tary Ge ol - Juras sic in the west ern part of the Outer Flysch Carpathians in ogy, 60: 15–49. Czecho slo va kia. Sborník Gelogických Vìd, 39: 105–170. Camoin, G. F. & Montaggioni, L. F., 1994. High-en ergy coralgal- Eliášová, H., 1973. Sous-famille Rhipidogyrinae Koby, 1905 (He- stromatolite framework s from Holo cene reefs (Tahiti, French xacorallia) des calcaires de Štramberk Tithonien, Tchécoslo- Poly ne sia). Sedimentology, 41: 655–676. vaquie). Èasopis pro Mineralogii a Geologii, 18: 267–287. Cherchi, A. & Schroeder, R., 2010. Bor ing sponges (Entobia) in Eliášová, H., 1974. Genre nouveau Intersmilia (Hexacorallia) du Me so zoic Lithocodium calcimicrobial crusts. Rivista Italiana Tithonien des calcaires de Štramberk (Tchécoslovaquie). Èa- di Paleontologia e Stratigrafia, 116: 351–356. sopis pro Mineralogii a Geologii, 19: 415–417. Cherchi, A. & Schroeder, R., 2013. Re vi sion of the holotype of Eliášová, H., 1975. Sous ordre Amphiastraeina Alloiteau 1952 Lithocodium aggregatum Elliott,1956 (Lower Cre ta ceous, (Hexacorallia) des calcaires de Štramberk (Tithonien, Tché- Iraq): new in ter pre ta tion as sponge–calcimicrobe con sor tium. coslovaquie). Èasopis pro Mineralogii a Geologii, 20: 1–23. Fa cies, 59: 49–57. Eliášová, H., 1976a. Nou velle famille du sous-ordre Amphiastra- Cheshitev, G., Kânèev, I., Vâlkov, V., Marinova, R., Shiljafova, eina, 1952 (Hexacoralla), Tithonien de Tchécoslovaquie. J., Russeva, M. & Iliev, K., 1989. Geo log i cal Map of P.R. Vìstník Ústøedního Ústavu Geologického, 51: 177–178. Bul garia, 1:500 000. Com mit tee of Ge ol ogy, De part ment of Eliášová, H., 1976b. Les coraux de l’orde Hexanthiniaria Monta- Geo phys i cal Pros pect ing and Geo log i cal Map ping, So fia. naro-Gallitelli, 1975, Zoantharia de Blanville, 1830, dans les Ciborowski, T. & Ko³odziej, B., 2001. Tithonian–Berriasian cal- calcaires de Štramberk (Tithonien, Tchécoslovaquie). Vìstník pionellids from the Štramberk-type lime stones, Pol ish Flysch Ústøedního Ústavu Geologického, 51: 357–366. Carpathians. Geologica Carpathica, 52: 343–348. Eliášová, H., 1978. La rédefinition de l’orde Hexanthiniaria Mon- Coates, A. G. & Jack son, J. B. C., 1985. Mor pholog i cal themes in tanaro Gallitelli, 1975 (Zoantharia). Vestník Ústredního the evo lu tion of clonal and aclonal ma rine in ver te brates. In: Ústavu Geologického, 53, 89–101. Jack son, J. B. C., Buss, L. W. I. & Cook, R. E. (eds), Bi ol ogy Eliášová, H., 1981. The Tithonian reef of Štramberk Lime stone and Evo lu tion of Co lo nial Or gan isms. Yale Uni ver sity Press, (Czecho slo va kia, West Carpathians). Èasopis pro Minera- New Haven, pp. 67–106. logii a Geologii, 26: 113–124. Coates, A. G. & Oli ver, W. A., Jr., 1973. Coloniality in zoan- Ezaki, Y., 2004. Paleoecological and phylo gen etic impli ca tions of tharian cor als. In: Boardman, R.S., Cheetham, A. H. & Ol i - asex ual re pro duc tion in the Perm ian scleractiniamorph Numi- ver, W. A., Jr. (eds), An i mal Col o nies De vel op ment and Fun- diaphyllum. Jour nal of Pa le on tol ogy, 75: 84–97. ction Through Time, 3–27. Stroudsburg, Penn syl va nia. Fedorowski, J., 1980. Some as pects of coloniality in cor als. Acta Cuif, J.-P., 1975. CaractÀres morphologiques, microstructuraux et Palaeontologica Polonica, 25: 429–437. systématiques des Pachythecalidae nou velle famille de Ma- Fedorowski, J., 1997. Rugosa and Scleractinia – a commen tary dréporaires Trassiques. Géobios, 8: 157–180. meth ods of phylo gen etic re con struc tions. Acta Palaeonto- Cuif, J.-P., 1977. Argu ments pour une re la tion phylétique en tre les logica Polonica, 42: 446–456. Madreporaires paléozoÎques et ceux du Trias. Im pli ca tions Fenerci-Masse, M., 2006. Les communautés ´ rudistes du Crétacé systématiques de l’analyse microstructurale des Madrépo- inférieur de la marge ouest européenne de la Téthys. Un pub - PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 325

lished PhD the sis, Université de Pro vence (Aix-Mar seille I), Huck, S., Rameil, N., Korbar, T., Heimhofer, U., Wieczorek, T. D. 436 pp. & Immenhauser, A., 2010. Lat i tu di nally dif fer ent re sponses Fenerci-Masse, M., Masse, J.-P., Ko³odziej, B., Ivanov, M. & of Tethyan shoal-water carbon ate systems to the Early Aptian Idakieva V., 2011. Mathesia darderi (Astre) (Bivalvia, Hip- oceanic anoxic event (OAE 1a). Sedimentology, 57: 1585– puritoidea, Monopleuridae): mor pho log i cal, biogeographical 1614. and eco log i cal changes in the Med i ter ra nean do main dur ing Idakieva, V., 2002. Tax on omy of Lower Cre ta ceous cor als from the late Barremian–Albian. Cre ta ceous Re search, 32: 407– Lovech Urgonian Group (Lower Cre ta ceous) in Cen tral Fore- 421. Bal kan, Bul garia. Annuaire de l’Universite de So fia “St. Kli- Flügel, E., 2010. Microfacies of Carbon ate Rocks. Anal y sis, In ter - ment Ohridski”, Faculte de Géologie et Géographie, 95: 5– pre ta tion and Ap pli ca tion. Springer, Berlin, 984 pp. 16. Fürsich, F. T., Pandey, D. K., Oschmann, W., Jaitly, A. K. & Idakieva, V., 2003. Dolnokredni skleraktinii v chast ot Tsentralnia Singh, I. B., 1994. Ecol ogy and adap tive strat e gies of cor als Predbalkan (taksonomia i organogenni postroiki). Diserta- in un fa vour able en vi ron ments: Ex am ples from the Mid dle Ju- tsia, Sofiiski Universitet “Sveti Kliment Ohridski”, 327 pp. ras sic of the Kachchh Ba sin, West ern In dia. Neues Jahrbuch [In Bul gar ian]. für Geologie und Paläontologie – Abhandlungen, 194: 269– Idakieva, V., 2007. Tax on omy of scleractinian cor als from the 303. Barremian–Lower Aptian of Cen tral North Bul garia (Lovech Geister, J., 1995. Sclerochronology of Juras sic cor als: geo log i cal Urgonian Group). Annuaire de l’Universite de So fia “St. Kli- ap pli ca tions. Pub li ca tions du Ser vice Géologique du Lux em - ment Ohridski”, Faculte de Géologie et Géographie, 100: bourg, 29: 150–152. 