Stability of Metarhizium Acridum Based Biopesticide in Operational Conditions in Senegal

Total Page:16

File Type:pdf, Size:1020Kb

Stability of Metarhizium Acridum Based Biopesticide in Operational Conditions in Senegal Current Agriculture Research Journal Vol. 2(2), 83-88 (2014) Stability of Metarhizium acridum Based Biopesticide in Operational Conditions in Senegal PAPA MADIALLACKÉ DIEDHIOU1*, KEMO BADJI2, ROKHAYA FAYE3 and PAPA IBRA SAMB3 1Faculté d’Agronomie, Université Gaston Berger ; Saint-Louis - Sénégal. 2Plant Health and Quarantine Officer, Direction de la Protection des Végétaux, Dakar- Sénégal 3Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, Sénégal. http://dx.doi.org/10.12944/CARJ.2.2.03 (Received: November 17, 2014; Accepted: November 25, 2014) ABSTRACT Grasshoppers and locusts are important pests in the Sahel zone with a big economic and environmental impact. The move towards biological control methods represents an important option to mitigate environmental impact linked with the use of insecticides for their control. Metarhizium acridum, a locust pathogenic fungus that gave excellent test results in controlling grasshoppers, was further developed as biopesticide. The stability of the manufactured biopesticide in operational conditions was tested. In the present study, the germination of spores and mycelial growth of M. acridum were higher at 28 °C and 33 °C. Higher temperatures led to a significant decrease of these biological parameters. The sporulation of M. acridum is abundant at 28 °C and 33 °C but was completely inhibited at 37 °C. Furthermore, M. acridum based biopesticide showed a good infection rate for the dry spores formulation for 3 months of storage in all test sites. In the oil formulation in contrast, infectivity rate dropped quickly to a very low level after one month storage in the inland sites and remained good in Dakar. High temperatures and low moisture, away from the coast were speculated to be the reasons. Key words: Metarhizium acridum, Biopesticide, Grasshoppers, Locusts, Oil formulation,Dry spore formulation. INTRODUCTION in 2004, a total of 1,040 billion CFA was needed to mitigate environmental pollution (Locustox, 2009). Grasshoppers and locusts are major pests in most countries of the Sahel zone like Senegal. Gradually, environment friendly alternatives In invasion years, their control requires annually pesticides are being developed to control locusts. large amounts of synthetic pesticides sprayed over Biopesticides like those having insect pathogenic about 1,000,000 ha per year (Launois Luong et al., microorganisms as active agent are increasingly 1988). In locust invasion years, about 2,000,000 developed for operational use in several countries ha are treated with pesticides to achieve a control of the Sahel zone. over the large migrating locusts and grasshoppers populations (Anon., 1997). Besides negative In West Africa, particularly in Senegal, economic impact, should be added other impacts Metarhizium acridum, a locust pathogenic fungus on the environment and on health of humans as gave excellent test results in controlling grasshoppers. well as on animals. With respect to negative impact The fungal strain was further formulated to a on environment, the decontamination of 1 ton of biopesticide, found to be very effective against sand contaminated with pesticides is estimated at locusts and grasshoppers. Those insects belong to 26,000,000 CFA. With a total of 40,000 tons of soil the order Orthoptera, and consist among others, to be decontaminated in pesticide storages sites with Schistocerca gregaria, Oedaleus senegalensis, 84 DIEDHIOU et al., Curr. Agri. Res. Jour., Vol. 2(2), 83-88 (2014) Hieroglyphus daganensis, Locusta migratoria, etc. Study sites The spores of Metarhizium acridum represent the The study of the viability of the spores of active ingredient of the bioinsecticide, intended for Metarhizium acridum in different formulations of locust control. However, the widespread use of this the biopesticide during storage was carried out in biopesticide in operational conditions in Senegal is the storage facilities of “Direction de la Protection facing a technical problem due to a lack of stability des Végétaux” (DPV), the National Plant Protection of the active ingredient during storage. In fact, the Organization. Those storage facilities are located biological effectiveness of the product in operational in different cities scattered over the whole country, conditions drops below the critical rate of 85% like Richard Toll, Louga, Gossas, Nioro du Rip and infectivity (Jaronski, 2000) in different environments. Dakar. They are designed for almost permanent Nonetheless, the feasibility of this control method, in storage of insecticides for locust control targeting particular during the hot rainy season, characterized O. senegalensis and S. gregaria. The mean with rapid buildup of locust populations, and a temperatures and relative humidity recorded in the worsening of roads and transportation systems, storages facilities during the experiment are listed requires the pesticides to be stored in close proximity in Table 1. to the agrosystems at risk and applied as needed. Storage test The present work therefore was intended to Samples the biopesticide in dry spores look at the influence of temperature on the survival formulation as well as oil formulation were placed of the active ingredient of a Metarhizium acridum in test tubes. For dry spores formulation, 1 g of based biopesticide in different formulations, with powder was sampled and 5ml of oil formulation. In special focus on the storage facilities of the National each storage facility, 5 tubes for oil formulation and Plant Protection Organization over the country. 5 other tubes for dry spores formulation were kept. The germination rate was recorded before storage MATERIALS AND METHODS and every 30 days, as described by Moore et al., (1996). For the germination test, 1 ml was sampled The fungal biocontrol agent from oil formulation containing tubes and 0.1 g from Metarhizium acridum strain IMI 330189 is dry formulation treatment. The samples were kept the active ingredient of the biopesticide. It is a fungus in small vials closed with parafilm and placed in a of the class ascomycete with Metacordyceps sp humid chamber for 24 hours (Moore et al., 1996). as teleomorph. Species of the genus Metarhizium Thereafter, 10 ml sterile water and a droplet of live naturally in the soil litter almost everywhere in Tween 80 were added prior to centrifugation for 5 the world. Metarhizium acridum strain IMI 330189 minutes at 2500 rotations / min. The solvent was was isolated from a parasitized Ornithacris cavroisi gently removed and the pellet, composed with found in Niger (Kooyman, 2007). The biopesticide is spores is mixed with 10 ml sterile water and Tween formulated as a powder composed with dry spores or 80. This spore suspension is used for germination spores mixed with vegetable oil as oil formulation. test by plating a 20, 50 and 100 µL into petri dishes containing Sabouraud Dextrose Agar culture media. Table. 1: Mean temperatures and moisture in the storage facilities of DPV during the test period Site hosting pesticide Temperatures (°C) Relative humidity (%) storage facility Maxima Minima Mean Maxima Minima Mean Gossas 37.00 23.63 29.69 66.70 32.10 59.58 Dakar 34.01 23.63 30.22 70.70 34.80 60.64 Louga 33.17 23.24 28.87 30.4 27.4 26.14 Nioro 37.88 24.01 30.13 28.52 22.6 24.97 R. Toll 37.88 22.48 29.58 25.42 16.61 22.68 DIEDHIOU et al., Curr. Agri. Res. Jour., Vol. 2(2), 83-88 (2014) 85 For the oil formulation, the sampled volume was spores extracted from the biopesticide. The number completed to 10 ml with sterile water and Tween 80. of germinated conidia was determined by over a 20 The mixture was centrifuged and the pellet collected conidia sample, repeated 10 times after 6 hours, 12 and suspended in 10 ml sterile water and Tween 80 hours, 18 hours and 24 hours of incubation. before being plated onto the culture media. Data analysis Effect of temperature on spore germination, An analysis of variance was performed mycelial growth and sporulation for data with a normal distribution. Data expressed For the study of mycelial growth and in percentages were first normalized by arcsinus sporulation ability, petri dishes with the culture media transformation. The statistical analysis software were inoculated with a 6 mm diameter of 4-5 days Minitab 13th edition for Windows was used. Means old culture of the fungus and incubated at different were separated using the Student test & Newman temperatures. For sporulation performance mature Keuls at 5 %. conidia were harvested after 3 weeks of incubation at constant temperatures in the dark. To collect the RESULTS spores, a fine brush and 10 ml sterile water and Tween 80 were used to prepare a suspension of Effect of different temperatures on germination spores. The concentration of the suspension of of spore of M. acridum spores obtained was determined using the grid cell The spore germination of M. acridum at of Neubauer (Tefera and Pringle, 2003). different temperatures gave variable results (Fig. 1). The highest rates were obtained at 33 °C and 28 °C Mycelial growth of the fungus at different with 18% and 21.12% respectively after only 6 hours temperatures was measured by taking the average of incubation. The germination rate reached over of two perpendicular diameters of colony in the petri 90% after 24h. When temperatures reached 35 °C dish. The diameter was measured every 24 hours and 37 °C, the germination rate did not cross the 10% for 11 days (Tefera and Pringle, 2003). bar after 24 hours. The analysis of variance showed a highly significant difference between treatments (p The effect of a range of constant H” 0.000). temperatures was evaluated on the germination of Fig. 1: Influence of different temperatures on spore germination of M. acridum (n = 10; p< 0.000) 86 DIEDHIOU et al., Curr. Agri. Res. Jour., Vol. 2(2), 83-88 (2014) Effect of different temperatures on mycelial highly significant differences between treatments (p growth of M.