29–66. Geyer, O. F., 1955. Beiträge zur Korallen-Fauna des Stramberger Idakieva, V., 2008. Tax on omy of scleractinian cor als from the Tithon. Paläontologische Zeitschrift, 29: 177–216. Barremian–Lower Aptian of Cen tral North Bul garia (Lovech Gili, E., Masse, J.-P. & Skelton, P. W., 1995a. Rudists as gre gar i - Urgonian Group). Annuaire de l’Universite de So fia “St. Kli- ous sed i ment-dwell ers, not reef-build ers, on Cre ta ceous car - ment Ohridski”, Faculte de Géologie et Géographie, 101: bon ate plat forms. Palaeo ge ogra phy, Palaeoclimatology, Pa- 5–32. laeoecology, 118: 245–267. Idakieva, V. & Ivanov, M., 2002. Coral build ups in the Smochan Gili, E., Skelton, P. W., Vicens, E. & Obrador, A., 1995b. Cor als Forma tion (Urgonian, Lower Cre ta ceous) around Lovech to rudists – an en vi ron men tally in duced as sem blage suc ces - (Cen tral North Bul garia). Annuaire de l’Universite de So fia sion. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, “St. Kliment Ohridski”, Faculte de Géologie et Géographie, 119: 127–136. 95: 31–46. [In Bul gar ian, Eng lish ab stract]. Götz, S., 2003. Bi otic in ter ac tion and synecology in a Late Cre ta - Ilcheva, A. & Motchurova-Dekova, N., 2011. Cat a logue of type ceous coral-rudist biostrome of south east ern Spain. Palaeo- collec tions of Early Creta ceous corals (Scleractinia, Antho- ge og ra phy, Palaeoclimatology, Palaeo ec ol ogy, 193: 125–138. zoa) at the Na tional Mu seum of Natu ral His tory, So fia. Re - Guilbault, J.-P., Krautter, M., Conway, K. W. & Barrie, J. V., view of the Bul gar ian Geo log i cal So ci ety, 72: 129–140. 2006. Mod ern foraminifera at tached to Hexactinellid sponge Immenhauser, A., Hillgärtner, H. & van Bentum, E., 2005. Mi cro - meshwork on the West Ca na dian Shelf: Com par i son with Ju- bial-foraminiferal ep i sodes in the Early Aptian of the sou- ras sic coun ter parts from Eu rope. Palaeontologia Electronica, thern Tethyan mar gin: eco log i cal sig nif i cance and pos si ble re - 9: 1–48. la tion to oce anic anoxic event 1a. Sedimentology, 52: 77– 99. Hallock, P., 1988. The role of nu tri ent avail abil ity in bioerosion: Insalaco, E., 1998. The de scrip tive no men cla ture and clas si fi ca - con se quences to car bon ate build ups. Palaeo ge ogra phy, Pala- tion of growth fabrics in fossil scleractinian reefs. Sed i men - eoclimatology, Palaeo ec ol ogy, 63: 275–291. tary Ge ol ogy, 118: 159–186. Heindel, K., Birgel, D., Brun ner, B., Thiel, V., Westphal, H., Insalaco, E., Hal lam, A. & Rosen, B., 1997. Oxfordian (Up per Ju - Gischler, E., Ziegenbalg, S. B., Cabioch, G., Sjövall, P. & rassic) coral reefs in Western Europe: reef types and concep - Peckmann, J., 2012. Post-gla cial microbialite for mation in tual depositional model. Sedimentology, 44: 707–734. coral reefs of the Pacific, Atlan tic, and In dian Oceans. Chem i - Ivanov, M., 1995. Stra tig ra phy of Barremian and Aptian Stage in cal Ge ol ogy, 304–305: 117–130. the south ern part of Moesian plat form in Cen tral North Bul - Helm, C., 2005. Riffe und fazielle Entwicklung der florigemma- garia. Re view of the Bul gar ian Geo log i cal So ci ety, 56: 37–46. Bank (Korallenoolith, Oxfordium) im Süntel und östlichen [In Bul gar ian, Eng lish sum mary]. Wesergebirge (NW-Deutschland). Geologische Beiträge Ivanov, M. & Idakieva, V., 2009. Up per Barremian ammonite Hannover, 7: 3–339. biostratigraphy in Cen tral-North and North east ern Bul garia. Helm, C. & Schülke, I., 2006. Patch reef de vel op ment in the In: Pro ceed ings of Na tional Con fer ence Geosciences 2009. florigemma-Bank Member (Oxfordian) from the Deister Mts Bul gar ian Geo log i cal So ci ety, So fia, pp. 55–56. [In Bul gar - (NW ): a type ex ample for Late Juras sic coral ian, Eng lish summary ]. thrombolite thickets. Fa cies, 52: 441–467. Ivanov, M. & Nikolov, T., 1995. New data on the ammonitic oc - Houša, V., 1990. Stra tig ra phy and calpionellid zonation of the cur rence in the Lovec Urgonian Group (Lower Cre ta ceous) of Štramberk Lime stone and as so ci ated Lower Cre ta ceous beds. the Cen tral Fore-Bal kan (Bul garia). Comptes Rendus de Atti del secondo convegno internazionale Fossili, Evoluzione, l’Académie bulgare des Sci ences, 48: 59–61. Am bi ent, Pergola 25-30 ottobre 1987, pp. 365–370. Ivanova, D. & Ko³odziej, B., 2010. Late Ju ras sic–Early Cre ta - Höfling, R., 1997. Eine erweiterte Riff-Typologie und ihre An- ceous foraminifera from Štramberk-type lime stones, Pol ish wendung auf kretazische Biokonstruktionen. Bayerische Outer Carpathians. Studia Universitatis Babeº-Bolyai, Geo- Akademie der Wissenschaften. Mathematisch-naturwissen- logia, 55: 3–31. schaftliche Klasse, Abhandlungen, 169: 1–127. Ivanova, D., Ko³odziej, B., Koleva-Rekalova, E. & Roniewicz, E., Huck, S., Heimhofer, U. & Immenhauser, A., 2012. Early Aptian 2008. Oxfordian to Valanginian palaeoenvironmental evo lu - al gal bloom in a neritic proto–North Atlan tic setting: Harbin - tion on the West ern Moesian Car bonate Plat form: A case ger of global change re lated to OAE 1a? Geo log i cal So ci ety study from SW Bul garia. Annales Societatis Geologorum Po- of Amer ica Bul le tin, 124: 1810–1825. loniae, 78: 65–90. 326 B. KO£ODZIEJ ET AL.