Recommended publications
  • Taxonomic Status of the Genera Sorosporella and Syngliocladium Associated with Grasshoppers and Locusts (Orthoptera: Acridoidea) in Africa
    Mycol. Res. 106 (6): 737–744 (June 2002). # The British Mycological Society 737 DOI: 10.1017\S0953756202006056 Printed in the United Kingdom. Taxonomic status of the genera Sorosporella and Syngliocladium associated with grasshoppers and locusts (Orthoptera: Acridoidea) in Africa Harry C. EVANS* and Paresh A. SHAH† CABI Bioscience UK Centre, Silwood Park, Ascot, Berks. SL5 7TA, UK. E-mail: h.evans!cabi.org Received 2 September 2001; accepted 28 April 2002. The occurrence of disease outbreaks associated with the genus Sorosporella on grasshoppers and locusts (Orthoptera: Acridoidea) in Africa is reported. Infected hosts, representing ten genera within five acridoid subfamilies, are characterized by red, thick-walled chlamydospores which completely fill the cadaver. On selective media, the chlamydospores, up to seven-years-old, germinated to produce a Syngliocladium anamorph which is considered to be undescribed. The new species Syngliocladium acridiorum is described and two varieties are delimited: var. acridiorum, on various grasshopper and locust genera from the Sahelian region of West Africa; and, var. madagascariensis, on the Madagascan migratory locust. The ecology of these insect-fungal associations is discussed. Sorosporella is treated as a synonym of Syngliocladium. INTRODUCTION synanamorph, Syngliocladium Petch. Subsequently, Hodge, Humber & Wozniak (1998) described two Between 1990 and 1993, surveys for mycopathogens of Syngliocladium species from the USA and emended the orthopteran pests were conducted in Africa and Asia as generic diagnosis, which also included Sorosporella as a part of a multinational, collaborative project for the chlamydosporic synanamorph. biological control of grasshoppers and locusts of the Based on these recent developments, the taxonomic family Acridoidea or Acrididae (Kooyman & Shah status of the collections on African locusts and 1992).
    [Show full text]
  • Catalogue 2009 Acridiens Cameroun Et R. Centrafricaine
    AcridiensAcridiens dudu CamerounCameroun etet dede RépubliqueRépublique centrafricainecentrafricaine (Orthoptera(Orthoptera Caelifera)Caelifera) 2009 AcridiensAcridiens dudu CamerounCameroun etet dede RépubliqueRépublique centrafricainecentrafricaine (Orthoptera(Orthoptera Caelifera)Caelifera) Supplément au catalogue et atlas des acridiens d'Afrique de l'Ouest Jacques MESTRE Joëlle CHIFFAUD 2009 © MESTRE Jacques & CHIFFAUD Joëlle, novembre 2009 Édition numérique ISBN 978-2-9523632-1-1 SOMMAIRE • Introduction, p. 3 • Le milieu, p. 4 • Les travaux sur l'acridofaune du Cameroun et de la République centrafricaine, p. 5 • Les espèces recensées, p. 5 • Institutions dépositaires, p. 11 GENRES ET ESPÈCES, p. 12 Acanthacris, p. 13 Galeicles, p. 47 ▪ A. elgonensis ▪ G. kooymani Afromastax, p. 14 ▪ G. parvulus ▪ A. camerunensis ▪ G. teocchi ▪ A. nigripes Gemeneta, p. 49 ▪ A. rubripes ▪ G. opilionoides ▪ A. zebra occidentalis ▪ G. terrea ▪ A. zebra zebra Glauningia, p. 51 Anablepia, p. 18 ▪ G. macrocephala ▪ A. granulata Hadrolecocatantops, p. 52 Anacridium, p. 20 ▪ H. kissenjianus ▪ A. illustrissimum ▪ H. mimulus Apoboleus, p. 21 ▪ H. ohabuikei ▪ A. degener ▪ H. quadratus Atractomorpha, p. 22 Hemiacris, p. 56 ▪ A. aberrans ▪ H. dromaderia Badistica, p. 24 ▪ H. tuberculata ▪ B. bellula ▪ H. uvarovi Barombia, p. 25 ▪ H. vidua ▪ B. tuberculosa Hemierianthus, p. 60 Bocagella, p. 27 ▪ H. assiniensis ▪ B. lanuginosa ▪ H. bertii Bosumia, p. 28 ▪ H. bule ▪ B. tuberculata ▪ H. curtithorax Callichloracris, p. 29 ▪ H. forceps ▪ C. prasina ▪ H. finoti Cataloipus, p. 30 ▪ H. fuscus ▪ C. gigas ▪ H. gabonicus Criotocatantops, p. 31 ▪ H. martinezi ▪ C. clathratus ▪ H. parki ▪ C. irritans Heteropternis, p. 68 Cylindrotiltus, p. 33 ▪ H. cheesmanae ▪ C. versicolor inversus ▪ H. pugnax ▪ C. versicolor versicolor Hintzia, p. 70 Cyphocerastis, p. 35 ▪ H. squamiptera ▪ C. hopei Kassongia, p.
    [Show full text]
  • Management of Insect Pests by Microorganisms
    Proc Indian Natn Sci Acad 80 No. 2 June 2014 Spl. Sec. pp. 455-471 Printed in India. Review Article Management of Insect Pests by Microorganisms B RAMANUJAM*, R RANGESHWARAN, G SIVAKMAR, M MOHAN and M S YANDIGERI National Bureau of Agriculturally Important Insects, P.B. No. 2491, HA Farm Post, Bellary Road, Bangalore 560024, Karnataka, India (Received on 09 April 2013; Revised on 20 August 2013; Accepted on 23 September 2013) Insects, like other organisms, are susceptible to a variety of diseases caused by bacteria, viruses, fungi and protozoans, and these pathogens are exploited for biological control of insect pests through introductory or inundative applications. Microbial pathogens of insects are intensively investigated to develop environmental friendly pest management strategies in agriculture and forestry. In this paper, the scope for utilization of insect pathogens in pest management in the world and India is reviewed. The most successfully utilized insect pathogen is the bacterium, Bacillus thuringiensis (Bt) which is used extensively for management of certain lepidopteran pests. In India, mostly imported products of Bt kurstaki have been used, which are expensive and there is an urgent need to develop aggressive indigenous Bt strains against various pests. Baculoviruses comprising nuclear polyhedrosis virus (NPV) and granulosis virus (GV) have been successfully used as insect pathogens because of their high virulence and specificity. NPV and GV formulations are used for lepidopteran pests like Helicoverpa armigera (HaNPV) and Spodoptera litura (SlNPV) in India, besides Anticarsia gemmatalis NPV in Brazil, Lymanttria disper NPV, Orgyia pseudotsugata NPV in USA and GV of Pieris rapae in China. Lack of easy mass multiplication methods for the commercial production of baculoviruses calls for R&D to develop production in insect tissue cultures.