Kennard, J. M. & James, N. P., 1986. Thrombolites and stroma- (eds), 10th In ter na tional Sym po sium on Fos sil Cnidaria and tolites: two distinct types of micro bial structures. Palaios, 1: Porifera, Sankt Pe ters burg, Au gust 12–16, 2007, Ab stracts. 492–503. A.P. Karpinsky Rus sian Geo log i cal Re search In sti tute, St. Kershaw, S., 1994. Clas si fi ca tion and geo log i cal sig nif i cance of Pe ters burg, pp. 54–55. biostromes. Fa cies, 31: 81–92. Ko³odziej, B., Idakieva, V., Ivanov, M. & Zlatarski, V., 2011c. Khrischev, K., 1966. Lithostratigraphy of the Lovech Urgonian Clear- and turbid-w ater coral as sem blages from Barremian– Group. Bulle tin of the “Strachimir Dimitrov” Insti tute of Ge- Lower Aptian of Bulgaria. In: Aretz, M., Declculée, S., ol ogy, 15: 231–240. [In Bul gar ian, Eng lish summary ]. Denayer, J. & Poty, E. (eds), 11th Sym po sium on Fossil Khrischev, K., 1992. Lower Cre ta ceous. In: Khrischev, K. & Cnidaria and Sponges, LiÀge, Au gust 19–29, 2011, Ab stracts. Nedyalkova, L. (eds), Ex pla na tion to Geo log i cal Map of N. Kölner Fo rum für Geologie Paläontontologie, 119: 83–85. R. Bul garia, 1:000 000, Sheet , Pub lish ing House Kuzmicheva, E. I., 1980. Cor als. In: Chernov, V. G., Yanin, B. T. Bul gar ian Acad emy of Sci ences, So fia, pp. 20–33. [In Bul - & Golovinova, M. A. (eds), Urgonian sedi ments of the So viet gar ian, Eng lish sum mary]. Carpathians. Nauka, Moskva, pp. 90–108. [In Rus sian]. Khrischev, K. & Bakalova, D., 1974. Dis tri bution of the al gae in LathuiliÀre, B., 1989. Isastrea, polypier branchu! Comptes Rendus the Emen Lime stone Forma tion (the Lovech Urgonian de l’Académie des Sciences, Paris, 308, Serie 2: 887–892. Group). Bul le tin of the Geo log i cal In sti tute, se ries Stra tig ra- LathuiliÀre, B., 1996. Itinéraires astogeniques chez des coraux phy and Li thol ogy, Bul garian Acad emy of Sci ences, 23: 65– simples et coloniaux montlivaltiides du Bajocien de France. 89. Géobios, 29: 577–603. Kiessling, W., 2009. Geo logic and biologic controls on the evolu- LathuiliÀre, B., 2012a. Pleurophyllia. In: Cairns, S. D., Baron- tion of reefs. An nual Re view of Ecol ogy, Evo lu tion, and Sys - Szabo, R., Budd, A. F., LathuiliÀre, B., Roniewicz, E., Sto- tem at ics, 40: 173–192. larski, J., and John son, K. G. (eds), Corallosphere. http:// Kiessling, W., Flügel, E. & Golonka, J., eds, 2002. Phanerozoic corallosphere.org [01.12.2012] Reef Patterns . So ci ety of Eco nomic Pa le on tol ogy and Min er - LathuiliÀre, B., 2012b. Aulastrea. In: Cairns, S. D., Baron-Szabo, al ogy Special Pub li ca tions, vol. 72, Tulsa, OK, 775 pp. R., Budd, A. F., LathuiliÀre, B., Roniewicz, E., Stolarski, J., Kiessling, W., Roniewicz, E., Villier, L., Léonide, P. & Struck, U., and John son, K. G. (eds), Corallosphere. http://corallo- 2009. An early Hettangian coral reef in south ern France: Im - sphere.org [01.12.2012] plica tions for the end-Trias sic reef crisis. Palaios, 24: 657– Lebanidze, Z. M., 1991. Pozdnejurskie korally zapadnoj Gruzi 671. (Abhaziâ). Trudy, Geologièeskij Institut, Akademiâ Nauk Koby, E., 1888. Monographie des polypiers jurassique de la Suisse. Gruzii, Novaâ Seriâ, 105: 1–64. [In Rus sian]. Memoires de la SociÀtÀ PalÀontologique Suisse, 25: 401–456. Leinfelder, R. R., 1993. Up per Ju ras sic reef types and con trol ling Ko³odziej, B., 1995. Microstructure and tax onomy of Amphia- fac tors – a pre lim i nary re port. Profil, 5: 1–45. straeina (Scleractinia). Annales Societatis Geologorum Polo- Leinfelder, R. R., 2001. Ju ras sic reef eco sys tems. In: Stan ley, G. niae, 65: 1–17. D., Jr. (ed.), The History and Sedimentology of An cient Reef Ko³odziej, B., 1997. Bor ing Foraminifera from exotics of Štram- Sys tems. Kluwer Ac a demic/Ple num Pub lish ers, New York, berk-type lime stones (Tithonian–lower Berriasian, Pol ish pp. 251–302. Carpathians). Annales Societatis Geologorum Poloniae, 67: Leinfelder, R. R., Krautter, M., Laternser, R., Nose, M., Schmid, 249–256. G., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Ko³odziej, B., 2003. Scleractinian cor als of suborders Pachytheca- Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J. H., Reinhold, liina and Rhipidogyrina (Scleractinia): dis cus sion on simi lar i - C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., ties and de scrip tion of spe cies from Štramberk-type lime - Menges, G. & Luterbacher, H., 1994. The or i gin of Juras sic stones, Pol ish Outer Carpathians. Annales Societatis Geolo- reefs: cur rent re search de vel op ments and re sults. Fa cies, 31: gorum Poloniae, 73: 193–217. 1–56. Ko³odziej, B., Bucur, I. I., Lazar, D. & S²s²ran, E., 2011a. Barre- Leinfelder, R. R., Nose, M., Schmid, D. U. & Werner, W., 1993. mian–Aptian coral facies from Ro mania. In: Aretz, M., Dec- Mi cro bial crusts of the Late Ju ras sic: Com po si tion, palaeo - lculée, S., Denayer, J. & Poty, E. (eds), 11th Sym po sium on eco logi cal sig nif i cance and im por tance in reef con struc tion. Fos sil Cnidaria and Sponges, LiÀge, Au gust 19-29, 2011, Ab - Fa cies, 29: 195–230. stracts. Kölner Fo rum für Geologie Paläontontologie, 119: Leinfelder, R. R, Schmid, D. U., Nose, M. & Werner, W., 2002. 77–79. Juras sic reef pat terns – the ex pres sion of a chang ing globe. In: Ko³odziej, B., Idakieva, V. & Ivanov, M., 2011b. Unique Early Kiessling, W., Flügel, E. & Golonka, J. (eds), Phanerozoic Cre ta ceous de vel op ment of phaceloid pachythecaliines (Scle- Reef Pat terns. So ci ety of Eco nomic Pa le on tol o gist and Min - ractinia?, Hexanthiniaria?): Upper Barremian, Bulgaria. In: er al o gists, Spe cial Pub li ca tion, 72: 465–520. Aretz, M., Declculée, S., Denayer, J. & Poty, E. (eds), 11th Löser, H., 1998. Cre ta ceous cor als – state of knowl edge and cur - Sym po sium on Fossil Cnidaria and Sponges, LiÀge, Au gust rent research. Zentralblatt für Geologie und Paläontologie, 1: 19–29, 2011, Ab stracts. Kölner Fo rum für Geologie Paläon- 1475–1485. tontologie, 119: 80–82. Löser, H., 2008a. Re marks on the ge nus Hexasmilia (Scleractinia; Ko³odziej, B., Idakieva, V., Ivanov, M. & Masse, J.