    [Show full text]
  • Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control
    insects Review Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control Franciska Tóthné Bogdányi 1 , Renáta Petrikovszki 2 , Adalbert Balog 3, Barna Putnoky-Csicsó 3, Anita Gódor 2,János Bálint 3,* and Ferenc Tóth 2,* 1 FKF Nonprofit Zrt., Alföldi str. 7, 1081 Budapest, Hungary; [email protected] 2 Plant Protection Institute, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly srt. 1, 2100 Gödöll˝o,Hungary; [email protected] (R.P.); [email protected] (A.G.) 3 Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Allea Sighis, oarei 1C, 540485 Targu Mures/Corunca, Romania; [email protected] (A.B.); [email protected] (B.P.-C.) * Correspondence: [email protected] (J.B.); [email protected] (F.T.); Tel.: +40-744-782-982 (J.B.); +36-30-5551-255 (F.T.) Received: 17 July 2019; Accepted: 31 October 2019; Published: 2 November 2019 Abstract: Fungal entomopathogens are gaining increasing attention as alternatives to chemical control of arthropod pests, and the literature on their use under different conditions and against different species keeps expanding. Our review compiles information regarding the entomopathogenic fungal species Metarhizium flavoviride (Gams and Rozsypal 1956) (Hypocreales: Clavicipitaceae) and gives account of the natural occurrences and target arthropods that can be controlled using M. flavoviride. Taxonomic problems around M. flavoviride species sensu lato are explained. Bioassays, laboratory and field studies examining the effect of fermentation, culture regimes and formulation are compiled along with studies on the effect of the fungus on target and non-target organisms and presenting the effect of management practices on the use of the fungus.
    [Show full text]
  • GRASSHOPPER ~~~R CONTROL in NIGERIA
    I GRASSHOPPER ~~~r CONTROL IN NIGERIA EXTENSION BULLETIN 3 " (i .-) ( .-, c:.,_ GRASSHOPPER CONTROL IN NIGERIA Extension Bulletin No ........... By NATIONAL AGRICULTURAL EXTENSION AND RESEARCH LIAISON SERVICES, AHMADU BELLO UNIVERSITY, PMB 1067, ZARIA. NIGERIA .--·pun! tSEHrn 1998. ,_.J if' \ ACKNOWLEDGJ ·\11 · ~ TS A special acknowledgment is given to Professor Oba Oyidi whose work and publications on Grasshoppers in Nigeria was largely used for this bulletin. This publication is sponsored by the Federal Ministry of Agriculture, Ahuja, Nigeria. S. S. Okatahi and Oba Oyidi II TABLES OF CONTENTS Acknowledgement 11 Table of contents Ill 1. Introduction 2. Biology ofgrasshoppers 3. Reproduction of grasshopper 2 4. Control measure 12 * Cultural Control 12 * Mechanical Control 13 * Physical Control 14 * Cremical Control 14 * General remark on the use of chemicals 16 5. Spraying methods 16 6. Conclusion 17 References 18 111 Introduction Grasshopper are common 1gricultural pests. They feed on leaves and grains of millet, sorghurt,, maize, wheat, rice, sugarcane, fruit trees, graslands and vangelands. The variegated grasshoppers in particular can attack and cause total defoliation of cassava .. The pur­ pose of this bulletin is to provide a general and practical reference for Agricultural Extension workers who are often confronted with the prob­ lem of grasshopper control. The bulletin covers selected grasshopper species that cause problems on the field. Their characteristics, biology. habitats and host plants are discussed for the purpose of identification. Also, information on the cultural, physical and chemical control of the insect is adequately provided. It is hoped that the bulletin will prove useful to the Agricultural Extension Agents, officials of Pest Control Departments in the field, vocational agricultural teachers and literate farmers.