-P., 2009. Un - Cre ta ceous) and de scrip tion of a new spe cies from the Aptian usual as soci a tion of corals (Pachythecaliina) and small rudists of Spain. Neues Jahrbuch für Geologie und Paläontologie, from the Upper Barremian, Bul garia. In: Hart, M. B (ed.), 8 th Abhandlungen, 250: 45–52. In ter na tional Sym po sium on the Cre ta ceous Sys tem, Plym - Löser, H., 2008b. A new soli tary coral ge nus of the suborder outh, 6–12 Sep tem ber, 2009, Ab stracts. Univer sity of Plym - Heterocoeniina (Scleractinia) from the Aptian (Creta ceous) outh, Plymouth, pp. 160–161. of Spain. Paläontologische Zeitschrift, 82: 279–284. Ko³odziej, B., Idakieva, V., Ivanov, M. & Zlatarski, V., 2007. Löser, H., 2008c. Early Cre taceous coral faunas from East Africa Coral growth forms and growth-in ter rup tions in tur bid-wa ter (Tan za nia, Kenya; Late Valanginian–Aptian) and re vi sion of bioconstructions: ex amples from Lower Cre ta ceous, Bul - the Dietrich collec tion (Berlin, Germany). Palaeontogra- garia. In: Kossovaya, O., Somerville, I. & Evdokimova, I. phica A, 285: 23–75. PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 327

Löser, H., 2009. Fossile Korallen aus Jura und Kreide. Aufbau, Melnikova, G. K. & Roniewicz, E., 2012. Early Juras sic cor als of Klassifikation, Bestimmung und Fundmöglichkeiten. CPress the Pamir Moun tains – a new Trias sic–Ju rassic transi tional Verlag, Dresden, 206 pp. fauna. Geologica Belgica, 15: 376–38. Löser, H., 2010. Re vi sion of the Cre ta ceous coral ge nus Tiara- Minkovska, V., 1996. Microfacies of the Emen For mation (Lo- smilia Wells, 1932 (Scleractinia). Neues Jahrbuch für Geolo- vech Urgonian Group, Lower Cre ta ceous, Fore-Bal kan). gie und Paläontologie, Abhandlungen, 258: 157–165. Geologica Balcanica, 26: 21–38. Löser, H., 2012. Re vi sion of the Amphiastraeidae from the Monti Minkovska, V., PeybernÀs, B., Nikolov, T. & Ivanov, M., 2002. d’Ocre area (Scleractinia; Early Creta ceous) . Rivista Italiana Paleogeographic re con struc tion of a seg ment of the North- di Paleontologia e Stratigrafia, 118: 461–502. Tethyan mar gin in Bul garia from Barremian to Albian. Eclo- Löser, H., Barattolo, F., Badia, S. C., Chikhi-Aouimeur, F., Dhondt, gae Geologicae Helvetiae, 95: 183–195. A., Erlich, R. N., Fözy, I., Geister, J., Hiss, M., Ko³odziej, B., Montanaro Gallitelli, E., 1974. Microstructure and septal ar range - Leloux, J., Lewy, Z., Mi nor, K. P., Mitchell, S., Moosleitner, ment in a primi tive Trias sic coral. Bollettino della Societ´ G., Peza, L., Remane, J., Romana, R., Sikharulidze, G. Y., Paleontologica Italiana, 12: 8–22. Sinnyovski, D., Steuber, T., Tröger, K-A., Turnšek, D., Montanaro Gallitelli, E., 1975. Hexanthiniaria, a new order of Vecchio, E., Vilella i Puig, J. & Zítt, J., 2002. Cat a logue of Zoantharia (Anthozoa, Coelenterata). Bolletino della Societ´ Cre ta ceous Cor als, Vol. 2, List of Cita tions . CPress Verlag, Paleontologica Italiana, 14: 21–25. Dresden, 784 pp. Morycowa, E., 1964a. Hexacoralla des couches de Grodziszcze Löser, H., Castro, J. M. & Nieto, L., 2011. An ex otic Late Albian (Neocomien Carpathes). Acta Palaeontologica Polonica, 9: coral fauna from the Prebetic Platform (Betic Exter nal Zone, 1–114. South Spain). In: Aretz, M., Declculée, S., Denayer, J. & Morycowa, E., 1964b. Polypiers de la klippe de Kruhel Wielki Poty, E. (eds), 11th Sym posium on Fossil Cnidaria and Spon- prÀs de Przemyœl (Tithonique, supérieur, Carpathes polonai- ges, LiÀge, Au gust 19-29, 2011, Ab stracts. Kölner Fo rum für ses). Rocznik Polskiego Towarzystwa Geologicznego, 34: Geologie Paläontontologie, 119: 99. 489–508. Löser, H., Cas tro, J. M. & Nieto, L., in press. Late Albian Sclerac- Morycowa, E., 1968. Sur les calcaires exotique a Madréporaires tinian corals from the Prebetic Zone (SE Spain). Palaeonto- dans les Lac Ro¿nów (Carpathes po lo naises de Flysch). Rocz- graphica A. nik Polskiego Towarzystwa Geologicznego, 38: 19–32. Löser, H., Stemann, T. A. & Mitchell, S. F., 2009. Oldest Scle- Morycowa, E., 1971. Hexacorallia et Octocorallia du Crétacé ractinian fauna from Jamaica (Hauterivian, Benbow Inlier). inférieur de Rarau (Carpathes orientales roumaines). Acta Jour nal of Pa le on tol ogy, 83: 333–349. Palaeontologica Polonica, 16: 1–142. Mar shall, A. T., 1996. Cal ci fi ca tion in hermatypic and aherma- Morycowa, E., 1974. Hexacorallia d’un bloc exotique de calcaire typic cor als. Sci ence, 271: 637–639. a WoŸniki pres Wadowice (Carpathes po lo naises occiden- Martin-Garin, B., LathuiliÀre, B. & Geister, J., 2012. The shift ing tales). Acta Geologica Polonica, 24: 457–484. biogeography of reef cor als dur ing the Oxfordian (Late Ju ras - Morycowa, E., 1988. Klippes of Kruhel Wielki. In: Kotlarczyk, J. sic). A clima tic control? Palaeo ge ogra phy, Palaeoclimato- (ed.), Przewodnik LIX Zjazdu Polskiego Towarzystwa Geo- logy, Palaeo ec ol ogy, 365: 136–153. logicznego, Przemyœl, 16–18.09.1988, Wydawnictwo AGH, Masse, J.-P., 1989. Re la tions en tre mod i fi ca tions biologiques et Kraków, pp. 259–266. [In Pol ish]. phénomÀnes géologiques sur les plates-formes carbonatées du Morycowa, E., 2012. Cor als from the Tithonian car bon ate com - domaine périméditerranéen au pas sage Bédoulien Gargasien. plex in the D¹browa Tarnowska–Szczucin area (Pol ish Car- Géobios, Mémoire Spécial, 11: 279–294. pathian Fore land). Annales Societatis Geologorum Poloniae, Masse, J.-P. & Fenerci-Masse, M., 2010. Mathesia Mainelli (Hip- 82: 1–38. puritoidea, Monopleuridae) from the late Aptian-Albian of Morycowa, E. & Decrouez, D., 2006. Early Aptian scleractinian the Med i ter ra nean re gion, a re vi sion. Turk ish Jour nal of cor als from the Up per Schrattenkalk of Hergiswil (Lu cerne Earth Sci ences, 19: 543–556. region, Helvetic Zone of central Switzer land). Re vue de Masse, J.-P. & Philip, J., 1981. Cre ta ceous coral-rudist build ups of Paléobiologie, 25: 791–838. France. In: Toomey, D. F. (ed.), Eu ro pean Reef Mod els. So ci - Morycowa, E., Decrouez, D. & Schenk, K., 1994. Présence de ety of Eco nomic Pa le on tol ogy and Min er al ogy Spe cial Pub li - Latusastraea exiguis (Scléractiniaire) dans le Schrattenkalk ca tion, 30: 399–426. du Rawil (Helvétique, Suisse) et quelques sur les espÀces Mastandrea, A., Perri, E., Russo, F., Spadafora, A. & Tucker, M., crétacés du genere Latusastraea d’Orbigny, 1849. Annales 2006. Mi cro bial pri mary dolo mite from a Norian car bon ate Societatis Geologorum Poloniae, 64: 15–22. plat form: north ern Calabria, south ern It aly. Sedimentology, Morycowa, E. & Lefeld, J., 1966. Les Madréporaires des calcaires 53: 465–480. urgoniens de la série haut-tatrique dans la Tatra Po lo naise. Matyszkiewicz, J., Kochman, A. & Duœ, A., 2012. In flu ence of lo - Rocznik Polskiego Towarzystwa Geologicznego, 36: 519– cal sed i men tary con di tions on de vel op ment of microbialites 542. [In Pol ish, French summary ]. in the Oxfordian car bon ate build ups from the southern part of Morycowa, E. & Marcopoulou-Diacantoni, A., 1997. Cre ta ceous the Kraków–Czêstochowa Upland (South Po land). Sed i men - scleractinian corals from the Parnassos area (central Greece) tary Ge ol ogy, 263–264: 109–132. (Pre lim i nary note). Bul le tin of the Geo log i cal So ci ety of Gre- Maurin, A. F., Bernet-Rollande, M. C., Monty, C. L. V. & Nazhat, ece, 30 [for 1994]: 249–273. S., 1985. The micro bial na ture of bacinellid textures. Sedi- Morycowa, E. & Marcopoulou-Diacantoni, A., 2002. Albian cor - mentological bear ings. In: 9th Eu ro pean Re gional Meet ing of als from the Subpelagonian Zone of Cen tral Greece (Agro- Sedimentology, Leiden, Ab stracts. pp. 285–287. stylia, Parnassos Region). Annales Societatis Geologorum Melnikova, G. K., 1975. Late Trias sic Scleractinians of the South- Poloniae, 72: 1–65. West ern Pamirs. Donish, Dushanbe, 234 pp. [In Russian]. Morycowa, E. & Masse, J.-P., 1998. Les scléractiniaires du Bar- Melnikova, G. K. & Roniewicz, E., 1976. Con tri bu tion to the sys- rémien–Aptien inférieur de Provence (SE de la France). Géo- temat ics and phy logeny of Amphiastraeina (Scleractinia). bios, 31: 725–766. Acta Paleontologica Polonica, 21: 97–114. Muscatine, L., Goiran, C., Land, L., Jaubert, J., Cuif, J.-P. & 328 B. KO£ODZIEJ ET AL.

Allemand, D., 2005. Sta ble iso topes (d13C and d15N) of or- nia). Fa cies, 59: 19–48. ganic ma trix from coral skel e ton. Proceed ings of the Na tional Poty, E., 1981. Recherches sur les Tétracoralliaires et les Hétéro- Acad emy of Sci ences of the United States of America , 102: coralliaires du Viséen de la Belgique. Mededelingen Rijks 1525–1530. Geologische Dienst, N.S., 35: 1–161. Neuweiler, F., 1993. De vel opment of Albian microbialites and Rameil, N., Immenhauser, A., Warrlich, G., Hillgärtner, H. & microbialite reefs at marginal platform areas of the Vasco- Droste, H. J., 2010. Morpho log i cal pat terns of Aptian Cantabrian Ba sin (Soba Reef Area, Cantabria, N. Spain). Fa- Lithocodium–Bacinella geobodies: re la tion to en vi ron ment cies, 29: 231–250. and scale. Sedimentology, 57: 883–911. Neuweiler, F., 1995. Dynamische Sedimentationsvorgänge, Dia- Reid, R. P., 1987. Nonskeletal peloidal pre cip i tates in Up per Tri - genese und Biofazies unterkretazischer Plattformränder (Apt/ as sic reefs, Yu kon Ter ri tory (Can ada). Jour nal of Sedimen- Alb; Soba Re gion, Prov. Cantabria, N-Spanien). Ber liner tary Pe trol ogy, 57: 893–900. Geowissenschaftliche Abhandlungen, E17: 1–235. Reitner, J., 1993. Modern cryp tic microbialite/metazoan-facies Neuweiler, F., Gautret, P., Thiel, V., Longe, L., Michae lis, W. & from Liz ard Island (Great Bar rier Reef, Aus tra lia) – for ma- Reitner, J., 1999. Pe trol ogy of Lower Cre ta ceous car bonate tion and con cepts. Fa cies, 29: 3–40. mud mounds (Albian, N. Spain): in sights into organomine- Reitner, J. & Neuweiler, F., 1995. Mud mounds: a poly gen etic spec - ralic de pos its of the geo log i cal re cord. Sedimentology, 46: trum of fine-grained car bon ate buildups. Fa cies, 32: 1–70. 837–859. Reolid, M., 2007. Taphonomy of the Oxfordian-Low er most Kim- Neuweiler, F. and Reitner, J., 1992. Karbonatbänke mit Lithoco- meridgian si li ceous sponges of the Prebetic Zone (South ern dium aggregatum Elliott/Bacinella irregularis Radoicic. Ber- Iberia). Jour nal of Taphonomy, 5: 71–90. liner Geowissenschaftliche Abhandlungen, E3: 273–293. Ride, W. D. L., Cogger, H. G., Dupuis, C., Kraus, O., Minelli, A., Nikolov, T., 1969. On the age of the urgonian sed i ments in the Thompson, F. C. & Tubbs, P. K., eds, 1999. In ter na tional Fore-Bal kan. Bulle tin Géologique Institut Bulgare de l’Aca- Code of Zoo log i cal No men cla ture. In ter na tional Com mis sion démie des Sci ences, Série Stratigraphie-Lithologie, 18: 73– 82. on Zoo log i cal No men cla ture, Lon don, 306 pp. Nikolov, T., Ruskova, N., Ivanov, M. & Minkovska, V., 2007. Rid ing, R., 2000. Mi cro bial car bon ates: the geo log i cal re cord of Main fea tures of the Lower Cre ta ceous in Bul garia. Comptes cal ci fied bac te rial-al gal mats and biofilms. Sedimentology, 47 Rendus de l’Academie Bulgare des Sci ences, 60: 407–418. (Sup ple ment 1): 179–214. Nudds, J. R., 1979. Coloniality in Lithostrotionidae (Rugosa). In: Rid ing, R., 2002. Struc ture and com posi tion of or ganic reefs and Larwood, G. & Rosen, B. R. (eds), Bi ol ogy and Sys tem at ics of car bon ate mud mounds: con cepts and cat e go ries. Earth-Sci - Co lo nial Or gan isms. Ac a demic Press, Lon don, pp. 155–171. ence Reviews , 58: 163–231. Ogilvie, M. M., 1897. Die Korallen der Stramberger Schichten. Rid ing, R. & Tomás, S., 2006. Stromatolite reef crusts, Early Cre - Palaeontographica, A, (Suppl. 