    [Show full text]
  • Grasshoppers, Locusts and Their Population Control What Is the Difference Between a Grasshopper and a Locust? Systematics L3
    Orthoptera: Acrididae Grasshoppers, Locusts and their Population Control What is the difference between a grasshopper and a locust? Systematics L3 © RPB 2009; orthoptera2 v. 1.5 Hieroglyphus daganensis: a Locusts & grasshoppers of the Sahel: grasshopper of the Sahel booklets • Locust spp. in several families Solitary Abbreviations for names: SGR: Schistocerca gregaria OSE: Oedaleus senegalensis Crowded Threats to (marginal) agriculture Migratory locust Locusta migratoria (LMI) Senegalese grasshopper Oedaleus senegalensis 1 African Asian species … locust • Locusta migratoria manilensis • Nomadacris (Patanga) succincta plagues Bombay locust • Rice grasshopper - Oxya spp. • Grasshopper complex in N. Asian pasture Nymphs of the desert locust, Young adult SGR Schistocerca gregaria (SGR) period of maturation before flight and swarming Solitary Gregarious From B.P. Uvarov (1966) “Grasshoppers and Locusts” (discovery 1921) photos: FAO Gregarisation solitarious gregarious Dispersed yes no Aggregated 2 Cues for gregarisation Triggering gregarisation Solitarious individuals can be Periods suitable for locust breeding followed made to become gregarious by vegetation drying - leading to clumping of simply by buffeting them with vegetation and concentration of population small balls of papier mâché, or millet seeds. Crowding causes increased physical contact between individuals (especially hind legs) Visual and pheromonal stimulation effects Experiments with solitarious Bands may merge leading to greater crowding SGR - in cages where they Band behaviour affected by vegetation cover can neither see nor smell and uniformity other individuals TOUCH (not chemicals): the major trigger of swarming, Haegele, B.F. & Simpson, S.J. (2000) J. Insect Physiology, 46, 1295-1301. i.e. contact between crowded individuals makes them Simpson, S.J., et al. (2001) Proc. Nat. Acad. Sci., USA 98, 3895-3897.
    [Show full text]
  • Survival and Mortality of Grasshopper Egg Pods in Semi-Arid Cereal Cropping Areas of Northern Benin
    Research Collection Journal Article Survival and mortality of grasshopper egg pods in semi-arid cereal cropping areas of northern Benin Author(s): Shah, P.A.; Godonou, I.; Gbongboui, C.; Hossou, A.; Lomer, C.J. Publication Date: 1998 Permanent Link: https://doi.org/10.3929/ethz-b-000422576 Originally published in: Bulletin of Entomological Research 88(4), http://doi.org/10.1017/S000748530004219X Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Bulletin of Entomological Research (1998) 88, 451-459 451 Survival and mortality of grasshopper egg pods in semi-arid cereal cropping areas of northern Benin P.A. Shah12*, I. Godonou2, C. Gbongboui2, A. Hossou3 and C.J. Lomer2 'Institute of Microbiology, Swiss Federal Institute of Technology, LFV E14, ETH- Zentrum, CH-8092 Zurich, Switzerland: 'International Institute of Tropical Agriculture, Plant Health Management Division, Cotonou, BP 08-0932, Republic of Benin: 'Service Protection des Vegetaux, Porto Novo, BP 58, Republic of Benin Abstract Surveys of egg pods of agriculturally important grasshoppers were carried out in northern Benin between 1992 and 1995. Searches were made of oviposition sites under shrubs of the perennial legume Piliostigma thonningi along field margins. In 1993 and 1995, surveys were extended to include sorghum, Sorghum bicolor, and the perennial thatch grass Vetiveria nigritana. The four principal grasshopper species found at these oviposition sites were Hieroglyphus daganensis Krauss, Cataloipus fuscocoeruleipes Sjostedt, Kraussaria angulifera (Krauss) and Tylotropidius gracilipes Brancsik comprising 86% of 4545 identified egg pods while 651 egg pods could not be identified to species level.