2), 7: 73–284. ta ceous, Spain: bac te rial or i gin of in situ-pre cip i tated peloid Ol i ver, W. A., Jr., 1980a. On the re la tion ship be tween Rugosa and microspar? Sedimentology, 53: 23–34. Scleractinia (Sum mary). Acta Palaeontologica Polonica, 25: Romano, S. L. & Palumbi, S. R., 1996. Evolu tion of scleractinian 395–402. cor als in ferred from mo lec u lar sys tem at ics. Sci ence, 271: Ol i ver, W. A., Jr., 1980b. The re la tion ship of the scleractinian cor - 640–642. als to the rugose cor als. Paleobiology, 6: 146–160. Roniewicz, E., 1966. Les Madréporaires du Jurassique supérieur Ol i ver, W. A., Jr., 1996. Or i gin and re la tion ships of Paleo zoic de la bordure des Monts de Sainte-Croix, Pologne. Acta Pala- coral groups and the or i gin of the Scleractinia. Paleontolo- eontologica Polonica, 11: 157–264. gical So ci ety Pa pers, 1: 107–134. Roniewicz, E., 1976. Les Scléractiniaires du Jurassique supérieur Olivier, N. & Boyet, M., 2006. Rare earth and trace ele ments of de la Dobrogea Centrale, Roumanie. Palaeontologia Polo- microbia-lites in Up per Ju ras sic coral- and sponge-microbia- nica, 34: 17–121. lite reefs. Chem i cal Ge ol ogy, 230: 105–123. Roniewicz, E., 1989. Trias sic scleractinian corals of the Zlambach Olivier, N., Carpentier, C., Martin-Garin. B., LathuiliÀre, B., Gail- Beds, north ern Cal car e ous Alps, Aus tria. Österreichische lard, C., Ferry, S., Hantzpergue, P., Gaillard, C. & Geister, J., Akademie der Wissenschaften, Wien, 126: 1–152. 2004. Coral-microbialite reefs in pure car bon ate ver sus mixed Roniewicz, E., 2008. Kimmeridgian–Valanginian reef cor als from car bon ate-siliciclastic en vi ron ments: the ex am ple of the Pa- the west ern Moesian Car bonate Plat form from Bulgaria. gny-sur-Meuse sec tion (Up per Ju ras sic, north east ern France). Annales Societatis Geologorum Poloniae, 78: 91–134. Fa cies, 50: 229–255. Roniewicz, E., Mandl, G. W., Ebli, O. & Lobitzer, H., 2007. Early Olivier, N., Colombié, C., Pittet, B. & LathuiliÀre, B., 2011. Mi - Norian scleractinian corals and microfacies data of the Dach- cro bial car bonates and cor als on the mar ginal French Jura stein Limestone of Feisterscharte, south ern Dachstein Plateau plat form (Late Oxfordian, Molinges sec tion). Fa cies, 57: (North ern Cal car e ous Alps, Aus tria). Jahrbuch der Geolo- 469–492. gischen Bundesanstalt, 147: 577–594. Olivier, N., Hantzpergue, P., Gaillard, C., Pittet, B., Leinfelder, R., Roniewicz, E. & Morycowa, E., 1993. Evo lu tion of the Sclerac- Schmid, D. U. & Werner, W., 2003. Microbialite mor phol - tinia in the light of microstructural data. Cou rier Forschung- ogy, struc ture and growth: a model of the Up per Ju ras sic reefs institut Senckenberg, 164: 233–240. of the Chay Penin sula (west ern France). Palaeo ge ogra phy, Roniewicz, E. & Stolarski, J., 1999. Evolu tion ary trends in the Palaeoclimatology, Palaeo ec ol ogy, 193: 383–404. epithecate scleractinian corals. Acta Palaeontologica Polo- PeybernÀs, B., Ciszak, R., Nikolov, T., Ivanov, M. & Stoykova, nica, 44: 131–166. K., 1998. Géometrie des for mations et des séquences de dépôt Roniewicz, E. & Stolarski, J., 2001. Tri as sic roots of amphia- éocrétacées (intervalle Hauterivien–Aptian) de Bulgarie straeid scleractinian corals. Jour nal of Pa le on tol ogy, 75: 34– nord-orientale. Comptes Rendus de l’Académie des Sci ences, 45. Paris, Sciences de la Terre et des PlanÀtes, 327: 555–562. Sabatier, P., Reyss, J. L., Hall-Spencer, J. M., Colin, C., Frank, N, Pleº, G., Mircescu, C. V., Bucur, I. I. & S²s²ran, E., 2013. En - Tisnérat-Laborde, N., Bordier, L. & Douville, E., 2012. crust ing mi cro-or gan isms and mi cro bial struc tures in Up per 210Pb-226Ra chro nol ogy re veals rapid growth rate of Madre- Juras sic lime stones from the Southern Carpathians (Ro ma- pora oculata and Lophelia pertusa on world’s larg est cold- PACHYTHECALIINES IN LATE BARREMIAN, BUL GARIA 329

water coral reef. Biogeosciences, 9: 1253–1265. 63–86. Sanders, D., 1999. Shell dis in te gra tion and taphonomic loss in Shen, J. W. & Webb, G. E., 2005. Metazoan-mi cro bial frame work rudist biostromes. Lethaia, 32: 101–112. fab rics in a Mis sis sip pian (Car bon if er ous) coral-sponge-mi - Sanders, D. & Baron-Szabo, R. C., 2005. Scleractinian assem - cro bial reef, Monto, Queensland, Austra lia. Sed i men tary Ge - blages un der sed i ment in put: their char ac ter is tics and re la tion ol ogy, 178: 113–133. to the nu tri ent in put con cept. Palaeo ge ogra phy, Palaeoclima- Sikhuralidze, G. Y., 1979. Albskije korally siela Tskhanar (Zapad- tology, Palaeo ec ol ogy, 216: 139–181. naja Gruzija). Trudy Geologicheskogo Instituta AN Gruzin- Schäfer, P. & Senowbari-Daryan, B., 1980. Aulastraea conica, skoj SSR, 63: 1–49. [In Rus sian]. eine neue Koralle (Scleractinia: Amphiastreidae) aus Tithon- Silvestri, G., Bosellini, F. R. & Nebelsick, J. H., 2011. Micro- Riffkalken der Madonie-Berge (Mittel-Sizllien) Senckenher- taphofacies analy sis of lower Oligocene turbid-w ater coral giana Lethaea, 61: 1–11. as sem blages. Palaios, 26: 805–820. Schlager, W., 2003. Ben thic car bonate fac to ries of the Phanero- Skelton, P. W. & Gili, E., 2012. Rudists and car bonate plat forms zoic. In ter na tional Jour nal of Earth Sci ences, 92: 445–464. in the Aptian: a case study on biotic inter ac tions with ocean Schlagintweit, F., 2010. Tax o nomic re vi sion of Lithocodium ag- chem is try and cli mate. Sedimentology, 59: 81–117. gregatum Elliott sensu Schmid & Leinfelder, 1996. Jahrbuch Skelton, P. W., Gili, E., Rosen, B. R. & Valldeperas, F. X., 1997. der Geologischen Bundesanstalt, 156: 393–406. Cor als and rudists in the late Cre ta ceous: a cri tique of the hy - Schlagintweit, F., 2012. New in sights into Troglotella incrustans poth e sis of competetive dis place ment. Boletin de la Real So- Werrnli & Fookes, 1992, a fas ci nat ing Upper Ju ras sic-Up per ciedad EspaÔola de Historia Nat ural, Sección Geológica, 92: Cre ta ceous foraminifer. Studia Universitatis Babeº-Bolyai, 225–239. Geologia, 57: 17–26. Sprachta, S., Camoin, G., Golubic, S. & Le Campion, T., 2001. Schlagintweit, F. & Bover-Arnal, T., 2012. The mor pholog i cal Microbialites in a mod ern la goonal en vi ron ment: na ture and adap tion of Lithocodium aggregatum Elliott (cal car e ous dis tri bu tion (Tikehau atoll, French Poly ne sia). Palaeogeo- green alga) to cryp tic microhabitats (Lower Aptian, Spain): graphy, Palaeoclimatology, Palaeo ec ol ogy, 175: 103–124. an ex ample of phenotypic plas tic ity. Fa cies, 58: 37–55. Stan ley, G. D., Jr., (ed.), 2001. The History and Sedimentology of Schlagintweit, F. & Bover-Arnal, T., 2013. Re marks on Baèinella Reef Systems . Kluwer Ac a demic/Ple num Pub lish ers, New Radoièiæ, 1959 (type spe cies B. irregularis) and its repre sen - York, 458 pp. ta tives. Fa cies, 59: 59–73. Stan ley, G. D., Jr., 2003. The evo lu tion of modern cor als and their Schlagintweit, F., Bover-Arnal, T. & Salas, R., 2010. New in sights early his tory. Earth-Sci ence Re views, 60: 195–225. into Lithocodium aggregatum Elliott 1956 and Bacinella irre- Stan ley, G. D., Jr. & Swart, P. K., 1995. Evo lu tion of the coral– gularis Radoièiæ 1959 (Late Ju ras sic–Lower Cre ta ceous): zooxanthellae sym bi o sis dur ing the Tri as sic: A geo chem i cal two ulvophycean green al gae (?Order Ulotrichales) with a he- ap proach. Paleobiology, 21: 179–199. teromorphic life cy cle (epilithic/euendolithic). Fa cies, 56: Stolarski, J., 1996. Gardineria – a scleractinian living fos sil. Acta 509–547. Palaeontologica Polonica, 41: 339–367. Schlagintweit, F., Gawlick, H.-J. & Auer, M., 2007. Carpatho- Stolarski, J., 2003. Three-di mensional mi cro- and nanostructural can cer nov. nom. based on new find ings of Carpathocancer charac ter is tics of the scleractinian coral skele ton: A biocalci- triangulatus (Misik, Sotak & Ziegler, 1999) (type-spe cies) fication proxy. Acta Palaeontologica Polonica, 48: 497–530. nov. nom. in Tri as sic and Ju ras sic reefal car bonates of the Stolarski, J., Meibom, A., Przenios³o, R. & Mazur, M., 2007. A North ern Cal car e ous Alps and their tax o nomic re-in ter pre ta - Creta ceous scleractinian coral with a calcitic skel eton. Sci - tion as deca pod crus ta cean ap pend ages. Jour nal of Al pine Ge - ence, 318: 92–94. ol ogy (Mitteilungen der Gesellschaft der Geologie- und Berg- Stolarski, J. & Roniewicz, E., 2001. To wards a new syn the sis of baustudenden in Österreich, Wien), 48: 23–35. evo lu tion ary re la tion ships and clas si fi ca tion of Scleractinia. Schlagintweit, F. & Veliæ, I., 2012. Foraminiferan tests and dasy- Jour nal of Pa le on tol ogy, 75: 1090–1108. cladalean thalli as cryp tic microhabitats for thaumatoporella- Stolarski, J., Roniewicz, E. & Grycuk, T., 2004. A model for cean al gae from Me so zoic (Late Tri as sic–Late Cre ta ceous) furcate septal increase in a Trias sic scleractiniamorph. Acta plat form car bon ates. Fa cies, 58: 79–94. Palaeontologica Polonica, 49: 529–542. Schmid, D. U., 1996. Ma rine Mikrobolithe und Mikroinkrustierer Stolarski, J. & Russo, A., 2001. Evo lu tion of post-Tri as sic pachy- aus dem Oberjura. Profil, 9: 101–251. thecaliine cor als. Bul le tin of the Bi o log i cal So ci ety of Wash- Schmid, D. U. & Leinfelder, R.R., 1996. The Ju ras sic Lithocodium ing ton, 10: 242–256. aggregatum–Troglotella incrustans foraminiferal consor - Stoykova, K. & Ivanov, M., 2000. Up per Barremian–Lower Ap- tium. Palae on tol ogy, 39: 21–52. tian ammonite and nannofossil biostratigraphy in North Bul - Schmid, D. U., Leinfelder, R. R. & Nose, M., 2001. Growth dy - garia. An nual of the So fia Uni ver sity. Ge ol ogy-Geo graph ical namics and ecol ogy of Upper Ju ras sic mounds, with compar i - Fac ulty, 92: 5–12. sons to Mid-Palaeozoic mounds. Sed i men tary Ge ol ogy, 145: Szulc, J., 1997. Mid dle Tri as sic (Muschelkalk) sponge-mi cro bial 343–376. stromatolites, diplopores and Girvanella-oncoids from the Schöllhorn, E., 1998. Geologie und Paläontologie des Oberapt im Silesian-Cra cow Up land. In: 3rd IFAA Re gional Sym posium Becken von Organyà (Nordspanien). Coral Re search Bul le - & 3rd IGCP 380 Inter na tional Meet ing, Kraków, 1997, tin, 6: 1–139. Guidebook & Ab stracts. pp. 10–15. Scrutton, C. T., 1997. The Palaeozoic cor als, I: or i gins and re la - Szulc, J., 2000. Mid dle Tri as sic evo lu tion of the north ern Peri- tion ships. Pro ceed ings of the York shire Geo log i cal So ci ety, Tethys area as in flu enced by early open ing of the Tethys 51: 177–208. Ocean. Annales Societatis Geologorum Poloniae, 70: 1–48. Seard, C., Camoin, G. F., Yokoyama, Y., Matsuzaki, H., Durand, Tchechmedjieva, V., 2001. Scléractiniaires coloniaux du Barré- N., Bard, E., Sepulcre, S. & Deschamps, P., 2011. Micro- mien prÀs du vil lage Pouchevo, l’ ar ron disse ment de Veliko bialite devel op ment patterns in the last deglacial reefs from Târnovo (Prébalkan Cen tral). Annuaire de l’Universite de So - Ta hiti (French Poly ne sia; IODP ex pe di tion #310): im pli ca - fia “St. Kliment Ohridski”, Faculte de Géologie et Géogra- tions on reef framework archi tec ture. Ma rine Ge ol ogy, 279: phie, 93 (for 2000): 5–20. [In Bul gar ian, French ab stract]. 330 B. KO£ODZIEJ ET AL.