    [Show full text]
  • Insects As Food in Sub-Saharan Africa
    Insect Sci. Applic. Vol. 23, No. 3, pp. 163–185,Insects 2003 as food in Africa 0191-9040/03 $3.00 + 0.00 163 Printed in Kenya. All rights reserved © 2003 ICIPE REVIEW ARTICLE INSECTS AS FOOD IN SUB-SAHARAN AFRICA A. VAN HUIS Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, the Netherlands. E-mail: [email protected] (Accepted 14 August 2003) Abstract—Data on insects as food in sub-Saharan Africa were collected by reviewing the literature and conducting interviews in a number of African countries. A list of about 250 edible insect species from Africa was compiled. Of these, 78 percent are Lepidoptera (30%), Orthoptera (29%) and Coleoptera (19%), and 22 percent Isoptera, Homoptera, Hymenoptera, Heteroptera, Diptera and Odonota. Insects are rich in protein, vitamins and minerals, and a good source of iron and B-vitamins. Examples of insects being toxic are given, but often traditional methods are used to remove the poison. Whether or not insects are eaten depends not only on taste and nutritional value, but also on customs, ethnic preferences or prohibitions. The harvesting of insects is often done by women. The way of collecting depends on insects’ behaviour. For example, inactivity at low temperatures enables easy catching of locusts and grasshoppers in the morning. Night flyers (termites, some grasshoppers) can be lured into traps by light and some insects like palm weevils can be attracted to artificially created breeding sites. Some species (crickets, cicadas) can be located by the sound they make. A number of tools are used to facilitate capturing such as glue, sticks, nets and baskets.
    [Show full text]
  • Review of the Efficacy of Metarhizium Anisopliae Var. Acridum Against the Desert Locust
    PLANT PRODUCTION AND PROTECTION DIVISION LOCUSTS AND OTHER MIGRATORY PESTS GROUP No. AGP/DL/TS/34 DESERT LOCUST TECHNICAL SERIES Review of the efficacy of Metarhizium anisopliae var. acridum against the Desert Locust The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The mention or omission of specific companies, their products or brand names does not imply any endorsement or judgement by the Food and Agriculture Organization of the United Nations. The Food and Agriculture Organization of the United Nations encourages the dissemination of material contained in this publication, provided that reference is made to the source. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Electronic Publishing Policy and Support Branch, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] © FAO 2007 TECHNICAL SERIES Review of the efficacy of Metarhizium anisopliae var.
    [Show full text]
  • Survival and Mortality of Grasshopper Egg Pods in Semi-Arid Cereal Cropping Areas of Northern Benin
    Bulletin of Entomological Research (1998) 88, 451-459 451 Survival and mortality of grasshopper egg pods in semi-arid cereal cropping areas of northern Benin P.A. Shah12*, I. Godonou2, C. Gbongboui2, A. Hossou3 and C.J. Lomer2 'Institute of Microbiology, Swiss Federal Institute of Technology, LFV E14, ETH- Zentrum, CH-8092 Zurich, Switzerland: 'International Institute of Tropical Agriculture, Plant Health Management Division, Cotonou, BP 08-0932, Republic of Benin: 'Service Protection des Vegetaux, Porto Novo, BP 58, Republic of Benin Abstract Surveys of egg pods of agriculturally important grasshoppers were carried out in northern Benin between 1992 and 1995. Searches were made of oviposition sites under shrubs of the perennial legume Piliostigma thonningi along field margins. In 1993 and 1995, surveys were extended to include sorghum, Sorghum bicolor, and the perennial thatch grass Vetiveria nigritana. The four principal grasshopper species found at these oviposition sites were Hieroglyphus daganensis Krauss, Cataloipus fuscocoeruleipes Sjostedt, Kraussaria angulifera (Krauss) and Tylotropidius gracilipes Brancsik comprising 86% of 4545 identified egg pods while 651 egg pods could not be identified to species level. Predation by meloid beetles (Epicauta, Mylabris and Psalydolytta spp.) varied between 0 and 50% for the four dominant grasshopper species. From 1993 and 1994 data, nymphal eclosion from egg pods damaged by meloids was significantly lower than emergence from undamaged egg pods. The hymenopterous parasitoids Scelio africanus Risbec and S. mauriticanus Risbec were reared from the four dominant grasshopper species and parasitism levels of 0.0-3.3% were recorded from these hosts. There were significant differences in nymphaJ emergences between parasitized and unparasitized egg pods of H.