Toula, F., 1889. Geologische Untersuchungen im centralen Bal - Webb, G. E., 2001. Bi o log i cally in duced car bon ate pre cip i ta tion kan. Denkschriften der Kaiserlichen Akadademie Wissen- in reefs through time. In: Stan ley, G. D. Jr. (ed.), The History schaften, Mathematisch-Physsikalische Klasse, 55: 1–108. and Sedimentology of An cient Reef Sys tems. Kluwer Ac a - Trichet, J. & Défarge, C., 1995. Non-bi o log i cally supported demic/Ple num Publish ers, New York, pp. 159–203. organomin er al iza tion. Bul le tin de l’Institut Océanographique Wells, J. W., 1956. Scleractinia. In: Moore, R. C. (ed.), Trea tise of (Monaco), Numéro Spécial, 14: 203–236. In ver te brate Pa le on tol ogy, part F, Geo log i cal So ci ety of Turnšek, D., 1972. Upper Ju ras sic Cor als of South ern Slovenia. America & Uni versity of Kansas Press, Lawrence, pp. 328– Razprave, Razreda Slovenska Akademija Znanosti in Umet- 444. nosti, IV, 15: 1–121. Wood, R., 1999. Reef Evo lu tion. Ox ford Uni ver sity Press, Oxford, Turnšek, D., 1997. Me so zoic Cor als of Slovenia. Znanstvenora- 414 pp. ziskovalni cen ter, Slovenska Akademija Znanosti in Umet- Wright, D. T. & Wacey, D., 2005. Pre cip i ta tion of do lo mite using nosti, 16, Ljublana, 512 pp. sul phate-re duc ing bac te ria from the Coorong Re gion, South Turnšek, D. & Buser, S., 1974. The Early Cre ta ceous Cor als, Hy - Aus tra lia: sig nif i cance and im pli ca tions. Sedimentology, 52: dro zo ans and Chaetetids of Banja Planota and Trnowski 987–1008. Gozd. Razprave, Slovenska Akademija Znanosti in Umet- Wrzo³ek, T., 2007. A re vi sion of the De vonian rugosan phillips- nosti, IV, 17: 283–124. astreid ge nus Smithicyathus. Acta Palaeontologica Polonica, Turnšek, D. & Löser, H., 1989. The his tory of Meso zoic coral re - 52: 609–632. search af ter 1940. Courier Forschunginstitut Senckenberg, Young, G. A., 1999a. Fossil co lo nial cor als: col ony type and 164: 37–46. growth form. In: Savazzi, E. (ed.), Func tional Mor phol ogy of Turnšek, D. & Mihajloviæ, M., 1981. Lower Cre ta ceous Cni dari - the In ver te brate Skel e ton. John Wiley & Sons, New York, pp. ans from Eastern Ser bia. Razprave, Slovenska Akademija 647–666. Znanosti in Umetnosti, Razred za Naravoslovne Vede, IV, 23: Young, G. A., 1999b. Fos sil co lo nial cor als: growth pat terns and 1–54. coral-substrate rela tion ships . In: Savazzi, E. (ed.), Func tional Turnšek, D., Buser, S. & Debeljak, I., 2003. Li assic coral patch Mor phol ogy of the In ver te brate Skel e ton. John Wiley & Sons, reef above the “Lithiotid Lime stone” on Trnovski Gozd Pla - New York, pp. 667–687. teau, west Slovenia. Razprave Slovenska Akademija Znanosti Zlatarski, V., 1967. Dimorphocoeniopsis beauvaisorum, une nou - in Umetnosti, Razred za Naravoslovne Vede, IV, 44: 285–331. velle espÀce de Madreporaria du Crétacé inférieur de la Bul- Vašíèek, Z. & Skupien, P., 2004. The Štramberk fossil site (Up per - garie du Nord. Doklady Bolgarskoj Akademii Nauk, 20: most Ju ras sic/Lower Cre ta ceous, Outer West ern Carpathians) 1317–1320. – two cen tu ries of the geo log i cal and paleontological re - Zlatarski, V., 1968a. Diplocteniopsidae, une nou velle familie de search. Sborník Vìdeckých Prací Vysoké Školy Báòské – Madreporaria de l’Aptien de la Bulgarie du Nord. Bul le tin of Technické Univerzity Ostrava. Øada Hornicko-Geologická, the Geolological Insitute, Se ries Pa le on tol ogy, 17: 49–106. 50: 83–102. [In Czech, Eng lish summary ]. Zlatarski, V., 1968b. Paraclausastraea, un nou veau genre de ma- Vaughan, T. W. & Wells, J. W., 1943. Re vi sions of the Suborders, dréporaire de l’Aptien de la Bulgarie du Nord. Re view of the Fam i lies and Gen era of the Scleractinia. Geo log i cal So ci ety Bul gar ian Geo log i cal So ci ety, 29: 159–171. of Amer ica, Spe cial Pa per, 44, 363 pp. Zlatarski, V., 1968c. Paleobiologichni izsledvania varhu madre- Webb, G. E., 1999. Youn gest Early Car bonif er ous (late Visean) pori ot urgona v Srednia Predbalkan. Disertatsia. Geolo- shallow-w ater patch reefs in eastern Austra lia (Rockhampton gicheski Institut “Strashimir Dimitrov”, Balgarska Ac a demia Group, Queensland): com bin ing quan ti ta tive mi cro- and na Naukite, So fia, 264 pp. [In Bul gar ian]. macro-scale data. Fa cies, 41: 111–139.