    [Show full text]
  • AGRHYMET MONTHLY BULLETIN N° M-05/05 July 2005
    COMITÉ PERMANENT INTER- ÉTATS DE LUTTE PERMANENT INTERSTATE COMMITTEE CONTRE LA SÉCHERESSE DANS LE SAHEL FOR DROUGHT CONTROL IN THE SAHEL AGRHYMET MONTHLY BULLETIN N° M-05/05 July 2005 The overall good and rather well distributed rainfall in time and space, early sowing, good vegetative state of crops and relatively calm phytosanitary situation should not mask the July localized crop water stress, flooding and overflow of bodies of water in areas to be monitored during this cropping season. The July 2005 monthly rainfall was poorly distributed in time. Admittedly, the fortnight of the month under review was characterized by abundant and well distributed rains. On the other hand, a break in rainfall, which ranged from a few days to two weeks, was observed during the second fortnight of July. As a result, the rainfall amounts recorded were below normal in many locations of the agricultural zone of the CILSS member countries. These localised rainfall deficits were observed in the Wilayas of Guidimaka and Hodh el Chargui, Mauritania, the southern part of the area of Tambacounda, the Ziguinchor and Niaye areas, Senegal, Western Gambia, almost all over the agricultural zone of Guinea Bissau and Mali respectively, southwestern and central Burkina Faso, the area of Tillabéry and the southern part of that of Dosso, Niger, and the prefectures1 of Guéra, Salamat, Ouaddaï, Middle Chari, Eastern and Western Logones, Chad (figures 1.1 and 1.2). Seasonal cumulative rainfall as at July 31st, 2005, was deficient in the coastal Niaye strip, Senegal, some places in the areas of Kayes, Sikasso and Ségou, Mali, Southwestern and Western Burkina Faso, here and there in the northeastern and southern parts of the areas of Tillabéry and Dosso respectively, Niger and the extreme South of Chad (figures 1.3 and 1.4).
    [Show full text]
  • CIRAD - Locust Ecology & Control Unit, Bibliographical Query Database, Issued September 2005
    CIRAD - Locust ecology & control unit, bibliographical query database, issued September 2005 1. ABDULGADER A. & MOHAMMAD K.U., 1990. – Taxonomic significance of epiphallus in some Libyan grasshoppers (Orthoptera: Acridoidea ). – Annals of Agricultural Science (Cairo), 3535(special issue) : 511- 519. 2. ABRAMS P.A. & SCHMITZ O.J., 1999. – The effect of risk of mortality on the foraging behaviour of animals faced with time and digestive capacity constraints. – Evolutionary Ecology Research, 11(3) : 285-301. 3. ABU Z.N., 1998. – A nematode parasite from the lung of Mynah birds at Jeddah, Saudi Arabia. – Journal of the Egyptian Society of Parasitology, 2828(3) : 659-663. 4. ACHTEMEIER G.L., 1992. – Grasshopper response to rapid vertical displacements within a “clear air” boundary layer as observed by doppler radar. – Environmental Entomology, 2121(5) : 921-938. 5. ACKONOR J.B. & VAJIME C.K., 1995. – Factors affecting Locusta migratoria migratorioides egg development and survival in the Lake Chad basin outbreak area. – International Journal of Pest Management, 44111(2) : 87-96. 6. ADIS J. & JUNK W.J., 2003. – Feeding impact and bionomics of the grasshopper Cornops aquaticum on the water hyacinth Eichhornia crassipes in Central Amazonian floodplains. – Studies on Neotropical Fauna and Environment, 3838(3) : 245-249. 7. ADIS J., LHANO M., HILL M., JUNK W.J., MARQUES MARINEZ I. & OBEOBERHOLZERRHOLZER H., 2004. – What determines the number of juvenile instars in the tropical grasshopper Cornops aquaticum (Leptysminae : Acrididae : Orthoptera) ? – Studies on Neotropical Fauna and Environment, 3939(2) : 127-132. 8. AGRO D., 1994. – Grasshoppers as food source for black-billed cuckoo. – Ontario Birds, 1212(1) : 28-29. 9. AHAD M.A., SHAHJAHAN M.
    [Show full text]